生物技术通报 ›› 2021, Vol. 37 ›› Issue (7): 65-70.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0501
陈立杰1(), 杨帆1, 范海燕1, 赵迪2, 王媛媛3, 朱晓峰1, 刘晓宇4, 段玉玺1
收稿日期:
2021-04-15
出版日期:
2021-07-26
发布日期:
2021-08-13
作者简介:
陈立杰,女,教授,博士生导师,研究方向:植物线虫学和植物病害生物防治;E-mail:基金资助:
CHEN Li-jie1(), YANG Fan1, FAN Hai-yan1, ZHAO Di2, WANG Yuan-yuan3, ZHU Xiao-feng1, LIU Xiao-yu4, DUAN Yu-xi1
Received:
2021-04-15
Published:
2021-07-26
Online:
2021-08-13
摘要:
植物线虫是世界农业上危害最严重且最难防治的病原物之一,可以寄生多种植物,每年造成数十亿美元损失。生防菌可以激发植物的一些抗病基因表达,从而激活某些免疫途径,对植物线虫的侵染、发育产生抑制作用。这种特性使植物-生防菌-线虫三者构成全新的生物调控关系,成为植物免疫研究的新模型。非编码RNA是生物学领域热点研究内容,其可能参与了植物线虫和其他生物如生防微生物等调控植物免疫的反应。本文综述了miRNA、lncRNA和circRNA等在微生物、植物线虫与寄主互作过程中研究现状;阐述了miRNA作为新兴的基因表达转录后调节因子在影响植物发育、调控植物免疫反应上的作用;进一步介绍了假单胞菌诱导植物体内的miRNA和lncRNA产生变化,从而使这些非编码RNA参与到生防菌激活植物免疫反应的过程;最后展望了生防菌调控植物免疫抵抗线虫侵染研究发展方向。
陈立杰, 杨帆, 范海燕, 赵迪, 王媛媛, 朱晓峰, 刘晓宇, 段玉玺. 非编码RNA在生防菌-植物线虫-寄主互作中的研究进展[J]. 生物技术通报, 2021, 37(7): 65-70.
CHEN Li-jie, YANG Fan, FAN Hai-yan, ZHAO Di, WANG Yuan-yuan, ZHU Xiao-feng, LIU Xiao-yu, DUAN Yu-xi. Advances of Non-coding RNA in Interactions Among Biocontrol Bacteria and Plant Nematodes and Host[J]. Biotechnology Bulletin, 2021, 37(7): 65-70.
[1] |
Siddiqui IA,Haas D,Heeb S.Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita[J].Appl Environ Microbiol,2005,71(9):5646-5649.
doi: 10.1128/AEM.71.9.5646-5649.2005 URL |
[2] | 尤杨,赵丹,朱晓峰,等.活性氧与木质素对细菌Sneb825诱导番茄抵抗南方根结线虫侵染的响应[J].植物病理学报,2018,48(4):547-555. |
You Y,Zhao D,Zhu XF,et al.Response of tomato-infecting Meloidogyne incognita to reactive oxygen species and lignin induced by Pseudomonas fluorescens Sneb825[J].Acta Phytopathol Sin,2018,48(4):547-555. | |
[3] |
Zhao D,Zhao H,Zhao D,et al.Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease[J].Biol Control,2018,119:12-19.
doi: 10.1016/j.biocontrol.2018.01.004 URL |
[4] |
Yang F,Zhao D,Fan HY,et al.Functional analysis of long non-coding RNAs reveal their novel roles in biocontrol of bacteria-induced tomato resistance to Meloidogyne incognita[J].Int J Mol Sci,2020,21(3):911.
doi: 10.3390/ijms21030911 URL |
[5] |
Bartel DP.MicroRNAs[J].Cell,2004,116(2):281-297.
pmid: 14744438 |
[6] |
Jaubert-Possamai S,Noureddine Y,Favery B.MicroRNAs, new players in the plant-nematode interaction[J].Front Plant Sci,2019,10:1180.
doi: 10.3389/fpls.2019.01180 pmid: 31681347 |
[7] |
Hewezi T,Baum TJ.Complex feedback regulations govern the expression of miRNA396 and its GRF target genes[J].Plant Signal Behav,2012,7(7):749-751.
doi: 10.4161/psb.20420 pmid: 22751317 |
[8] |
Noon JB,Hewezi T,Baum TJ.Homeostasis in the soybean miRNA396-GRF network is essential for productive soybean cyst nematode infections[J].J Exp Bot,2019,70(5):1653-1668.
doi: 10.1093/jxb/erz022 URL |
[9] |
Cabrera J,Barcala M,García A,et al.Differentially expressed small RNAs in Arabidopsis galls formed by Meloidogyne javanica:a functional role for miR390 and its TAS3-derived tasiRNAs[J].New Phytol,2016,209(4):1625-1640.
doi: 10.1111/nph.13735 pmid: 26542733 |
[10] |
Zhao WC,Li ZL,Fan JW,et al.Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato[J].J Exp Bot,2015,66(15):4653-4667.
doi: 10.1093/jxb/erv238 URL |
[11] |
Díaz-Manzano FE,Cabrera J,Ripoll JJ,et al.A role for the gene regulatory module microRNA172/TARGET OF EARLY ACTIVATION TAGGED 1/FLOWERING LOCUS T(miRNA172/TOE1/FT)in the feeding sites induced by Meloidogyne javanica in Arabidopsis thaliana[J].New Phytol,2018,217(2):813-827.
doi: 10.1111/nph.14839 pmid: 29105090 |
[12] |
Zhang W,Gao S,Zhou X,et al.Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks[J].Plant Mol Biol,2011,75(1/2):93-105.
doi: 10.1007/s11103-010-9710-8 URL |
[13] |
Medina C,da Rocha M,Magliano M,et al.Characterization of microRNAs from Arabidopsis galls highlights a role for miR159 in the plant response to the root-knot nematode Meloidogyne incognita[J].New Phytol,2017,216(3):882-896.
doi: 10.1111/nph.2017.216.issue-3 URL |
[14] |
Pan X,Nichols RL,Li C,et al.MicroRNA-target gene responses to root knot nematode(Meloidogyne incognita)infection in cotton(Gossypium hirsutum L. )[J].Genomics,2019,111(3):383-390.
doi: 10.1016/j.ygeno.2018.02.013 URL |
[15] |
Navarro L,Dunoyer P,Jay F,et al.A plant miRNA contributes to antibacterial resistance by repressing auxin signaling[J].Science,2006,312(5772):436-439.
pmid: 16627744 |
[16] |
Lee B,Park YS,Lee S,et al.Bacterial RNAs activate innate immunity in Arabidopsis[J].New Phytol,2016,209(2):785-797.
doi: 10.1111/nph.2016.209.issue-2 URL |
[17] |
Li Y,Zhang QQ,Zhang JG,et al.Identification of MicroRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity[J].Plant Physiol,2010,152(4):2222-2231.
doi: 10.1104/pp.109.151803 URL |
[18] |
Święcicka M,Skowron W,Cieszyński P,et al.The suppression of tomato defence response genes upon potato cyst nematode infection indicates a key regulatory role of miRNAs[J].Plant Physiol Biochem,2017,113:51-55.
doi: 10.1016/j.plaphy.2017.01.026 URL |
[19] |
Jones JDG,Dangl JL.The plant immune system[J].Nature,2006,444:323-329.
doi: 10.1038/nature05286 URL |
[20] | Wei HW,Liu J,Guo QW,et al.Genomic organization and comparative phylogenic analysis of NBS-LRR resistance gene family in Solanum pimpinellifolium and Arabidopsis thaliana[J].Evol Bioinform,2020,16:1-13. |
[21] | 刘云飞,万红建,李志邈,等.植物NBS-LRR抗病基因的结构、功能、进化起源及其应用[J].分子植物育种,2014,14(2):377-389. |
Liu YF,Wan HJ,Li ZM,et al.Analysis of plant NBS-LRR resistance gene:structure, function, origin, evolution and their application[J].Mol Plant Bree,2014,14(2):377-389. | |
[22] | 陆秀红,张雨,秦舒婷,等.番茄NBS-LRR抗根结线虫基因同源序列的克隆与分析[J].华中农业大学学报,2019,38(1):67-72. |
Lu XH,Zhang Y,Qin ST,et al.Cloning and analysis of root knot nematode resistance gene of NBS-LRR analogs from tomato[J].J Huazhong Agric Univ,2019,38(1):67-72. | |
[23] |
Jiang N,Cui J,Shi Y,et al.Tomato lncRNA23468 functions as a competing endogenous RNA to modulate NBS-LRR genes by decoying miR482b in the tomato-Phytophthora infestans interaction[J].Hortic Res,2019,6:28.
doi: 10.1038/s41438-018-0096-0 URL |
[24] |
Jiang CH,Fan ZH,Li ZJ,et al.Bacillus cereus AR156 triggers induced systemic resistance against Pseudomonas syringae pv. tomato DC3000 by suppressing miR472 and activating CNLs-mediated basal immunity in Arabidopsis[J].Mol Plant Pathol,2020,21(6):854-870.
doi: 10.1111/mpp.12935 URL |
[25] |
Niu DD,Xia J,Jiang CH,et al.Bacillus cereus AR156 primes induced systemic resistance by suppressing miR825/825* and activating defense-related genes in Arabidopsis[J].J Integr Plant Biol,2016,58(4):426-439.
doi: 10.1111/jipb.v58.4 URL |
[26] |
Zhang Y,Xia R,Kuang HH,et al.The diversification of plant NBS-LRR Defense genes directs the evolution of MicroRNAs that target them[J].Mol Biol Evol,2016,33(10):2692-2705.
doi: 10.1093/molbev/msw154 pmid: 27512116 |
[27] |
Zhang L,Wang M,Li N,et al.Long noncoding RNAs involve in resistance to Verticillium dahliae, a fungal disease in cotton[J].Plant Biotechnol J,2018,16(6):1172-1185.
doi: 10.1111/pbi.12861 pmid: 29149461 |
[28] |
Qin T,Zhao HY,Cui P,et al.A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance[J].Plant Physiol,2017,175(3):1321-1336.
doi: 10.1104/pp.17.00574 URL |
[29] | 毋若楠,王红,杨成成,等.拟南芥lncRNA-At5NC056820过表达载体构建及其转基因植株的抗旱性研究[J].西北植物学报,2017,37(10):1904-1909. |
Wu RN,Wang H,Yang CC,et al.Construction of lncRNA-At5NC056820 overexpression vector in Arabidopsis thaliana and study on drought resistance of transgenic plants[J].Acta Bot Boreali Occidentalia Sin,2017,37(10):1904-1909. | |
[30] |
Cui J,Jiang N,Meng J,et al.LncRNA33732-respiratory burst oxidase module associated with WRKY1 in tomato-Phytophthora infestans interactions[J].Plant J,2019,97(5):933-946.
doi: 10.1111/tpj.2019.97.issue-5 URL |
[31] |
Sanger HL,Klotz G,Riesner D,et al.Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J].PNAS,1976,73(11):3852-3856.
pmid: 1069269 |
[33] |
Memczak S,Jens M,Elefsinioti A,et al.Circular RNAs are a large class of animal RNAs with regulatory potency[J].Nature,2013,495(7441):333-338.
doi: 10.3389/fmolb,2020.00091 URL |
Zhang PJ,Li SD,Chen M.Characterization and function of circular RNAs in plants[J].Front Mol Biosci,2020,7:91. DOI:10.3389/fmolb,2020.00091. | |
[34] | 龙春昊,赵星宇,武永军.植物环状RNA[J].生命的化学,2020,40(5):654-662. |
Long CH,Zhao XY,Wu YJ.circRNA in plants[J].Chem Life,2020,40(5):654-662. | |
[35] |
Hansen TB,Jensen TI,Clausen BH,et al.Natural RNA circles function as efficient microRNA sponges[J].Nature,2013,495(7441):384-388.
doi: 10.1038/nature11993 URL |
[36] |
Salzman J.Circular RNA expression:its potential regulation and function[J].Trends Genet,2016,32(5):309-316.
doi: S0168-9525(16)00032-9 pmid: 27050930 |
[37] |
Conn VM,Hugouvieux V,Nayak A,et al.A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation[J].Nat Plants,2017,3:17053.
doi: 10.1038/nplants.2017.53 URL |
[38] |
Chen LL,Yang L.Regulation of circRNA biogenesis[J].RNA Biol,2015,12(4):381-388.
doi: 10.1080/15476286.2015.1020271 URL |
[39] |
Lee SM,Kong HG,Ryu CM.Are circular RNAs new kids on the block?[J].Trends Plant Sci,2017,22(5):357-360.
doi: 10.1016/j.tplants.2017.03.007 URL |
[40] |
Guria A,Sharma P,Natesan S,et al.Circular RNAs—the road less traveled[J].Front Mol Biosci,2020,6:146.
doi: 10.3389/fmolb.2019.00146 URL |
[41] |
Fan J,Quan W,Li GB,et al.CircRNAs are involved in the Rice-Magnaporthe oryzae interaction[J].Plant Physiol,2020,182(1):272-286.
doi: 10.1104/pp.19.00716 URL |
[42] | 陈静,鲁秀梅,任琴琴,等.甜瓜circRNA及其蔓枯病抗性靶基因鉴定[J].南京农业大学学报,2020,43(4):629-636. |
Chen J,Lu XM,Ren QQ,et al.Identification of circRNA and their target genes related to resistance to gummy stem blight in melon[J].J Nanjing Agric Univ,2020,43(4):629-636. | |
[43] |
Zhou R,Zhu YX,Zhao J,et al.Transcriptome-wide identification and characterization of potato circular RNAs in response to Pectobacterium carotovorum subspecies brasiliense infection[J].Int J Mol Sci,2017,19(1):71.
doi: 10.3390/ijms19010071 URL |
[44] |
Sun YY,Zhang HQ,Fan M,et al.Genome-wide identification of long non-coding RNAs and circular RNAs reveal their CeRNA networks in response to cucumber green mottle mosaic virus infection in watermelon[J].Arch Virol,2020,165(5):1177-1190.
doi: 10.1007/s00705-020-04589-4 URL |
[45] |
Hewezi T,Howe P,Maier TR,et al.Arabidopsis small RNAs and their targets during cyst nematode parasitism[J].Mol Plant Microbe Interactions,2008,21(12):1622-1634.
doi: 10.1094/MPMI-21-12-1622 URL |
[46] |
Ruiz-Ferrer V,Cabrera J,Martinez-Argudo I,et al.Silenced retrotransposons are major rasiRNAs targets in Arabidopsis galls induced by Meloidogyne javanica[J].Mol Plant Pathol,2018,19(11):2431-2445.
doi: 10.1111/mpp.12720 pmid: 30011119 |
[47] |
Huang G,Allen R,Davis EL,et al.Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene[J].PNAS,2006,103(39):14302-14306.
doi: 10.1073/pnas.0604698103 URL |
[48] |
Steeves RM,Todd TC,Essig JS,et al.Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction[J].Funct Plant Biol,2006,33(11):991.
doi: 10.1071/FP06130 pmid: 32689310 |
[49] |
Middleton H,Yergeau É,Monard C,et al.Rhizospheric plant-microbe interactions:miRNAs as a key mediator[J].Trends Plant Sci,2021,26(2):132-141.
doi: 10.1016/j.tplants.2020.09.005 pmid: 33036916 |
[50] |
Zhao JH,Zhang T,Liu QY,et al.Trans-kingdom RNAs and their fates in recipient cells:advances, utilization, and perspectives[J].Plant Commun,2021,2(2):100167.
doi: 10.1016/j.xplc.2021.100167 URL |
[51] |
Panstruga R.Bacterial RNA-a new MAMP on the block?[J].New Phytol,2016,209(2):458-460.
doi: 10.1111/nph.13726 pmid: 26763679 |
[52] |
贺婵,汪顺娥,郝海婷,等.小 RNA 介导蜡质芽孢杆菌AR156 激活MAPK 通路诱导拟南芥系统抗病性研究[J].植物病理学报,2021. DOI:10.13926/j.cnki.apps.000547.
doi: 10.13926/j.cnki.apps.000547 |
He C,Wang SE,Hao HT,et al.Small RNA mediated Bacillus cereus AR156 induces systemic resistance in Arabidopsis through activation of MAPK pathway[J].Acta Phytopathologica Sinica,2021. DOI:10.13926/j.cnki.apps.000547.
doi: 10.13926/j.cnki.apps.000547 |
[1] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[2] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[3] | 史建磊, 宰文珊, 苏世闻, 付存念, 熊自立. 番茄青枯病抗性相关miRNA的鉴定与表达分析[J]. 生物技术通报, 2023, 39(5): 233-242. |
[4] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[5] | 章乐乐, 王冠, 柳凤, 胡汉桥, 任磊. 芒果炭疽病拮抗菌分离、鉴定及生防机制研究[J]. 生物技术通报, 2023, 39(4): 277-287. |
[6] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[7] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[8] | 吕宇婧, 吴丹丹, 孔春艳, 杨宇, 龚明. 小桐子XTH基因家族和与之互作的miRNAs的全基因组鉴定及其在低温适应中的作用[J]. 生物技术通报, 2023, 39(2): 147-160. |
[9] | 杨东亚, 祁瑞雪, 李昭轩, 林薇, 马慧, 张雪艳. 黄瓜茄病镰刀菌拮抗芽孢杆菌的筛选、鉴定及促生效果[J]. 生物技术通报, 2023, 39(2): 211-220. |
[10] | 罗宁, 焦阳, 茆振川, 李惠霞, 谢丙炎. 木霉菌对根结线虫和孢囊线虫防治机理研究进展[J]. 生物技术通报, 2023, 39(2): 35-50. |
[11] | 尹国英, 刘畅, 常永春, 羽王洁, 王兵, 张盼, 郭玉双. 烟草半胱氨酸蛋白酶家族和相应miRNAs的鉴定及其对PVY的响应[J]. 生物技术通报, 2023, 39(10): 184-196. |
[12] | 马赛买, 李同源, 马燕军, 韩富军, 彭海, 孔维宝. 几丁质酶在农作物病虫害生物防治中的研究进展[J]. 生物技术通报, 2023, 39(10): 29-40. |
[13] | 王楠楠, 王文佳, 朱强. 植物胁迫相关microRNA研究进展[J]. 生物技术通报, 2022, 38(8): 1-11. |
[14] | 祖雪, 周瑚, 朱华珺, 任佐华, 刘二明. 枯草芽孢杆菌K-268的分离鉴定及对水稻稻瘟病的防病效果[J]. 生物技术通报, 2022, 38(6): 136-146. |
[15] | 孙宝箴, 全龙萍, 康慧, 姚玉新, 沈甜, 陈卫平, 杜远鹏, 高振. 基于跨反向剪接位点引物特异性检测circRNA的PCR方法[J]. 生物技术通报, 2022, 38(5): 279-285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||