生物技术通报 ›› 2022, Vol. 38 ›› Issue (6): 261-271.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1293
许瑾1(), 李涛1,2,3, 李楚琳2, 朱顺妮1, 王忠铭1(), 向文洲2,3()
收稿日期:
2021-10-13
出版日期:
2022-06-26
发布日期:
2022-07-11
作者简介:
许瑾,女,博士,助理研究员,藻类生物技术;E-mail: 基金资助:
XU Jin1(), LI Tao1,2,3, LI Chu-lin2, ZHU Shun-ni1, WANG Zhong-ming1(), XIANG Wen-zhou2,3()
Received:
2021-10-13
Published:
2022-06-26
Online:
2022-07-11
摘要:
真眼点藻可以积累二十碳五烯酸(EPA)而受到广泛关注,温度是影响多不饱和脂肪酸合成的重要因素。本研究以真眼点藻(Eustigmatos sp. JHsu-01)为材料,设置高温组(30℃)和低温组(15℃)两种培养条件,通过测定生长、脂类积累、脂肪酸组成和甘油酯合成关键基因表达量的变化,探究温度对EPA合成规律的影响。结果表明,低温培养促进了真眼点藻JHsu-01膜脂和EPA的合成,EPA含量最高达到2.78% DW,糖脂是EPA的主要载体,但温度可以改变EPA在糖脂和中性脂之间的分配比例。转录组结果显示,低温条件下,脂肪酸从头合成、三酰甘油(GPAT、plsC、PLPP和DGAT)、糖脂(MGD和DGD)、硫脂(SQD1和SQD2)和ω-3合成途径(Δ5 Des、Δ6 Des和Δ15 Des)中多个关键酶基因表达上调。综上所述,低温可以促进真眼点藻EPA的合成,同时也是一种获得高含量糖脂型EPA的理想培养方式,研究结果为提高真眼点藻EPA产量提供理论和技术依据。
许瑾, 李涛, 李楚琳, 朱顺妮, 王忠铭, 向文洲. 温度对真眼点藻生长、总脂及二十碳五烯酸(EPA)合成的影响[J]. 生物技术通报, 2022, 38(6): 261-271.
XU Jin, LI Tao, LI Chu-lin, ZHU Shun-ni, WANG Zhong-ming, XIANG Wen-zhou. Effects of Temperature on the Growth,Total Lipid and Eicosapentaenoic Acid Synthesis of Eustigmatos sp.[J]. Biotechnology Bulletin, 2022, 38(6): 261-271.
图1 不同温度培养下真眼点藻JHsu-01的细胞形态及生长特性 A:生物量;B:细胞密度;C:30℃条件下第12天细胞形态;D:15℃条件下第12天细胞形态
Fig.1 Cell morphology and growth characteristics of Eustigmatos sp. JHsu-01 cultured at different temperatures A:Biomass. B:Cell density. C:Cell morphology on day 12(30℃). D:Cell morphology on day 12(15℃)
图2 温度对真眼点藻JHsu-01的PSII的实际光量子产量(A)和PSII的调节性能量耗散的量子产量(B)的影响
Fig.2 Effects of temperature on the effective photochemical quantum yield of PSII(A)and quantum yield of the light-induced non-photochemical fluorescence quenching of PSII(B)of Eustigmatos sp. JHsu-01
图5 EPA在中性脂、糖脂和磷脂中的分布 A:30℃条件下EPA含量;B:15℃条件下EPA含量;C:30℃条件下EPA在不同脂组分中的比例;D:15℃条件下EPA在不同脂组分中的比例
Fig.5 Distribution of EPA in neutral lipids,glycolipids and phospholipids A:EPA content at 30℃. B:EPA content at 15℃. C:The proportion of EPA in different lipid fractions at 30℃. D:The proportion of EPA in different lipid fractions at 15℃
图6 注释基因的统计分析 A:同源物种分布;B:E-value;C:序列覆盖度
Fig.6 Statistical analysis of annotated genes A:Species distribution. B:E-value distribution. C:Similarity distribution
图7 温度对真眼点藻JHsu-01脂肪酸代谢通路的变化 DHAP:磷酸二羟丙酮;G3P:三磷酸甘油;DG:二酰甘油;TG:三酰甘油;PG:磷脂酰甘油;PI:磷脂酰肌醇;PC:磷脂酰胆碱;PE:磷脂酰乙醇胺;PS:磷脂酰丝氨酸;SQDG:异鼠李糖甘油二酯;MGDG:单半乳糖甘油二酯;DGDG:双半乳糖甘油二酯;CDP-DG:胞嘧啶核苷二磷酸甘油二酯;PA:磷酸二酰甘油;LPA:溶血磷脂酸;DHAP:磷酸二羟丙酮(对照组为30℃,处理组为15℃;红色为上调,绿色为下调)
Fig.7 Changes of temperature on the fatty acid metabolic pathways of Eustigmatos sp. JHsu-01 DHAP:dihydroxyacetone phosphate;G3P:glycerol-3-phosphate;DG:diacylglycerol;TG:triacylglycerol;PG:phosphatidylglycerol;PI:phosphatidylinositol;PC:phosphatidylcholine; PE:phosphatidylethanolamine;PS:phosphatidylserine;SQDG:sulfoquinovosyldiacylglycerol; MGDG:monogalactosyldiacylglycerol;DGDG:digalactosyldiacylglycerol;CDP-DG:CDP-diglyceride;PA:diacylglycerol phosphate;LPA:lysophosphatidic acid. DHAP:Dihydroxyacetone phosphate(The control group is 30℃,the treatment group is 15℃;red is up-regulation,and green is down-regulation)
基因功能Gene function | 简写Abbreviation | 变化情况Changes | |
---|---|---|---|
脂肪酸合成 Fatty acid synthesis | 乙酰辅酶A羧化酶羧基转移酶Acetyl-CoA carboxylase carboxyl transferase | accA | 上调 Up |
3-酮酰基-ACP合成酶 3-oxoacyl-ACP synthase | fabF | 上调 Up | |
3-酮酰基-ACP还原酶 3-oxoacyl-ACP reductase | fabG | 上调 Up | |
3-酮酰基-ACP脱水酶 3-hydroxyacyl- ACP dehydratase | fabZ | 上调 Up | |
烯酯酰ACP还原酶I Enoyl-ACP reductase I | fabI | 上调 Up | |
脂肪酸去饱和 Fatty acid desaturation | delta-5脂肪酸去饱和酶 Delta-5 fatty acid desaturase | Δ5 Des | 上调 Up |
delta-6脂肪酸去饱和酶 Delta-6 fatty acid desaturase | Δ6 Des | 上调 Up | |
delta-15脂肪酸去饱和酶 Delta-15 fatty acid desaturase | Δ15 Des | 上调 Up | |
三酰甘油合成 Triacylglycerol synthesis | 3-磷酸甘油酰基转移酶 Glycerol-3-phosphate O-acyltransferase | GPAT | 上调 Up |
甘油磷酸脱氢酶 Glycerophosphatedehydrogenase | GPDH | 无变化 No | |
1-酰基甘油-3-磷酸酰基转移酶 1-acyl-glycerol-3-phosphate acyltransferase | plsC | 上调 Up | |
磷脂酸磷酸酶 Phosphatidate phosphatase | PLPP | 上调 Up | |
二酰基甘油酰基转移酶 Diacylglycerol O-acyltransferase | DGAT | 上调 Up | |
硫脂合成 Sulfolipid synthesis | 硫代异鼠基转移酶 Sulfoquinovosyltransferase | SQD2 | 上调 Up |
UDP-硫代异鼠糖合酶 UDP-sulfoquinovose synthase | SQD1 | 上调 Up | |
糖脂合成 Glycolipid synthesis | 二酰基甘油3-β-半乳糖基转移酶 1,2-diacylglycerol 3-beta-galactosyltransferase | MGD | 上调 Up |
二半乳糖二酰基甘油合酶 Digalactosyldiacylglycerol synthase | DGD | 上调 Up | |
磷脂合成 Phospholipid synthesis | 磷脂酰胞苷转移酶 Phosphatidate cytidylyltransferase | CDS1 | 无变化 No |
乙醇胺磷酸转移酶 Ethanolaminephosphotransferase | EPT1 | 下调 Down | |
二酰基甘油胆碱磷酸转移酶 Diacylglycerol cholinephosphotransferase | CPT1 | 下调 Down | |
磷脂酰丝氨酸合酶2 phosphatidylserine synthase 2 | PTDSS2 | 下调 Down | |
CDP-二酰基甘油-甘油-3-磷酸磷脂酰转移酶 CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase | pgsA | 无变化 No | |
磷脂酰甘油磷酸酶 Phosphatidylglycerophosphatase | GEP4 | 无变化 No | |
CDP-二酰基甘油-肌醇3-磷脂酰转移酶 CDP-diacylglycerol-inositol 3-phosphatidyltransferase | CDIPT | 上调 Up |
表1 脂肪酸合成相关酶基因的变化情况
Table 1 Expression changes of genes in lipid and fatty acid biosynthesis pathways
基因功能Gene function | 简写Abbreviation | 变化情况Changes | |
---|---|---|---|
脂肪酸合成 Fatty acid synthesis | 乙酰辅酶A羧化酶羧基转移酶Acetyl-CoA carboxylase carboxyl transferase | accA | 上调 Up |
3-酮酰基-ACP合成酶 3-oxoacyl-ACP synthase | fabF | 上调 Up | |
3-酮酰基-ACP还原酶 3-oxoacyl-ACP reductase | fabG | 上调 Up | |
3-酮酰基-ACP脱水酶 3-hydroxyacyl- ACP dehydratase | fabZ | 上调 Up | |
烯酯酰ACP还原酶I Enoyl-ACP reductase I | fabI | 上调 Up | |
脂肪酸去饱和 Fatty acid desaturation | delta-5脂肪酸去饱和酶 Delta-5 fatty acid desaturase | Δ5 Des | 上调 Up |
delta-6脂肪酸去饱和酶 Delta-6 fatty acid desaturase | Δ6 Des | 上调 Up | |
delta-15脂肪酸去饱和酶 Delta-15 fatty acid desaturase | Δ15 Des | 上调 Up | |
三酰甘油合成 Triacylglycerol synthesis | 3-磷酸甘油酰基转移酶 Glycerol-3-phosphate O-acyltransferase | GPAT | 上调 Up |
甘油磷酸脱氢酶 Glycerophosphatedehydrogenase | GPDH | 无变化 No | |
1-酰基甘油-3-磷酸酰基转移酶 1-acyl-glycerol-3-phosphate acyltransferase | plsC | 上调 Up | |
磷脂酸磷酸酶 Phosphatidate phosphatase | PLPP | 上调 Up | |
二酰基甘油酰基转移酶 Diacylglycerol O-acyltransferase | DGAT | 上调 Up | |
硫脂合成 Sulfolipid synthesis | 硫代异鼠基转移酶 Sulfoquinovosyltransferase | SQD2 | 上调 Up |
UDP-硫代异鼠糖合酶 UDP-sulfoquinovose synthase | SQD1 | 上调 Up | |
糖脂合成 Glycolipid synthesis | 二酰基甘油3-β-半乳糖基转移酶 1,2-diacylglycerol 3-beta-galactosyltransferase | MGD | 上调 Up |
二半乳糖二酰基甘油合酶 Digalactosyldiacylglycerol synthase | DGD | 上调 Up | |
磷脂合成 Phospholipid synthesis | 磷脂酰胞苷转移酶 Phosphatidate cytidylyltransferase | CDS1 | 无变化 No |
乙醇胺磷酸转移酶 Ethanolaminephosphotransferase | EPT1 | 下调 Down | |
二酰基甘油胆碱磷酸转移酶 Diacylglycerol cholinephosphotransferase | CPT1 | 下调 Down | |
磷脂酰丝氨酸合酶2 phosphatidylserine synthase 2 | PTDSS2 | 下调 Down | |
CDP-二酰基甘油-甘油-3-磷酸磷脂酰转移酶 CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase | pgsA | 无变化 No | |
磷脂酰甘油磷酸酶 Phosphatidylglycerophosphatase | GEP4 | 无变化 No | |
CDP-二酰基甘油-肌醇3-磷脂酰转移酶 CDP-diacylglycerol-inositol 3-phosphatidyltransferase | CDIPT | 上调 Up |
[1] |
Adarme-Vega TC, Thomas-Hall SR, Schenk PM. Towards sustainable sources for Omega-3 fatty acids production[J]. Curr Opin Biotechnol, 2014, 26:14-18.
doi: 10.1016/j.copbio.2013.08.003 URL |
[2] | 王盛林, 刘平怀, 曹猛. 微藻营养价值及微藻饵料的开发利用[J]. 食品工业, 2019, 40(7):275-279. |
Wang SL, Liu PH, Cao M. Development and utilization of nutritional value and feeds of microalgae[J]. Food Ind, 2019, 40(7):275-279. | |
[3] |
Reis A, Gouveia L, Veloso V, et al. Eicosapentaenoic acid-rich biomass production by the microalga Phaeodactylum tricornutum in a continuous-flow reactor[J]. Bioresour Technol, 1996, 55(1):83-88.
doi: 10.1016/0960-8524(95)00157-3 URL |
[4] |
Li S, Xu JL, Chen J, et al. The major lipid changes of some important diet microalgae during the entire growth phase[J]. Aquaculture, 2014, 428/429:104-110.
doi: 10.1016/j.aquaculture.2014.02.032 URL |
[5] |
Khozin-Goldberg I, Yu HZ, Adlerstein D, et al. Triacylglycerols of the red microalga Porphyridium cruentum can contribute to the biosynthesis of eukaryotic galactolipids[J]. Lipids, 2000, 35(8):881-889.
pmid: 10984111 |
[6] |
Khozin-Goldberg I, Iskandarov U, Cohen Z. LC-PUFA from photosynthetic microalgae:occurrence, biosynthesis, and prospects in biotechnology[J]. Appl Microbiol Biotechnol, 2011, 91(4):905-915.
doi: 10.1007/s00253-011-3441-x pmid: 21720821 |
[7] | Li-Beisson Y, Shorrosh B, Beisson F, et al. Acyl-lipid metabolism[J]. Arabidopsis Book, 2013, 11:e0161. |
[8] |
Guschina IA, Harwood JL. Lipids and lipid metabolism in eukaryotic algae[J]. Prog Lipid Res, 2006, 45(2):160-186.
pmid: 16492482 |
[9] | Huang LD, Gao BY, Wang FF, et al. The complete mitochondrial genome of an oleaginous microalga Vischeria stellata strain SAG 33. 83(Eustigmatophyceae)[J]. Mitochondrial DNA B, 2019, 4(1):301-302. |
[10] | Xu J, Li T, Li CL, et al. Lipid accumulation and eicosapentaenoic acid distribution in response to nitrogen limitation in microalga Eustigmatos vischeri JHsu-01(Eustigmatophyceae)[J]. Algal Res, 2020, 48:101910. |
[11] |
李涛, 赵伟, 杨冰洁, 等. 一株耐盐真眼点藻(Eustigmatos sp. )的户外培养及油脂提取工艺研究[J]. 生物技术通报, 2020, 36(7):130-138.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-1050 |
Li T, Zhao W, Yang BJ, et al. Outdoor cultivation oil extraction of the salt-tolerant microalga, Eustigmatos sp[J]. Biotechnol Bull, 2020, 36(7):130-138. | |
[12] | Khozin-Goldberg I, Shrestha P, Cohen Z. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa[J]. Biochim Biophys Acta, 2005, 1738(1/2/3):63-71. |
[13] |
李涛, 许瑾, 吴华莲, 等. 不同氮浓度对一株产油绿球藻生长、脂类积累及脂肪酸分布的影响[J]. 生物技术通报, 2018, 34(5):154-162.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1134 |
Li T, Xu J, Wu HL, et al. Effects of nitrogen concentration on the growth, lipid accumulation and fatty acids distribution of oleaginous Chlorococcum sp[J]. Biotechnol Bull, 2018, 34(5):154-162. | |
[14] | 赵婷, 韩笑天, 詹天荣, 等. 温度对四种产油微藻生长和油脂特性的影响[J]. 海洋与湖沼, 2016, 47(6):1140-1148. |
Zhao T, Han XT, Zhan TR, et al. Effect of temperature on growth and lipid properties of four oil-producing microalgae[J]. Oceanol et Limnol Sin, 2016, 47(6):1140-1148. | |
[15] |
Chaisutyakorn P, Praiboon J, Kaewsuralikhit C. The effect of temperature on growth and lipid and fatty acid composition on marine microalgae used for biodiesel production[J]. J Appl Phycol, 2018, 30(1):37-45.
doi: 10.1007/s10811-017-1186-3 URL |
[16] | 高保燕, 张成武, 万凌琳, 等. 真眼点藻纲的系统分类、生物学特性及应用研究[J]. 水生生物学报, 2014, 38(5):945-956. |
Gao BY, Zhang CW, Wan LL, et al. Systematics, biological characteristics and potential application of eustigmatophyceae[J]. Acta Hydrobiol Sin, 2014, 38(5):945-956. | |
[17] |
Gao BY, Xia S, Lei XQ, et al. Combined effects of different nitrogen sources and levels and light intensities on growth and fatty acid and lipid production of oleaginous eustigmatophycean microalga Eustigmatos cf. polyphem[J]. J Appl Phycol, 2018, 30(1):215-229.
doi: 10.1007/s10811-017-1180-9 URL |
[18] | Spolaore P, Joannis-Cassan C, Duran EL, et al. Optimization of Nannochloropsis oculata growth using the response surface method[J]. J Chem Technol Biotechnol, 2006, 81(6):1049-1056. |
[19] | Carneiro M, Cicchi B, Maia IB, et al. Effect of temperature on growth, photosynthesis and biochemical composition of Nannochloropsis oceanica, grown outdoors in tubular photobioreactors[J]. Algal Res, 2020, 49:101923. |
[20] |
Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production:perspectives and advances[J]. Plant J, 2008, 54(4):621-639.
doi: 10.1111/j.1365-313X.2008.03492.x URL |
[21] |
Ördög V, Stirk WA, Bálint P, et al. Effect of temperature and nitrogen concentration on lipid productivity and fatty acid composition in three Chlorella strains[J]. Algal Res, 2016, 16:141-149.
doi: 10.1016/j.algal.2016.03.001 URL |
[22] |
Venkata Subhash G, Rohit MV, Devi MP, et al. Temperature induced stress influence on biodiesel productivity during mixotrophic microalgae cultivation with wastewater[J]. Bioresour Technol, 2014, 169:789-793.
doi: 10.1016/j.biortech.2014.07.019 URL |
[23] |
Renaud SM, Thinh LV, Lambrinidis G, et al. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures[J]. Aquaculture, 2002, 211(1/2/3/4):195-214.
doi: 10.1016/S0044-8486(01)00875-4 URL |
[24] | 叶丽, 蒋霞敏, 毛欣欣, 等. 温、光、盐对三角褐指藻紫外诱变株生长、总脂及脂肪酸的影响[J]. 生态学杂志, 2015, 34(2):454-462. |
Ye L, Jiang XM, Mao XX, et al. Effects of temperature, light intensity and salinity on the growth, total lipid and fatty acid of Phaeo-dactylum tricornutum mutant[J]. Chin J Ecol, 2015, 34(2):454-462. | |
[25] |
Boelen P, van Dijk R, Sinninghe Damsté JS, et al. On the potential application of polar and temperate marine microalgae for EPA and DHA production[J]. AMB Express, 2013, 3(1):26.
doi: 10.1186/2191-0855-3-26 pmid: 23673135 |
[26] |
Murata N, Los DA. Membrane fluidity and temperature perception[J]. Plant Physiol, 1997, 115(3):875-879.
pmid: 12223851 |
[27] |
Yoon K, Han DX, Li YT, et al. Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii[J]. Plant Cell, 2012, 24(9):3708-3724.
doi: 10.1105/tpc.112.100701 URL |
[28] | 王帅. 富油微藻筛选及球等鞭金藻(Isochrysis galbana)脂肪酸去饱和酶基因的克隆与功能研究[D]. 青岛: 中国海洋大学, 2015. |
Wang S. Screening of oil-rich microalgae and the identification, characterization, and expression of fatty acid desaturase genes from Isochrysis galbana[D]. Qingdao: Ocean University of China, 2015. | |
[29] | 王婷, 赵培, 李楠, 等. 低温诱导球等鞭金藻3011脂肪酸去饱和酶基因片段的筛选及mRNA表达分析[J]. 食品科学, 2016, 37(5):132-137. |
Wang T, Zhao P, Li N, et al. M RNA expression analysis and screening of fatty acid desaturase gene in Isochrysis galbana 3011 under low-temperature induction[J]. Food Sci, 2016, 37(5):132-137.
doi: 10.1111/j.1365-2621.1972.tb03402.x URL |
|
[30] |
Xin Y, Shen C, She Y, et al. Biosynthesis of triacylglycerol molecules with a tailored PUFA profile in industrial microalgae[J]. Mol Plant, 2019, 12(4):474-488.
doi: S1674-2052(18)30374-5 pmid: 30580039 |
[1] | 林红妍, 郭晓蕊, 刘迪, 李慧, 陆海. 转录组分析转录因子AtbHLH68调控细胞壁发育的分子机制[J]. 生物技术通报, 2023, 39(9): 105-116. |
[2] | 苗永美, 苗翠苹, 于庆才. 枯草芽孢杆菌BBs-27发酵液性质及脂肽对黄色镰刀菌的抑菌作用[J]. 生物技术通报, 2023, 39(9): 255-267. |
[3] | 付钰, 贾瑞瑞, 何荷, 王良桂, 杨秀莲. 两种砧木楸树嫁接苗生长差异及转录组比较分析[J]. 生物技术通报, 2023, 39(8): 251-261. |
[4] | 赵金玲, 安磊, 任晓亮. 单细胞转录组测序技术及其在秀丽隐杆线虫中的应用[J]. 生物技术通报, 2023, 39(6): 158-170. |
[5] | 孔德真, 段震宇, 王刚, 张鑫, 席琳乔. 盐、碱胁迫下高丹草苗期生理特征及转录组学分析[J]. 生物技术通报, 2023, 39(6): 199-207. |
[6] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[7] | 谢洋, 邢雨蒙, 周国彦, 刘美妍, 银珊珊, 闫立英. 黄瓜二倍体及其同源四倍体果实转录组分析[J]. 生物技术通报, 2023, 39(3): 152-162. |
[8] | 蒋路园, 丰美静, 杜雨晴, 邸葆, 陈段芬, 邱德有, 杨艳芳. 红豆杉低温半致死温度和低温胁迫下紫杉烷含量[J]. 生物技术通报, 2023, 39(3): 232-242. |
[9] | 扈丽丽, 林柏荣, 王宏洪, 陈建松, 廖金铃, 卓侃. 最短尾短体线虫转录组及潜在效应蛋白分析[J]. 生物技术通报, 2023, 39(3): 254-266. |
[10] | 孙言秋, 谢采芸, 汤岳琴. 耐高温酿酒酵母的构建与高温耐受机制解析[J]. 生物技术通报, 2023, 39(11): 226-237. |
[11] | 徐俊, 叶雨晴, 牛雅静, 黄河, 张蒙蒙. 菊花根状茎发育的转录组分析[J]. 生物技术通报, 2023, 39(10): 231-245. |
[12] | 罗皓天, 王龙, 王禹茜, 王月, 李佳祯, 杨梦珂, 张杰, 邓欣, 王红艳. 青狗尾草RNAi途径相关基因的全基因组鉴定和表达分析[J]. 生物技术通报, 2023, 39(1): 175-186. |
[13] | 辛建攀, 李燕, 赵楚, 田如男. 镉胁迫下梭鱼草叶片转录组测序及苯丙烷代谢途径相关基因挖掘[J]. 生物技术通报, 2022, 38(6): 198-210. |
[14] | 熊和丽, 沙茜, 刘韶娜, 相德才, 张斌, 赵智勇. 单细胞转录组测序技术在动物上的应用研究[J]. 生物技术通报, 2022, 38(3): 226-233. |
[15] | 张斌, 杨昕霞. 水稻响应盐胁迫关键转录因子的鉴定[J]. 生物技术通报, 2022, 38(3): 9-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||