生物技术通报 ›› 2021, Vol. 37 ›› Issue (6): 117-126.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1392
汪颖1(), 陈永静1, 孙庆业1(), 杨梦瑶1, 吴盾2
收稿日期:
2020-11-16
出版日期:
2021-06-26
发布日期:
2021-07-08
作者简介:
汪颖,女,硕士研究生,研究方向:生态工程与环境修复技术;E-mail: 基金资助:
WANG Ying1(), CHEN Yong-jing1, SUN Qing-ye1(), YANG Meng-yao1, WU Dun2
Received:
2020-11-16
Published:
2021-06-26
Online:
2021-07-08
摘要:
以从尾矿中筛选出的 P6-4菌株为研究对象,基于16S rDNA测序确定其分类地位,并研究其生理生化特征和萘降解特性,同时分析该菌株对萘的最佳降解条件和降解途径。结果表明:P6-4菌株为Inquilinus属革兰氏阴性好氧菌,可在含1%-3%盐度的R2A培养基和柠檬酸盐培养基上生长,并产过氧化氢酶、IAA和铁载体,同时具有溶磷、固氮功能;该菌株不产淀粉酶,分解葡萄糖时不生成乙酰甲基甲醇。菌株在萘初始质量浓度400 mg/L、30℃、pH 9.0、150 r/min条件下生长最佳。在最适降解条件下培养7 d后,以正己烷做萃取剂,利用紫外-可见分光光度法测得降解率为93.22%。分子生物学发现该菌株含有PAH(多环芳烃环羟基化双加氧酶基因)、HBHA(反式-o-羟基苯脱萘丙酮酸水合醛缩酶基因)、nahU(水杨酸羟化酶基因)、S5H(水杨酸5-羟化酶基因)、CATA(儿茶酚1,2-双加氧酶基因)、C230(儿茶酚2,3-双加氧酶基因)和GDO(龙胆酸1,2-双加氧酶基因)基因,推测P6-4菌株对萘的降解存在水杨酸和龙胆酸两种途径。
汪颖, 陈永静, 孙庆业, 杨梦瑶, 吴盾. Inquilinus sp. P6-4菌株的生理生化特征及萘降解特性[J]. 生物技术通报, 2021, 37(6): 117-126.
WANG Ying, CHEN Yong-jing, SUN Qing-ye, YANG Meng-yao, WU Dun. Physiological and Biochemical Characteristics of Inquilinus sp. P6-4 Strain and Its Degradation Characteristics for Naphthalene[J]. Biotechnology Bulletin, 2021, 37(6): 117-126.
基因名称 Gene name | 引物序列 Primer sequence(5'-3') | 基因长度 Gene length/bp |
---|---|---|
PAH HBHA nahU S5H CATA C230 GDO | GAGATGCATACCACGTKGGTTGGA AGCTGTTGTTCGGGAAGAYWGTGCMGTT ATGTGGGTGAAGATGGACCTGCC GCATATCATCGGAGATGGCTTTGGC CAAATACCTCGGTTGCAGCG CCCGAACTGGGCAATACCTT TGATCGACTTCAAAGTGTATTTCGA CAAGCGGTGCAACATCGACC ACVCCVCGHACCATYGAAGG CGSGTNGCAWANGCAAAGT AAGAGGCATGGGGGCGCACCGGTTCGATCA CCAGCAAACACCTCGTTGCGGTTGCC ACGAACGGGATGTCGAGG ACGAAACCGATCAGCCGA | 306 400 112 490 470 298 489 |
表1 关键酶基因引物
Table 1 Primers of key enzyme gene
基因名称 Gene name | 引物序列 Primer sequence(5'-3') | 基因长度 Gene length/bp |
---|---|---|
PAH HBHA nahU S5H CATA C230 GDO | GAGATGCATACCACGTKGGTTGGA AGCTGTTGTTCGGGAAGAYWGTGCMGTT ATGTGGGTGAAGATGGACCTGCC GCATATCATCGGAGATGGCTTTGGC CAAATACCTCGGTTGCAGCG CCCGAACTGGGCAATACCTT TGATCGACTTCAAAGTGTATTTCGA CAAGCGGTGCAACATCGACC ACVCCVCGHACCATYGAAGG CGSGTNGCAWANGCAAAGT AAGAGGCATGGGGGCGCACCGGTTCGATCA CCAGCAAACACCTCGTTGCGGTTGCC ACGAACGGGATGTCGAGG ACGAAACCGATCAGCCGA | 306 400 112 490 470 298 489 |
生化反应 Physiological and biochemical reaction | 结果 Result | 生化反应 Physiological and biochemical reaction | 结果 Result | |
---|---|---|---|---|
1%、2%、3% NaCl生长 1%,2%,3% NaCl growth | + | 固氮 Nitrogen fixation | + | |
过氧化氢酶 Catalase | + | 柠檬酸盐 Utilization of citrate | + | |
吲哚乙酸 Indole acetic acid | + | VP试验 VP test | - | |
有机磷 Organophosphorus | + | 厌氧生长 Anaerobic growth | - | |
无机磷 Inorganic phosphorus | + | 淀粉酶 Amylase | - | |
革兰氏染色 Gram staining | - | 铁载体 Iron carrier | + |
表2 P6-4降解菌株的生理生化特征
Table 2 Physiological and biochemical characteristics of P6-4 degrading strain
生化反应 Physiological and biochemical reaction | 结果 Result | 生化反应 Physiological and biochemical reaction | 结果 Result | |
---|---|---|---|---|
1%、2%、3% NaCl生长 1%,2%,3% NaCl growth | + | 固氮 Nitrogen fixation | + | |
过氧化氢酶 Catalase | + | 柠檬酸盐 Utilization of citrate | + | |
吲哚乙酸 Indole acetic acid | + | VP试验 VP test | - | |
有机磷 Organophosphorus | + | 厌氧生长 Anaerobic growth | - | |
无机磷 Inorganic phosphorus | + | 淀粉酶 Amylase | - | |
革兰氏染色 Gram staining | - | 铁载体 Iron carrier | + |
图5 关键酶基因的PCR扩增电泳图 M:分子量标准;1:PAH基因片段;2:HBHA基因片段;3:nahU基因片段;4:S5H基因片段;5:CATA基因片段;6:C230基因片段;7:GDO基因片段
Fig.5 PCR amplified electrophoretic map of key enzyme genes M:Molecular weight standard. 1:PAH gene fragment. 2:HBHA gene fragment. 3:nahU gene fragment. 4:S5H gene fragment. 5:CATA gene fragment. 6:C230 gene fragment. 7:GDO gene fragment
[1] | 唐森本. 环境有机污染化学[M]. 北京: 冶金工业出版社, 1996. |
Tang SB. Environmental organic pollution chemistry[M]. Beijing: Metallurgical Industry Press, 1996. | |
[2] | Dabestani R, Ivanov IN. A compilation of physical, spectroscopic and photophysical properties of polycyclic aromatic hydrocarbons[J]. Photochemistry & Photobiology, 1999, 70(1):10-34. |
[3] | Mackay D, Callcott D. Partitioning and physical chemical properties of PAHs[M]. Berlin:Springer, 1998. |
[4] |
Peters CA, Knightes CD, Brown DG. Long-Term composition dynamics of PAH-containing NAPLs and implications for risk assessment[J]. Environmental Science & Technology, 1999, 33(24):4499-4507.
doi: 10.1021/es981203e URL |
[5] |
Seo JS, Keum YS, Li QX. Bacterial degradation of aromatic compounds[J]. International Journal of Environmental Research and Public Health, 2009, 6(1):278-309.
doi: 10.3390/ijerph6010278 URL |
[6] |
Johnsen AR, Wick LY, Harms H. Principles of microbial PAH-degradation in soil[J]. Environmental Pollution, 2004, 133(1):71-84.
doi: 10.1016/j.envpol.2004.04.015 URL |
[7] | Habe H, Omori T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria[J]. Bioence Biotechnology & Biochemistry, 2003, 67(2):225-243. |
[8] | Cappello S, Russo D, Santisi S, et al. Presence of hydrocarbon-degrading bacteria in the gills of mussel Mytilus galloprovincialis in a contaminated environment:a mesoscale simulation study[J]. Chemistry & Ecology, 2012, 28(3):239-252. |
[9] |
Zhou LS, Li H, Zhang Y, et al. Sphingomonas from petroleum-contaminated soils in Shenfu, China and their PAHs degradation abilities[J]. Brazilian Journal of Microbiology, 2016, 47(2):271-278.
doi: 10.1016/j.bjm.2016.01.001 URL |
[10] |
Subashchandrabose SR, Venkateswarlu K, Naidu R, et al. Biodegradation of high-molecular weight PAHs by Rhodococcus wratislaviensis strain 9:Overexpression of amidohydrolase induced by pyrene and BaP[J]. Science of the Total Environment, 2019, 651:813-821.
doi: 10.1016/j.scitotenv.2018.09.192 |
[11] |
Rabodonirina S, Rasolomampianina R, Krier F, et al. Degradation of fluorene and phenanthrene in PAHs-contaminated soil using Pseudomonas and Bacillus strains isolated from oil spill sites[J]. Journal of Environmental Management, 2019, 232(15):1-7.
doi: 10.1016/j.jenvman.2018.11.005 URL |
[12] |
Andreolli M, Lampis S, Zenaro E, et al. Burkholderia fungorum DBT1:a promising bacterial strain for bioremediation of PAHs-contaminated soils[J]. FEMS Microbiology Letters, 2011, 319(1):11-18.
doi: 10.1111/fml.2011.319.issue-1 URL |
[13] | 刘小娜, 李彪, 唐晨, 等. 萘的微生物降解研究进展[J]. 生物加工过程, 2019, 17(6):581-589. |
Liu XN, Li B, Tang C, et al. Research progresses in microbial degradation of naphthalene[J]. Chinese Journal of Bioprocess Engineering, 2019, 17(6):581-589. | |
[14] |
Aurélie C, Norini MP, Beguiristain T, et al. Real-time PCR quantification of PAH-ring hydroxylating dioxygenase(PAH-RHDα)genes from Gram positive and Gram negative bacteria in soil and sediment samples[J]. Journal of Microbiological Methods, 2008, 73(2):148-159.
doi: 10.1016/j.mimet.2008.01.009 URL |
[15] |
Singh R, Trivedi VD, Phale PS. Metabolic regulation and chromosomal localization of carbaryl degradation pathway in Pseudomonas sp. strains C4, C5 and C6[J]. Archives of Microbiology, 2013, 195(8):521-535.
doi: 10.1007/s00203-013-0903-9 URL |
[16] |
Li W, Shi JD, Wang XG, et al. Complete nucleotide sequence and organization of the naphthalene catabolic plasmid pND6-1 from Pseudomonas sp. strain ND6[J]. Gene, 2004, 336(2):231-240.
doi: 10.1016/j.gene.2004.03.027 URL |
[17] |
Pozdnyakova-Filatova I, Petrikov K, Vetrova A, et al. The naphthalene catabolic genes of Pseudomonas putida BS3701:additional regulatory control[J]. Frontiers in Microbiology, 2020, 11:1217.
doi: 10.3389/fmicb.2020.01217 pmid: 32582120 |
[18] |
Azhari NE, Devers LM, Chatagnier G, et al. Molecular analysis of the catechol-degrading bacterial community in a coal wasteland heavily contaminated with PAHs[J]. Journal of Hazardous Materials, 2010, 177(1-3):593-601.
doi: 10.1016/j.jhazmat.2009.12.074 URL |
[19] |
Shahsavari E, Aburto MA, Taha M, et al. A quantitative PCR approach for quantification of functional genes involved in the degradation of polycyclic aromatic hydrocarbons in contaminated soils[J]. Methodsx, 2016, 3:205-211.
doi: 10.1016/j.mex.2016.02.005 pmid: 27054096 |
[20] |
Laura TG, Helena GA, Eduardo S, et al. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB[J]. Microbial Biotechnology, 2014, 7(2):100-113.
doi: 10.1111/mbt2.2014.7.issue-2 URL |
[21] | 谷艳. 氧化尾矿与白茅根际尾矿中可培养溶磷菌比较研究[J]. 土壤通报, 2018, 49(1):119-125. |
Gu Y. Comparison of phosphate-solubilizing bacteria from oxidized tailings and rhizosphere tailings of Imperata cylindrica[J]. Chinese Journal of Soil Science, 2018, 49(1):119-125. | |
[22] |
Chang YJ, Stephen JR, Richter AP, et al. Phylogenetic analysis of aerobic freshwater and marine enrichment cultures efficient in hydrocarbon degradation:effect of profiling method[J]. Journal of Microbiological Methods, 2000, 40(1):19-31.
doi: 10.1016/S0167-7012(99)00134-7 URL |
[23] | 蔡妙英, 东秀珠. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Cai MY, Dong XZ. Handbook of systematic identification of common bacteria[M]. Beijing: Science Press, 2001. | |
[24] | 王丽娜, 谭天宇, 徐恒. 镉和酸雨胁迫下抗性菌对平菇生理指标的影响[J]. 四川大学学报:自然科学版, 2015, 52(5):1129-1134. |
Wang LN, Tan TY, Qu H. Cadmium-induced stress impacting physiological indicators of Pleurisies ostreatus by resistant microbes applied to acid rain[J]. Journal of Sichuan University:Natural Science Edition, 2015, 52(5):1129-1134. | |
[25] | 师尚礼, 曹致中, 刘建荣. 苜蓿根瘤菌溶磷和分泌植物生长素能力研究[J]. 草业学报, 2007, 16(1):105-111. |
Shi SL, Cao ZZ, Liu JR. Study on the phosphate solubilization and plant auxin secretion of Madicago sativa Rhizobium[J]. Acta Prataculturae Sinica, 2007, 16(1):105-111. | |
[26] | 陆依琳, 赵晴雨, 彭学. 2株固氮菌的分离与鉴定[J]. 江苏农业科学, 2020, 48(16):298-302. |
Lu YL, Zhao QY, Peng X. Isolation and identification of 2 trains of nitrogen-fixing bacteria[J]. Journal of Jiangsu Agricultural Science, 2020, 48(16):298-302. | |
[27] |
Chwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores[J]. Analytical Biochemistry, 1987, 160(1):47-56.
doi: 10.1016/0003-2697(87)90612-9 URL |
[28] | 杨良年. 用紫外分光光度法测定水中多环芳烃[J]. 环境研究与监测, 1988(2):43-46. |
Yang LN. Determination of polycyclic aromatic hydrocarbons in water by ultraviolet spectrophotometry[J]. Environmental Research and Monitoring, 1988(2):43-46. | |
[29] | 高翔云. 地下水污染调查中水样有机组分分析质量控制[J]. 岩矿测试, 2010, 29(5):593-596. |
Gao XY. Quality control of organic component analysis in groundwater contamination survey[J]. Rock and Mineral Analysis, 2010, 29(5):593-596. | |
[30] |
Coenye T, Goris J, Spilker T, et al. Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov. sp. nov.[J]. Journal of Clinical Microbiology, 2002, 40(6):2062-2069.
doi: 10.1128/JCM.40.6.2062-2069.2002 URL |
[31] |
Jung HM, Lee JS, Bae HM, et al. Inquilinus ginsengisoli sp. nov. isolated from soil of a ginseng field[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(1):201-204.
doi: 10.1099/ijs.0.018689-0 URL |
[32] |
Chiron R, Marchandin H, Counil F, et al. Clinical and microbiological features of Inquilinus sp. isolates from five patients with cystic fibrosis[J]. Journal of Clinical Microbiology, 2005, 43(8):3938-3943.
doi: 10.1128/JCM.43.8.3938-3943.2005 URL |
[33] |
Marylú P, José DC, Gabriel G. Draft genome sequence of Inquilinus limosus strain MP06, a multidrug-resistant clinical isolate[J]. Brazilian Journal of Microbiology, 2015, 46(4):943-944.
doi: S1517-838246420150474 pmid: 26691451 |
[34] |
Poore TS, Virella LI, Guimbellot JS. Potential pathogenicity of Inquilinus limosus in a pediatric patient with cystic fibrosis[J]. Pediatric Pulmonology, 2018, 53(7):E21-E23.
doi: 10.1002/ppul.v53.7 URL |
[35] | 殷波, 顾继东. 环境污染物萘、蒽、菲、芘的好氧微生物降解[J]. 热带海洋学报, 2005(4):14-21. |
Yin B, Gu JD. Degradation of naphthalene, anthracene, phenanthrene and pyrene by aerobic microorganisms[J]. Journal of Tropical Oceanography, 2005(4):14-21. | |
[36] |
Abarian M, Hassanshahian M, Badoei DA. Isolation, screening, and characterization of naphthalene-degrading bacteria from Zarand Mine, Iran[J]. Polycyclic Aromatic Compounds, 2018, 38(5):410-419.
doi: 10.1080/10406638.2016.1224260 URL |
[37] | 贾燕, 尹华, 叶锦韶, 等. 假单胞菌N7的萘降解特性及其降解途径研究[J]. 环境科学, 2008(3):756-762. |
Jia Y, Yin H, Ye JS, et al. Characteristics and pathway of naphthalene degradation by Pseudomonas N7[J]. Environmental Science, 2008(3):756-762. | |
[38] | 王博, 刘兆普, 隆小华, 等. 一株萘降解菌的筛选及其降解途径[J]. 天然产物研究与开发, 2012, 24(12):1697-1702. |
Wang B, Liu ZP, Long XH, et al. Isolation and degradation pathway of a naphthalene-degrading strain[J]. Natural Products Research and Development, 2012, 24(12):1697-1702. | |
[39] | 郭楚玲, 郑天凌, 洪华生. 多环芳烃的微生物降解与生物修复[J]. 海洋环境科学, 2000(3):24-29. |
Guo CL, Zheng TL, Hong HS. Biodegradation and bioremediation of polycyclic aromatic hydrocarbons[J]. Marine Environmental Science, 2000(3):24-29. | |
[40] | 史延华, 任磊, 贾阳, 等. 施氏假单胞菌YC-YH1的萘降解特性及产物分析[J]. 微生物学通报, 2015, 42(10):1866-1876. |
Shi YH, Ren L, Jia Y, et al. Characteristics and product analysis of naphthalene degradation by Pseudomonas stutzeri YC-YH1[J]. Microbiology China, 2015, 42(10):1866-1876. | |
[41] | 陈东. 萘高效降解菌Pseudomonas sp. MN12的筛选及其降解性能的研究[J]. 广州化工, 2019, 47(11):89-91, 103. |
Chen D. Screening of Pseudomonas sp. MN12 and its degradation performance[J]. Guangzhou Chemical Industry, 2019, 47(11):89-91, 103. | |
[42] | 李春霞. 环境污染物——萘降解菌的筛选、鉴定及应用[D]. 长春:长春理工大学, 2014. |
Li CX. Screening, identification and application of naphthalene degrading bacteria[D]. Changchun:Changchun University of Science and Technology, 2014. | |
[43] | 杨旭, 唐玉斌, 陈芳艳, 等. 一株萘降解菌的分离鉴定及其降解特性研究[J]. 环境科学与技术, 2011, 34(10):43-47. |
Yang X, Tang YB, Chen FY, et al. Isolation and identification of a naphthalene-degrading strain and its degradation characteristics[J]. Environmental Science & Technology, 2011, 34(10):43-47. | |
[44] | 张丹. 多环芳烃——菲、萘降解菌株的分离、降解特性及降解机制研究[D]. 西安:西北大学, 2010. |
Zhang D. Study on the isolation, degradation characteristics and degradation mechanism of polycyclic aromatic hydrocarbons-phenanthrene and naphthalene degrading strains[D]. Xi’an:Northwestern University, 2010. | |
[45] | 林加奖, 甘莉, 陈细梅, 等. 萘降解菌的筛选及其降解特性研究[J]. 福建师范大学学报:自然科学版, 2009, 25(2):50-54. |
Lin JJ, Gan L, Chen XM, et al. Screening and degradation characteristics of naphthalene-degrading strains[J]. Journal of Fujian Normal University:Natural Science edition, 2009, 25(2):50-54. | |
[46] | 朱星. 萘降解菌的筛选鉴定与降解特性及其在萃取膜生物反应器中的应用探究[D]. 上海:上海交通大学, 2017. |
Zhu X. Screening, identification and degradation characteristics of naphthalene degrading bacteria and its application in extractive membrane bioreactor[D]. Shanghai:Shanghai Jiao Tong University, 2017. | |
[47] | Jia Y, Yin H, Ye JS, et al. Characteristics and pathway of naphthalene degradation by Pseudomonas sp. N7[J]. Huanjing Kexue, 2008, 29(3):756-762. |
[48] |
Zhou NY, Fuenmayor SL, Williams PA. Nag genes of Ralstonia(formerly Pseudomonas)sp. strain U2 encoding enzymes for gentisate catabolism[J]. Journal of Bacteriology, 2001, 183(2):700-708.
doi: 10.1128/JB.183.2.700-708.2001 URL |
[49] |
Abo-State MAM, Riad BY, Bakr AA, et al. Biodegradation of naphthalene by Bordetella avium isolated from petroleum refinery wastewater in Egypt and its pathway[J]. Journal of Radiation Research and Applied Sciences, 2018, 11(1):1-9.
doi: 10.1016/j.jrras.2017.10.001 URL |
[50] |
Zhao H, Chen D, Li Y, et al. Overexpression, purification and characterization of a new salicylate hydroxylase from naphthalene-degrading Pseudomonas sp. strain ND6[J]. Microbiological Research, 2005, 160(3):307-313.
doi: 10.1016/j.micres.2005.02.004 URL |
[51] |
Kukor JJ, Olsen RH, Ballou DP. Cloning and expression of the catA and catBC gene clusters from Pseudomonas aeruginosa PAO[J]. Journal of Bacteriology, 1988, 170(10):4458-4465.
doi: 10.1128/jb.170.10.4458-4465.1988 URL |
[52] |
Ghosal D, You IS, Gunsalus IC. Nucleotide sequence and expression of gene nahH of plasmid NAH7 and homology with gene xylE of TOL pWWO[J]. Gene, 1987, 55(1):19-28.
pmid: 3623105 |
[53] | Fang T, Zhou NY. Purification and characterization of salicylate 5-hydroxylase, a three-component monooxygenase from Ralstonia sp. strain U2[J]. Applied Microbiology & Biotechnology, 2014, 98(2):671-679. |
[54] |
Lee HJ, Kim JM, Lee SH, et al. Gentisate 1, 2-dioxygenase, in the third naphthalene catabolic gene cluster of Polaromonas naphthalenivorans CJ2, has a role in naphthalene degradation[J]. Microbiology, 2011, 157(10):2891-2903.
doi: 10.1099/mic.0.049387-0 URL |
[1] | 王亚军, 司运美. 除磷菌CP-7的筛选及其降解特性研究[J]. 生物技术通报, 2022, 38(7): 258-268. |
[2] | 牛鸿宇, 舒倩, 杨海君, 颜智勇, 谭菊. 一株十二烷基硫酸钠高效降解菌的分离鉴定、降解特性及代谢途径研究[J]. 生物技术通报, 2022, 38(12): 287-299. |
[3] | 沈聪, 刘爽, 王春霞, 严雪梅, 代金霞. 盐池采油区污染土壤石油降解菌的筛选鉴定及其降解特性[J]. 生物技术通报, 2021, 37(6): 127-135. |
[4] | 卫晓博, 侯颖, 程豪杰, 秦翠丽, 牛明福, 徐建强. 一种苯酚降解菌Pseudoxanthomonas sp. BF-6的分离鉴定及其降解特性及途径研究[J]. 生物技术通报, 2021, 37(10): 72-80. |
[5] | 刘宇程, 邱恋, 梁晶晶, 李玲丽, 马丽丽. 一株聚丙烯酰胺降解菌的筛选及降解特性研究[J]. 生物技术通报, 2019, 35(9): 178-183. |
[6] | 郭亚男, 张馨予, 胥梦, 王继华. 低温萘降解菌的筛选、鉴定及降解条件优化[J]. 生物技术通报, 2019, 35(7): 100-107. |
[7] | 吴学玲,吴晓燕,李交昆,申丽,余润兰,曾伟民. 一株四环素高效降解菌的分离及降解特性[J]. 生物技术通报, 2018, 34(5): 172-178. |
[8] | 陈亮, 王莉. 一株新的染料甲基红降解菌株 Paracoccus sp.L-4的分离、鉴定及其脱色特性研究[J]. 生物技术通报, 2016, 32(2): 146-151. |
[9] | 徐建中, 王颖妤, 严为留, 张伟国. 维生素K2合成途径中主要酶对MK-7产量的影响[J]. 生物技术通报, 2016, 32(11): 248-254. |
[10] | 曲直;阮继生;洪葵;. 高效液相色谱和气相色谱在放线菌分类鉴定中的应用[J]. , 2009, 0(S1): 79-82. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 462
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 403
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||