生物技术通报 ›› 2021, Vol. 37 ›› Issue (4): 47-55.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1514
雒丽丽1,2(), 张昊2,3, 杨美欣2, 王云飞2, 许景升2, 徐进2, 姚强1(), 冯洁2()
收稿日期:
2020-12-15
出版日期:
2021-04-26
发布日期:
2021-05-13
作者简介:
雒丽丽,女,硕士研究生,研究方向:植物病害流行;E-mail:基金资助:
LUO Li-li1,2(), ZHANG Hao2,3, YANG Mei-xin2, WANG Yun-fei2, XU Jing-sheng2, XU Jin2, YAO Qiang1(), FENG Jie2()
Received:
2020-12-15
Published:
2021-04-26
Online:
2021-05-13
摘要:
研究不同来源的禾谷镰孢菌群体在不同温度条件下对小麦的致病力分化。2018和2019年间分别从黄淮冬麦区和东北春麦区采集小麦赤霉病病样,经单孢分离纯化共得到110株镰孢菌,采用EF-1α序列比对技术对分类病原菌进行了种类鉴定,结果显示禾谷镰孢菌为两个生态区小麦赤霉病的优势种。随机选择两个生态区的禾谷镰孢菌菌株各10株,采用单小花注射法分别在温度较高的廊坊市与温度较低的西宁市接种。在温度较低的西宁市,两个生态区的禾谷镰孢菌群体存在明显的致病力分化现象,东北麦区的禾谷镰孢菌群体致病力明显高于黄淮麦区群体,而在温度较高的廊坊市,两个群体的致病力差异不显著。表明东北麦区的禾谷镰孢菌群体有明显的低温适应性,研究结果明确了温度影响禾谷镰孢菌群体的致病力,对于禾谷镰孢菌群体致病力分化研究和小麦赤霉病的综合防治具有重要意义。
雒丽丽, 张昊, 杨美欣, 王云飞, 许景升, 徐进, 姚强, 冯洁. 黄淮与东北麦区小麦赤霉菌温度相关的致病力分化研究[J]. 生物技术通报, 2021, 37(4): 47-55.
LUO Li-li, ZHANG Hao, YANG Mei-xin, WANG Yun-fei, XU Jing-sheng, XU Jin, YAO Qiang, FENG Jie. Temperature-related Pathogenicity Differentiation of Wheat Head Blight in Huang and Huai River Valleys and Northeast China Wheat Regions[J]. Biotechnology Bulletin, 2021, 37(4): 47-55.
图1 EF-1α 基因系统进化树 灰色名称表示标准参照菌株(GenBank登录号+种名)
Fig.1 Phylogenetic tree by EF-1α gene Names in grey are reference strains (GenBank association number + species)
小麦种植区 Wheat growing area | 采样点 Sampling site | 经度Longitude | 纬度 Altitude | 2018年分离菌株数量 Number of isolates in 2018 | 2019年分离菌株数量Number of isolates in 2019 | 总计 Total |
---|---|---|---|---|---|---|
黄淮冬麦区 Huanghuai winter wheat region | 河南 | 114.192389 | 35.05454097 | 1(1) | 1(1) | 2 |
Henan | 114.478073 | 35.02427601 | 1 | 0 | 1 | |
115.197768 | 36.039024 | 2(1) | 1(1) | 3 | ||
113.596423 | 35.08097104 | 0 | 3 | 3 | ||
114.003443 | 35.043789 | 1 | 3 | 4 | ||
114.56618 | 34.83769602 | 1 | 1 | 2 | ||
115.150602 | 35.47239896 | 1 | 0 | 1 | ||
河北 | 115.824965 | 39.218749 | 3(1) | 5(1) | 8 | |
Hebei | 115.227049 | 38.66614404 | 3(1) | 4(1) | 7 | |
115.04654 | 38.52423398 | 2 | 0 | 2 | ||
114.550125 | 36.75152097 | 10(1) | 6(1) | 16 | ||
114.614042 | 36.605715 | 3 | 6 | 9 | ||
115.119011 | 36.27501296 | 0 | 1 | 1 | ||
115.191918 | 41.248323 | 2 | 0 | 2 | ||
东北春麦区Northeast spring wheat region | 内蒙古 | 120.195951 | 50.64350003 | 0 | 1 | 1 |
Inner Mongolia | 119.705403 | 49.53917599 | 3(1) | 4(1) | 7 | |
119.775435 | 49.64931303 | 5 | 0 | 5 | ||
120.111686 | 49.41728602 | 5(1) | 6(1) | 11 | ||
120.675101 | 49.375361 | 0 | 1 | 1 | ||
120.804145 | 49.298681 | 2(1) | 3(1) | 5 | ||
120.932706 | 49.31512898 | 1(1) | 4(1) | 5 | ||
120.446777 | 49.54273101 | 7(1) | 5(1) | 12 | ||
120.472253 | 49.47417199 | 1 | 0 | 1 | ||
120.675101 | 49.375361 | 0 | 1 | 1 | ||
总计total | 54 | 56 | 110 |
表1 供试小麦赤霉病菌信息
Table 1 Information of WHB pathogens from wheat
小麦种植区 Wheat growing area | 采样点 Sampling site | 经度Longitude | 纬度 Altitude | 2018年分离菌株数量 Number of isolates in 2018 | 2019年分离菌株数量Number of isolates in 2019 | 总计 Total |
---|---|---|---|---|---|---|
黄淮冬麦区 Huanghuai winter wheat region | 河南 | 114.192389 | 35.05454097 | 1(1) | 1(1) | 2 |
Henan | 114.478073 | 35.02427601 | 1 | 0 | 1 | |
115.197768 | 36.039024 | 2(1) | 1(1) | 3 | ||
113.596423 | 35.08097104 | 0 | 3 | 3 | ||
114.003443 | 35.043789 | 1 | 3 | 4 | ||
114.56618 | 34.83769602 | 1 | 1 | 2 | ||
115.150602 | 35.47239896 | 1 | 0 | 1 | ||
河北 | 115.824965 | 39.218749 | 3(1) | 5(1) | 8 | |
Hebei | 115.227049 | 38.66614404 | 3(1) | 4(1) | 7 | |
115.04654 | 38.52423398 | 2 | 0 | 2 | ||
114.550125 | 36.75152097 | 10(1) | 6(1) | 16 | ||
114.614042 | 36.605715 | 3 | 6 | 9 | ||
115.119011 | 36.27501296 | 0 | 1 | 1 | ||
115.191918 | 41.248323 | 2 | 0 | 2 | ||
东北春麦区Northeast spring wheat region | 内蒙古 | 120.195951 | 50.64350003 | 0 | 1 | 1 |
Inner Mongolia | 119.705403 | 49.53917599 | 3(1) | 4(1) | 7 | |
119.775435 | 49.64931303 | 5 | 0 | 5 | ||
120.111686 | 49.41728602 | 5(1) | 6(1) | 11 | ||
120.675101 | 49.375361 | 0 | 1 | 1 | ||
120.804145 | 49.298681 | 2(1) | 3(1) | 5 | ||
120.932706 | 49.31512898 | 1(1) | 4(1) | 5 | ||
120.446777 | 49.54273101 | 7(1) | 5(1) | 12 | ||
120.472253 | 49.47417199 | 1 | 0 | 1 | ||
120.675101 | 49.375361 | 0 | 1 | 1 | ||
总计total | 54 | 56 | 110 |
项目 Item | 黄淮冬麦区 Huanghuai winter wheat region | 东北春麦区 Northeast China spring wheat region | 总计 total | ||
---|---|---|---|---|---|
年份years | 2018 | 2019 | 2018 | 2019 | - |
采样点数 Sampling points | 12 | 7 | 10 | 8 | 24 |
F. graminearum | 24 | 28 | 22 | 22 | 96 |
FIESC | 2 | 0 | 0 | 1 | 3 |
F. asiaticum | 2 | 2 | 0 | 0 | 4 |
F. avenaceum | 0 | 0 | 0 | 1 | 1 |
F. culmorum | 0 | 0 | 0 | 1 | 1 |
F. verticillioides | 0 | 1 | 0 | 0 | 1 |
F. cerealis | 0 | 0 | 1 | 0 | 1 |
F. boothii | 1 | 0 | 0 | 0 | 1 |
F. proliferatum | 1 | 0 | 0 | 0 | 1 |
F. sporotrichioides | 0 | 0 | 1 | 0 | 1 |
总计total | 30 | 31 | 24 | 25 | 110 |
表2 2018和2019年间黄淮冬麦区和东北春麦区小麦镰刀菌种的分布数量
Table 2 Number of Fusarium species on wheat from the Huanghuai winter wheat region and the Northeast spring China wheat region in 2018 and 2019
项目 Item | 黄淮冬麦区 Huanghuai winter wheat region | 东北春麦区 Northeast China spring wheat region | 总计 total | ||
---|---|---|---|---|---|
年份years | 2018 | 2019 | 2018 | 2019 | - |
采样点数 Sampling points | 12 | 7 | 10 | 8 | 24 |
F. graminearum | 24 | 28 | 22 | 22 | 96 |
FIESC | 2 | 0 | 0 | 1 | 3 |
F. asiaticum | 2 | 2 | 0 | 0 | 4 |
F. avenaceum | 0 | 0 | 0 | 1 | 1 |
F. culmorum | 0 | 0 | 0 | 1 | 1 |
F. verticillioides | 0 | 1 | 0 | 0 | 1 |
F. cerealis | 0 | 0 | 1 | 0 | 1 |
F. boothii | 1 | 0 | 0 | 0 | 1 |
F. proliferatum | 1 | 0 | 0 | 0 | 1 |
F. sporotrichioides | 0 | 0 | 1 | 0 | 1 |
总计total | 30 | 31 | 24 | 25 | 110 |
图2 接种后21 d日均温 折线图表示日均温,柱形图表示日均温差
Fig. 2 Average daily temperature at 21 d after inoculation The line graph refers to the daily average temperature, and the bar graph refers to the daily average temperature difference
地区 Area | 廊坊 Langfang | 西宁 Xining |
---|---|---|
黄淮 Huanghuai | 0.202 ± 0.124 | 0.359 ± 0.153 |
东北 Northeast China | 0.214 ± 0.177 | 0.254 ± 0.097 |
表3 黄淮和东北群体在两地平均病小穗率
Table 3 Average incidence of diseased spikelets in Huan-ghuai and Northeast populations in the two sites
地区 Area | 廊坊 Langfang | 西宁 Xining |
---|---|---|
黄淮 Huanghuai | 0.202 ± 0.124 | 0.359 ± 0.153 |
东北 Northeast China | 0.214 ± 0.177 | 0.254 ± 0.097 |
群体 Group | 自由度 Df | 偏差 Deviance | 残差自由度 Resid. Df | 残差偏差 Resid. Dev | P值 P(>Chi) |
---|---|---|---|---|---|
廊坊群体 Langfang | 1 | 0.64626 | 271 | 1193.7 | 0.7001 |
西宁群体 Xining | 1 | 42.995 | 2998 | 334.86 | 1.359×10-10 |
表4 广义线性模型比较群体间致病力差异
Table 4 GLM analysis of pathogenicity between groups
群体 Group | 自由度 Df | 偏差 Deviance | 残差自由度 Resid. Df | 残差偏差 Resid. Dev | P值 P(>Chi) |
---|---|---|---|---|---|
廊坊群体 Langfang | 1 | 0.64626 | 271 | 1193.7 | 0.7001 |
西宁群体 Xining | 1 | 42.995 | 2998 | 334.86 | 1.359×10-10 |
[1] | 陆维忠. 小麦赤霉病研究[M]. 北京: 科学出版社, 2001. |
Lu WZ. Reserch on wheat head blight[M]. Beijing: Science Press, 2001. | |
[2] | 陈云, 王建强, 杨荣明, 等. 小麦赤霉病发生危害形势及防控对策[J]. 植物保护, 2017,43(5):11-17. |
Chen Y, Wang JQ, Yang RM, et al. Current situation and management strategies of Fusarium head blight in China[J]. Plant Protection, 2017,43(5):11-17. | |
[3] | 黄冲, 姜玉英, 吴佳文, 等, 2018年我国小麦赤霉病重发特点及原因分析[J]. 植物保护, 2019,45(2):160-163. |
Huang C, Jiang YY, Wu JW, et al. Occurrence characteristics and reason analysis of wheat head blight in 2018 in China[J]. Plant Protection, 2019,45(2):160-163. | |
[4] |
Sutton JC. Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum[J]. Canadian Journal of Plant Pathology, 1982,4(2):195-209.
doi: 10.1080/07060668209501326 URL |
[5] |
Pettitt TR, Parry DW, Polley RW. Effect of temperature on the incidence of nodal foot rot symptoms in winter wheat crops in England and Wales caused by Fusarium culmorum and Microdochium nivale[J]. Agricultural and Forest Meteorology, 1996,79(4):233-242.
doi: 10.1016/0168-1923(95)02281-3 URL |
[6] | Zhou F. Review of compendium of wheat diseases and pests[J]. Journal of Agricultural & Food Information, 2011,12(2):210. |
[7] |
Vigier B, Reid LM, Seifert KA, et al. Distribution and prediction of Fusarium species associated with maize ear rot in Ontario[J]. Canadian Journal of Plant Pathology, 1997,19(1):60-65.
doi: 10.1080/07060669709500574 URL |
[8] |
Parry DW, Jenkinson P, Mcleod L. Fusarium ear blight(scab)in small grain cereals-a review[J]. Plant Pathology, 1995,44:207-238.
doi: 10.1111/ppa.1995.44.issue-2 URL |
[9] |
Daamen RA, Langerak CJ, Stol W. Surveys of cereal diseases and pests in the Netherlands. 3. Monographella nivalis and Fusarium spp. in winter wheat fields and seed lots[J]. Netherlands Journal of Plant Pathology, 1991,97(2):105-114.
doi: 10.1007/BF01974274 URL |
[10] | 徐雍皋, 方中达. 玉蜀黍赤霉对小麦品种致病力的测定方法和致病力的分化[J]. 植物病理学报, 1982,12(4):55-59. |
Xu YG, Fang ZD. Methods of testing the resistance of wheat varieties to the scab and the differentiation of the virulence of the causal organism[J]. Acta Phytopathologica Sinica, 1982,12(4):55-59. | |
[11] |
Bai GH, Desjardins AE, Plattner RD. Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes[J]. Mycopathologia, 2002,153(2):91-98.
pmid: 12000132 |
[12] | 赵纯森, 马星霞, 武爱波, 等. 禾谷镰刀菌培养性状与致病力的相关性分析[J]. 华中农业大学学报, 2005,24(3):254-257. |
Zhao CS, Ma XX, Wu AB, et al. Correlation analysis between culture phenotypes of Fusarium graminearum schwabe isolates and their pathogenicity[J]. Journal of Huazhong Agricultural, 2005,24(3):254-257. | |
[13] |
Carter JP, Rezanoor HN, Holden D, et al. Variation in pathogenicity associated with the genetic diversity of Fusarium graminearum[J]. European Journal of Plant Pathology, 2002,108(6):573-583.
doi: 10.1023/A:1019921203161 URL |
[14] | 理永霞, 张星耀. 我国中温带面临的松材线虫入侵扩张高风险[J]. 温带林业研究, 2018,1(1):3-6. |
Li YX, Zhang XY. High risk of invasion and expansion of pine wood nematode in middle temperate zone of China[J]. Journal of Temperate Forestry Research, 2018,1(1):3-6. | |
[15] | 盛若成, 李敏, 陈军, 等. 两株我国南北松材线虫虫株形态指标与致病力比较[J]. 南京林业大学学报:自然科学版, 2019,43(6):18-24. |
Sheng RC, Li M, Chen J, et al. Comparison of morphological index and pathogenicity of two isolates of Bursaphelenchus xylophilus in southern and northern in China[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2019,43(6):18-24. | |
[16] |
Lannou C. Variation and selection of quantitative traits in plant pathogens[J]. Annual Review of Phytopathology, 2012,50(1):319-338.
doi: 10.1146/annurev-phyto-081211-173031 URL |
[17] | Ellison CE, Hall C, Kowbel D, et al. Population genomics and local adaptation in wild isolates of a model microbial eukaryote[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(7):2831-2836. |
[18] | 张昊, 张争, 许景升, 等. 一种简单快速的赤霉病菌单孢分离方法——平板稀释画线分离法[J]. 植物保护, 2008,34(6):134-136. |
Zhang H, Zhang Z, Xu JS, et al. A rapid and simple method for obtaining single-spore isolates of Fusarium species-agar dilution lineation separation[J]. Plant Protection, 2008,34(6):134-136. | |
[19] | 潘晓静, 陈楠, 姚远, 等. 东北地区小麦赤霉病镰孢菌种群及其致病性测定[J]. 华北农学报, 2015,30(3):205-210. |
Pan XJ, Chen N, Yao Y, et al. Population and pathogenicity of Fusarium spp. causing wheat head blight in northeast of China[J]. Acta Agriculturae Boreali-Sinica, 2015,30(3):205-210. | |
[20] |
Katoh K, Kuma KI, Toh H, et al. MAFFT version 5:improvement in accuracy of multiple sequence alignment[J]. Nucleic Acids Research, 2005,33(2):511-518.
doi: 10.1093/nar/gki198 URL |
[21] |
Nguyen LT, Schmidt HA, von Haeseler A, et al. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015,32(1):268-274.
doi: 10.1093/molbev/msu300 URL |
[22] |
Wang LG, Lam TTY, Xu SB, et al. Treeio:an R package for phylogenetic tree input and output with richly annotated and associated data[J]. Molecular Biology and Evolution, 2020,37(2):599-603.
doi: 10.1093/molbev/msz240 URL |
[23] |
Yu GC, Smith DK, Zhu HC, et al. Ggtree:an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data[J]. Methods in Ecology and Evolution, 2017,8(1):28-36.
doi: 10.1111/mee3.2017.8.issue-1 URL |
[24] | Wei SH, van der Lee T, Verstappen E, et al. Targeting trichothecene biosynthetic genes[J]. Methods in Molecular Biology, 2017,1542:173-189. |
[25] | 徐飞, 杨共强, 王俊美, 等. 河南省小麦赤霉病菌种群组成及致病力分化[J]. 植物病理学报, 2016,46(3):294-303. |
Xu F, Yang GQ, Wang JM, et al. Composition and variation in aggressiveness of Fusarium populations causing wheat head blight in Henan Province[J]. Acta Phytopathologica Sinica, 2016,46(3):294-303. | |
[26] |
Zhang H, van der Lee T, Waalwijk C, et al. Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates[J]. PLoS One, 2012,7(2):e31722.
doi: 10.1371/journal.pone.0031722 URL |
[27] |
Zhang YJ, Yu JJ, Zhang YN, et al. Effect of carbendazim resistance on trichothecene production and aggressiveness of Fusarium graminearum[J]. Molecular Plant-Microbe Interactions, 2009,22(9):1143-1150.
doi: 10.1094/MPMI-22-9-1143 URL |
[28] | 纪莉景, 栗秋生, 王亚娇, 等. 温度对假禾谷镰刀菌生长、侵染及茎基腐病发生的影响[J]. 植物病理学报, 2020,50(6):723-730. |
Ji LJ, Li QS, Wang YJ, et al. The effect of temperature on the growth and infection of Fusarium pseudograminearum and the occurrence of stem base rot[J]. Acta Phytopath Ologia Sinica, 2020,50(6):723-730. | |
[29] |
Maurin N, Saur L, Capron G. Stem and head reaction of winter wheat cultivars to artificial inoculation by Microdochium nivale under controlled environment and field conditions[J]. Euphytica, 1995,92(3):359-366.
doi: 10.1007/BF00037120 URL |
[30] |
Brennan JM, Fagan B, van Maanen A, et al. Studies on in vitro growth and pathogenicity of European Fusarium fungi[J]. European Journal of Plant Pathology, 2003,109(6):577-587.
doi: 10.1023/A:1024712415326 URL |
[31] |
Wang DH, Barbetti MJ, Sivasithamparam K. Effects of temperature and moisture on the pathogenicity of fungi associated with root rot of subterranean clover[J]. Australian Journal of Agricultural Research, 1984,35:675-684.
doi: 10.1071/AR9840675 URL |
[32] |
Sabburg R, Obanor F, Aitken E. Effect on increasing temperature on the pathogenic fitness of Fusarium pseudograminearum[J]. Procedia Environmental Sciences, 2015,29:182-183.
doi: 10.1016/j.proenv.2015.07.250 URL |
[1] | 潘国强, 吴思源, 刘璐, 郭惠明, 程红梅, 苏晓峰. 大丽轮枝菌(Verticillim dahliae)突变体库的构建与分析[J]. 生物技术通报, 2023, 39(5): 112-119. |
[2] | 蒋路园, 丰美静, 杜雨晴, 邸葆, 陈段芬, 邱德有, 杨艳芳. 红豆杉低温半致死温度和低温胁迫下紫杉烷含量[J]. 生物技术通报, 2023, 39(3): 232-242. |
[3] | 许瑾, 李涛, 李楚琳, 朱顺妮, 王忠铭, 向文洲. 温度对真眼点藻生长、总脂及二十碳五烯酸(EPA)合成的影响[J]. 生物技术通报, 2022, 38(6): 261-271. |
[4] | 胡华冉, 杜磊, 张芮豪, 钟秋月, 刘发万, 桂敏. 辣椒适应非生物胁迫的研究进展[J]. 生物技术通报, 2022, 38(12): 58-72. |
[5] | 张钰, 海萨·艾也力汗, 热比古丽·沙吾提, 时春明, 张人铭. 白斑狗鱼早期发育阶段的高温耐受性分析[J]. 生物技术通报, 2021, 37(5): 76-83. |
[6] | 卢雯瑩, 赵磊, 李天奇, 崔鹤云, 廖平安. 蔷薇科植物果实花青苷积累研究进展[J]. 生物技术通报, 2021, 37(1): 234-245. |
[7] | 孙熙麟, 蒋振彦, 刘志屹, 戴璐, 孙非, 黄伟. 氨基酸定点突变提高灵芝蛋白LZ-8热稳定性的研究[J]. 生物技术通报, 2020, 36(1): 23-28. |
[8] | 汪硕, 丁岚, 刘建祥, 韩佳嘉. 拟南芥热形态建成中PIF4下游基因研究[J]. 生物技术通报, 2018, 34(7): 57-65. |
[9] | 张梦恬, 裴娟 ,李国 ,赵辉 ,陈建权 ,祝建波, 王爱英. 新疆石河子地区棉花黄萎病菌分离鉴定及其致病力分析[J]. 生物技术通报, 2018, 34(6): 73-78. |
[10] | 高丽丽, 刁晓明, 李云, 翟旭亮, 周春龙. 中华鳖性别决定中主导性因素的研究进展及思考[J]. 生物技术通报, 2018, 34(12): 41-49. |
[11] | 郭云峰, 安邦. 橡胶树胶孢炭疽菌NADPH氧化酶功能研究[J]. 生物技术通报, 2018, 34(10): 165-171. |
[12] | 黄艳花, 杨锐, 孙庆海. 温度对裂片石莼生长及叶绿素荧光特性的影响[J]. 生物技术通报, 2016, 32(7): 99-105. |
[13] | 张建波, 金云峰, 王莎莎, 杨慧芹, 逄涛, 李军营, 崔明昆, 龚明. 生长温度对不同生育期烟草淀粉代谢的影响[J]. 生物技术通报, 2016, 32(5): 200-211. |
[14] | 钟瑞春,李婷婷,唐荣华,王兴军,李翠,侯蕾,赵传志. 花生温度诱导载脂蛋白基因AhTIL1的克隆和表达研究[J]. 生物技术通报, 2016, 32(4): 102-109. |
[15] | 丛华剑,武栓虎,田健,初晓宇,伍宁丰. 基于细菌同源蛋白预测细菌最适生长温度的研究[J]. 生物技术通报, 2016, 32(3): 155-165. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||