生物技术通报 ›› 2021, Vol. 37 ›› Issue (3): 35-43.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0852
收稿日期:
2020-07-11
出版日期:
2021-03-26
发布日期:
2021-04-02
作者简介:
李昕悦,男,硕士研究生,研究方向:发酵工程;E-mail:基金资助:
LI Xin-yue(), ZHANG Jin-fang, XU Xiao-jian, LU Fu-ping, LI Yu()
Received:
2020-07-11
Published:
2021-03-26
Online:
2021-04-02
摘要:
解淀粉芽胞杆菌作为公认的安全生产宿主菌(GRAS),在高效表达异源蛋白方面具有巨大的发展潜力和应用前景。本研究以解淀粉芽胞杆菌TCCC111018为出发菌株,通过敲除芽胞形成相关基因(spo0A,sigF和sigE),构建了一系列突变菌株(BAΔspo0A,BAΔsigF,BAΔsigE),并对突变株生物量和胞外酶表达量进行分析比较。结果表明,与出发菌株BAΔupp相比,菌株BAΔspo0A的生物量及胞外酶表达量显著降低,BAΔsigE无明显变化,而菌株BAΔsigF的生产性能有显著提升,菌体生长的稳定期延长约6 h,产酶时间提前,耐酸性α-淀粉酶与碱性蛋白酶酶活分别提高了25.2%和21.3%,该菌株的成功构建为工业酶生产宿主提供了新的选择,也为异源酶的高效生产提出了一种新的策略。
李昕悦, 张金方, 徐小健, 路福平, 李玉. 芽胞形成相关基因缺失对解淀粉芽胞杆菌生物量及胞外酶表达的影响[J]. 生物技术通报, 2021, 37(3): 35-43.
LI Xin-yue, ZHANG Jin-fang, XU Xiao-jian, LU Fu-ping, LI Yu. Effects of Spore Formation Related Gene Deletion on Biomass and Extracellular Enzyme Expression of Bacillus amyloliquefaciens[J]. Biotechnology Bulletin, 2021, 37(3): 35-43.
菌株/质粒 | 特征/目的 | 来源 | |
---|---|---|---|
菌株 | E.coli JM109 | 敲除载体构建 | 中国科学院 |
E.coli EC135 pM.Bam | 对质粒DNA进行甲基化修饰 | 中国科学院 | |
B.amyloliquefaciens TCCC111018Δupp(BA Δupp) | 出发菌株 | 本研究 | |
B.amyloliquefaciens TCCC111018Δspo0A(BA Δspo0A) | spo0A 基因敲除 | 本研究 | |
B.amyloliquefaciens TCCC111018ΔsigE(BA ΔsigE) | sig E基因敲除 | 本研究 | |
B.amyloliquefaciens TCCC111018ΔsigF(BA ΔsigF) | sigF 基因敲除 | 本研究 | |
质粒 | pWH-T2 | 穿梭表达载体 | 湖北大学 |
pWH-T2-Δspo0A | 敲除载体,spo0A基因敲除 | 本研究 | |
pWH-T2-ΔsigE | 敲除载体,sigE 基因敲除 | 本研究 | |
pWH-T2-ΔsigF | 敲除载体,sigF 基因敲除 | 本研究 | |
pLY-1 | 耐酸性α-淀粉酶表达载体 | 本实验室 | |
pLY-2 | 碱性蛋白酶表达载体 | 本实验室 |
表1 研究中使用的菌株和质粒
菌株/质粒 | 特征/目的 | 来源 | |
---|---|---|---|
菌株 | E.coli JM109 | 敲除载体构建 | 中国科学院 |
E.coli EC135 pM.Bam | 对质粒DNA进行甲基化修饰 | 中国科学院 | |
B.amyloliquefaciens TCCC111018Δupp(BA Δupp) | 出发菌株 | 本研究 | |
B.amyloliquefaciens TCCC111018Δspo0A(BA Δspo0A) | spo0A 基因敲除 | 本研究 | |
B.amyloliquefaciens TCCC111018ΔsigE(BA ΔsigE) | sig E基因敲除 | 本研究 | |
B.amyloliquefaciens TCCC111018ΔsigF(BA ΔsigF) | sigF 基因敲除 | 本研究 | |
质粒 | pWH-T2 | 穿梭表达载体 | 湖北大学 |
pWH-T2-Δspo0A | 敲除载体,spo0A基因敲除 | 本研究 | |
pWH-T2-ΔsigE | 敲除载体,sigE 基因敲除 | 本研究 | |
pWH-T2-ΔsigF | 敲除载体,sigF 基因敲除 | 本研究 | |
pLY-1 | 耐酸性α-淀粉酶表达载体 | 本实验室 | |
pLY-2 | 碱性蛋白酶表达载体 | 本实验室 |
引物名称 | 寡核苷酸序列 |
---|---|
上游同源臂 | F:CCACCGCGGTGGCGGCCGCTCTAGACGATCATCCAGAACGGGAAAG |
R:CCAATCTCAGATCAGCAACACAAACTTTAATTTTCTCCACG | |
下游同源臂 | F:TGTTGCTGATCTGAGATTGGAGCATAAAGCTTCATAACGC |
R:TTAACGAATTCCTGCAGCCCGGGAGAGTGACGATGGATATGATTATG | |
同源臂重叠PCR | F:CCACCGCGGTGGCGGCCGCTCTAGACGATCATCCAGAACGGGAAAG |
R:TTAACGAATTCCTGCAGCCCGGGAGAGTGACGATGGATATGATTATG | |
单交换验证(上游交换) | F:CCGCAAAAATTCCCGGCGAC |
R:AGAGTGACGATGGATATGATTATGGTCAGTTTG | |
单交换验证(下游交换) | F:CGATCATCCAGAACGGGAAAGTCG |
R:CACTCAGTTTAAAGGCGCGTATCGCTTATG | |
双交换验证 | F:CCGCAAAAATTCCCGGCGAC |
R:CACTCAGTTTAAAGGCGCGTATCGCTTATG |
表2 spo0A基因缺失涉及的PCR引物
引物名称 | 寡核苷酸序列 |
---|---|
上游同源臂 | F:CCACCGCGGTGGCGGCCGCTCTAGACGATCATCCAGAACGGGAAAG |
R:CCAATCTCAGATCAGCAACACAAACTTTAATTTTCTCCACG | |
下游同源臂 | F:TGTTGCTGATCTGAGATTGGAGCATAAAGCTTCATAACGC |
R:TTAACGAATTCCTGCAGCCCGGGAGAGTGACGATGGATATGATTATG | |
同源臂重叠PCR | F:CCACCGCGGTGGCGGCCGCTCTAGACGATCATCCAGAACGGGAAAG |
R:TTAACGAATTCCTGCAGCCCGGGAGAGTGACGATGGATATGATTATG | |
单交换验证(上游交换) | F:CCGCAAAAATTCCCGGCGAC |
R:AGAGTGACGATGGATATGATTATGGTCAGTTTG | |
单交换验证(下游交换) | F:CGATCATCCAGAACGGGAAAGTCG |
R:CACTCAGTTTAAAGGCGCGTATCGCTTATG | |
双交换验证 | F:CCGCAAAAATTCCCGGCGAC |
R:CACTCAGTTTAAAGGCGCGTATCGCTTATG |
基因名称 | 6 h-fpkm | 10 h-fpkm | 12 h-fpkm | 30 h-fpkm |
---|---|---|---|---|
spo0A | 582.56 | 511.54 | 658.06 | 1517.13 |
sigE | 4.97 | 30.06 | 9.21 | 0.93 |
sigF | 2380.91 | 4785.86 | 3287.31 | 1270.81 |
表3 不同培养时间芽胞形成相关基因的转录信息
基因名称 | 6 h-fpkm | 10 h-fpkm | 12 h-fpkm | 30 h-fpkm |
---|---|---|---|---|
spo0A | 582.56 | 511.54 | 658.06 | 1517.13 |
sigE | 4.97 | 30.06 | 9.21 | 0.93 |
sigF | 2380.91 | 4785.86 | 3287.31 | 1270.81 |
[1] | 吴庆, 解淀粉芽胞杆菌胞苷代谢途径分析与高效基因敲除系统构建的研究[D]. 银川:宁夏大学, 2016. |
Wu Q, Study on metabolic pathway analysis of cytidine and construction of effective gene knockout system in Bacillus amyloliquefaciens[D]. Yinchuan:Ningxia University, 2016. | |
[2] | Gao W, Liu F, Zhang W, et al. Mutations in genes encoding antibiotic substances increase the synjournal of poly-γ-glutamic acid in Bacillus amyloliquefaciens LL3[J]. Microbiology Open, 2017,6(1):1-11. |
[3] |
Cai D, Rao Y, Zhan Y, et al. Engineering Bacillus for efficient production of heterologous protein:current progress, challenge and prospect[J]. J Appl Microbiol, 2019,126(6):1632-1642.
doi: 10.1111/jam.14192 URL pmid: 30609144 |
[4] |
Gao W, He Y, Zhang F, et al. Metabolic engineering of Bacillus amyloliquefaciens LL3 for enhanced poly-γ-glutamic acid synjournal[J]. Microbial Biotechnology, 2019,12(5):932-945.
doi: 10.1111/1751-7915.13446 URL pmid: 31219230 |
[5] |
Feng J, Quan Y, Gu Y, et al. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synjournal features from Corynebacterium glutamicum[J]. Microbial Cell Factorie, 2017,16(1):1-12.
doi: 10.1186/s12934-016-0616-2 URL |
[6] | Feng J, Gu Y, Quan Y, et al. Recruiting a new strategy to improve levan production in Bacillus amyloliquefaciens[J]. Scientific Reports, 2015,5(1):1-12. |
[7] | 刘润泽, 王世伟, 王卿惠, 等. 解淀粉芽胞杆菌酶系及其应用研究进展[J]. 高师理科学刊, 2019,39(3):70-75. |
Liu RZ, Wang SW, Wang HQ, et al. Study advances in enzyme systems and their applications of Bacillus amyloliquefaciens[J]. Journal of Science of Teachers’College and University, 2019,39(3):70-75. | |
[8] | 王慧. 解淀粉芽胞杆菌k11高效表达体系的建立及其高效表达元件的优化[D]. 北京:中国农业科学院, 2018. |
Wang H. Establishment of the highly effective expression system in Bacillus amyloliquefaciens K11 and optimization of its efficient expression elements[D]. Beijing:Chinese Academy of Agricultural Sciences, 2018. | |
[9] | Arrieta-Ortiz ML, Hafemeister C, Bate AR, et al. An experimentally supported model of the Bacillus subtilis global transcriptional regulatory network[J]. Mol Syst Biol, 2015,11(11):1-17. |
[10] | 肖静, 王瑞明, 原梨萍. 芽胞形成相关基因spoⅡE在影响菌株生长及产酶中的应用:中国, 201810886538.5[P], 2018-12-04 |
Xiao J, Wang RM, Yuan LP. Application of sporulation-related gene spoIIE in affecting scale growth and enzyme production:China, 201810886538.5[P] 2018-12-04 | |
[11] |
Haggett L, Bhasin A, Srivastava P, et al. A revised model for the control of fatty acid synjournal by master regulator Spo0A in Bacillus subtilis[J]. Molecular Microbiology, 2018,108(4):424-442.
doi: 10.1111/mmi.13945 URL pmid: 29488667 |
[12] |
Ara K, Ozaki K, Nakamura K, et al. Bacillus minimum genome factory:effective utilization of microbial genome information[J]. Biotechnology and Applied Biochemistry, 2007,46(3):169-178.
doi: 10.1042/BA20060111 URL |
[13] |
Seo S, Wang Y, Lu T, et al. Characterization of a Clostridium beijerinckii spo0A mutant and its application for butyl butyrate production[J]. Biotechnology and Bioengineering, 2017,114(1):106-112.
doi: 10.1002/bit.26057 URL pmid: 27474812 |
[14] |
Kodama T, Endo K, Ara K, et al. Effect of Bacillus subtilis spo0A mutation on cell wall lytic enzymes and extracellular proteases, and prevention of cell lysis[J]. Journal of Bioscience and Bioengineering, 2007,103(1):13-21.
URL pmid: 17298895 |
[15] |
Gupta M, Dixit M, Rao KK. Spo0A positively regulates epr expression by negating the repressive effect of co-repressors, SinR and ScoC, in Bacillus subtilis[J]. J Biosci, 2013,38(2):291-299.
doi: 10.1007/s12038-013-9309-8 URL pmid: 23660663 |
[16] | 张群. spo0A基因突变对解淀粉芽胞杆菌PEBA20生物膜和抑菌活性的影响[D]. 泰安:山东农业大学, 2014. |
Zhang Q. Effect of spo0A gene mutation on the biofilm and antibacterial activity of Bacillus amyloliquefaciens PEBA20[D]. Taian:Shandong Agricultural University, 2014. | |
[17] | 周习旺. spo0A基因缺失对克劳氏芽胞杆菌发酵性能的影响[D]. 济南:齐鲁工业大学, 2017. |
Zhou XW. Effect on fermentation performance of Bacillus clausii by spo0A genetic deletion[D]. Ji’nan:Qilu University of Technology, 2017. | |
[18] |
Barak I, Muchova K, Labajova N. Asymmetric cell division during Bacillus subtilis sporulation[J]. Future Microbiol, 2019,14:353-363.
URL pmid: 30855188 |
[19] | 张虎. 芽胞缺失型地衣芽胞杆菌自溶基因敲除的研究[D]. 济南:齐鲁工业大学, 2019. |
Zhang H. Study on autolysis gene knockout of Bacillus licheniformis with spore deficiency[D]. Ji’nan:Qilu University of Technology, 2019. | |
[20] | Overkamp W, Kuipers OP. Transcriptional profile of Bacillus subtilis sigF-mutant during vegetative growth[J]. PLoS One, 2015,10(10):1-12. |
[21] | 洪一平, 王东澍, 吕宇飞, 等. 炭疽芽胞杆菌sigF缺失株的构建及其对芽胞形成的影响[J]. 军事医学, 2017,41(3):199-204. |
Hong YP, Wang DZ, Lv YF, et al. Construction of sigF deletion mutant of Bacillus anthracis and its effect on formation of spores[J]. Mil Med Sci, 2017,41(3):199-204. | |
[22] | Omony J, de Jong A, Krawczyk A O, et al. Dynamic sporulation gene co-expression networks for Bacillus subtilis 168 and the food-borne isolate Bacillus amyloliquefaciens:a transcriptomic model[J]. Microbial Genomics, 2018,4(2):1-13. |
[23] |
Zhang K, Duan X, Wu J. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system[J]. Scientific Reports, 2016,6(1):1-11.
doi: 10.1038/s41598-016-0001-8 URL pmid: 28442746 |
[24] | 张虎, 肖静, 原梨萍, 等. spollE基因缺失对克劳氏芽胞杆菌淀粉酶酶活的影响[J]. 食品工业科技, 2019,40(1):131-135. |
Zhang H, Xiao J, Yuan LP, et al. Effect of spollE Genedeletion on amylase activity in Bacillus clausii[J]. Science and Technology of Food Industry, 2019,40(1):131-135. | |
[25] |
Zhou C, Zhou H, Zhang H, et al. Optimization of alkaline protease production by rational deletion of sporulation related genes in Bacillus licheniformis[J]. Microbial Cell Factories, 2019,18(127):1-12.
doi: 10.1186/s12934-018-1049-x URL |
[26] |
Tännler S, Decasper S, Sauer U. Maintenance metabolism and carbon fluxes in Bacillus species[J]. Microbial Cell Factories, 2008,19(7):1-13.
doi: 10.1186/s12934-019-1269-8 URL |
[27] |
Hümpel A, Gebhard S, Cook GM, et al. The SigF regulon in mycobacterium smegmatis reveals roles in adaptation to stationary phase, heat, and oxidative stress[J]. Journal of Bacteriology, 2010,192(10):2491-2502.
URL pmid: 20233930 |
[28] | Shen Y, Shaw G. A membrane transporter required for 3-hydroxybutyrate uptake during the early sporulation stage in Bacillus subtilis[J]. FEMS Microbiology Letters, 2015,362(19):165. |
[29] | Peng Q, Wu J, Chen X, et al. Disruption of two-component system LytSR affects forespore engulfment in Bacillus thuringiensis[J]. Frontiers in Cellular and Infection Microbiology, 2017,7(468):1-11. |
[30] |
Singh AK, Dutta D, Singh V, et al. Characterization of Mycobacterium smegmatis sigF mutant and its regulon:overexpression of SigF antagonist(MSMEG_1803)in M. smegmatis mimics sigF mutant phenotype, loss of pigmentation, and sensitivity to oxidative stress[J]. Microbiology Open, 2015,4(6):896-916.
URL pmid: 26434659 |
[31] | Sambrook J, Russell DW. Molecular cloning. laboratory manual[M]. Third Edition ed. New York: Cold Spring Harbor Laboratory Press, 2001. |
[32] | 叶棋浓. 现代分子生物学技术及实验技巧[M]. 北京: 化学工业出版社, 2015. |
Ye QN. Current molecular biology technologies and tips[M]. Beijing: Chemical Industry Press, 2015. | |
[33] |
Zhou C, Liu H, Yuan F, et al. Development and application of a CRISPR/Cas9 system for Bacillus licheniformis genome editing[J]. International Journal of Biological Macromolecules, 2019,122:329-337.
doi: 10.1016/j.ijbiomac.2018.10.170 URL pmid: 30401651 |
[34] | 张伟. 解淀粉芽胞杆菌LL3中无痕基因敲除方法的建立及其应用研究[D]. 天津:南开大学, 2015. |
Zhang W. Development of a markerless gene replacment method and its applications in Bacillus amyloliquefaciens LL3[D]. Tianjin:Nankai University, 2015. | |
[35] | 李海娟. 双交换同源重组法构建Thermus thermophilus基因无痕敲除突变体[J]. 湖南农业大学学报:自然科学版, 2019,45(2):143-148. |
Li HJ. Construction of gene clean deletion mutants in Thermus thermophilus by the method of double-crossover homologous recombination[J]. Journal of Hunan Agricultural University:Natural Sciences, 2019,45(2):143-148. | |
[36] | 国家标准化管理委员会. GB 4789. 35-2016, 食品微生物学检验乳酸菌检验[S]. 2016-12-23. |
Standardization Administration of the People’s Republic of China. GB 4789. 35-2016, Food microbiology inspection lactic acid bacteria test[S]. 2016-12-23. | |
[37] | 国家标准化管理委员会. GB/T 24401-2009, α-淀粉酶制剂[S]. 2009-09-30. |
Standardization Administration of the People’s Republic of China. GB/T 24401-2009, Alpha-amylase preparations[S]. 2009-09-30. | |
[38] | 国家标准化管理委员会. GB/T 23527-2009, 蛋白酶制剂[S]. 2009-04-27. |
Standardization Administration of the People’s Republic of China. GB/T 23527-2009, Protease preparations[S]. 2009-04-27. | |
[39] |
Chary VK, Xenopoulos P, Eldar A, et al. Loss of compartmentalization of σE activity need not prevent formation of spores by Bacillus subtilis[J]. Journal of Bacteriology, 2010,192(21):5616-5624.
doi: 10.1128/JB.00572-10 URL pmid: 20802044 |
[40] | 李欣. 枯草芽胞杆菌芽胞形成阻断及碳流调控对乙偶姻合成的影响[D]. 无锡:江南大学, 2017. |
Li X. Effects of nonsporulation and carbon fluxes regulation on on acetoin synthesis in Bacillus subtilis[D]. Wuxi:Jiangnan University, 2017. | |
[41] | 孙娟娟. 普鲁兰酶在解淀粉芽孢杆菌中表达方法的探索[D]. 无锡:江南大学, 2011. |
Sun JJ. Exploration of the methods for expression of pullulanase in Bacillus amyloliquefaciens[D]. Wuxi:Jiangnan University, 2011. | |
[42] | Huang Y, Flint SH, Palmer JS. Bacillus cereus spores and toxins-the potential role of biofilms[J]. Food Microbiolog, 2020,103493(90):1-7. |
[1] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[2] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[3] | 牛馨, 张莹, 王茂军, 刘文龙, 路福平, 李玉. 解淀粉芽胞杆菌不同整合位点对外源碱性蛋白酶表达的影响[J]. 生物技术通报, 2022, 38(4): 253-260. |
[4] | 杨瑞先, 刘萍, 王祖华, 阮宝硕, 汪智达. 牡丹根腐病原菌拮抗细菌抑菌活性物质分析[J]. 生物技术通报, 2022, 38(2): 57-66. |
[5] | 袁媛, 王蕾, 石亚伟. 微生物来源碱性蛋白酶活性提高策略的研究进展[J]. 生物技术通报, 2021, 37(5): 231-236. |
[6] | 李瑾, 彭可为, 潘求一, 朱哲远, 彭迪. 解淀粉芽胞杆菌HR-2的分离鉴定及对水稻稻瘟病菌的拮抗效果[J]. 生物技术通报, 2021, 37(3): 27-34. |
[7] | 宋本超, 赵冬梅, 杨志辉, 张岱, 赵志, 朱杰华. 马铃薯黑痣病菌拮抗菌的筛选鉴定及生防因子分析[J]. 生物技术通报, 2019, 35(8): 9-16. |
[8] | 张丹, 王楠, 李超, 谢旗, 唐三元. 甜高粱——一种优质的饲料作物[J]. 生物技术通报, 2019, 35(5): 2-8. |
[9] | 张靖洁, 段露露, 程蔚兰, 季春丽, 崔红利, 李润植. 菌藻共生提高小球藻生物量和产油率[J]. 生物技术通报, 2019, 35(5): 76-84. |
[10] | 王楠, 陈诚轩, 谢鹏, 李晓, 李超, 唐三元, 谢旗. 甜高粱作为反刍动物饲料的最佳收获期的研究[J]. 生物技术通报, 2018, 34(10): 100-107. |
[11] | 陈坤, 袁飞燕, 柴昊男, 刘焕, 王兴吉, 张会图, 路福平. 一种高效表达碱性蛋白酶的新型启动子的筛选及研究[J]. 生物技术通报, 2018, 34(1): 208-214. |
[12] | 赵佳, 黄静, 陈哲, 聂园军, 梁宏. 西瓜枯萎病拮抗菌Lh-1的鉴定及生物防治效果研究[J]. 生物技术通报, 2017, 33(4): 130-136. |
[13] | 程蔚兰, 邵雪梅, 宋程飞, 史飞飞, 季春丽, 李润植. 氮胁迫对埃氏小球藻生长及油脂积累的影响[J]. 生物技术通报, 2017, 33(11): 160-165. |
[14] | 孟歌, 郑飞, 刘红霞, 司静, 崔宝凯. 锦带花纤孔菌液体培养过程中的抗氧化活性[J]. 生物技术通报, 2016, 32(9): 140-148. |
[15] | 陈传红, 吴洪, 李青, 尹顺吉, 罗少敬, 崔春莉. 三株栅藻属藻株光合自养产油脂的比较研究[J]. 生物技术通报, 2016, 32(6): 238-243. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||