生物技术通报 ›› 2021, Vol. 37 ›› Issue (8): 55-64.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0126
张婵(), 姚广龙, 张军锋, 于靖, 杨东梅, 陈萍, 吴友根()
收稿日期:
2021-02-01
出版日期:
2021-08-26
发布日期:
2021-09-10
作者简介:
张婵,女,博士研究生,研究方向:南药植物种质资源开发与利用;E-mail: 基金资助:
ZHANG Chan(), YAO Guang-long, ZHANG Jun-feng, YU Jing, YANG Dong-mei, CHEN Ping, WU You-gen()
Received:
2021-02-01
Published:
2021-08-26
Online:
2021-09-10
摘要:
百秋李醇是广藿香主要活性成分之一,也是《中国药典》中评价广藿香药材的重要指标,可通过天然提取或合成生物学工程两种方式获得。广藿香中百秋李醇含量低,是其规模化应用的瓶颈。本文从百秋李醇的合成途径、分子调控机制和合成生物学工程三方面综述近年来相关研究进展,为百秋李醇的开发与应用提供参考。
张婵, 姚广龙, 张军锋, 于靖, 杨东梅, 陈萍, 吴友根. 广藿香百秋李醇分子调控及合成生物学研究进展[J]. 生物技术通报, 2021, 37(8): 55-64.
ZHANG Chan, YAO Guang-long, ZHANG Jun-feng, YU Jing, YANG Dong-mei, CHEN Ping, WU You-gen. Research Progress on Patchoulol Molecular Regulation and Synthetic Biology in Pogostemon cablin[J]. Biotechnology Bulletin, 2021, 37(8): 55-64.
图1 广藿香百秋李醇合成途径与分子调控模式图[27,28,29,30] “*”代表关键酶;乙酰CoA酰基转移酶(PatAACT);3-甲基戊二酰CoA合成酶(PatHMGS);3-羟基-3-甲基戊二酰CoA还原酶(PatHMGR);甲羟戊酸激酶(PatMVK);磷酸甲羟戊酸激酶(PatPMK);甲羟戊酸-5-焦磷酸脱羧酶(PatMVD);异戊烯基焦磷酸异构酶(PatIPI);法呢基焦磷酸合酶(PatFPS);百秋李醇合酶(PatPTS)
Fig. 1 Synthetic pathway and molecular regulation model of patchoulo in P. cablin[27,28,29,30] The “*” refers to key enzyme. Acetoacetyl-CoA thiolase(PatAACT),hydroxy-3-methylglutaryl-CoA synthase(PatHMGS),3-hydroxy-3-methylglutaryl CoA reductase(PatHMGR),mevalonate kinase(PatMVK),phosphomevalonate kinase(PatPMK),mevalonate diphosphate decarboxylase(PatMVD),isopentenyl pyrophosphate isomerase(PatIPI),farnesyl diphosphate synthase(PatFPS),and patchoulol synthase(PatPTS)
基因 Gene | 全长 Full length/bp | 预测蛋白特征 Predicted protein characteristics | GenBank登录号 GeneBank accession No. | 文献 Reference |
---|---|---|---|---|
PatHMGR | 2209 | 425 aa,疏水性蛋白,两个跨膜区且不含信号肽 | MK591025 | [ |
PatIPI | 1315 | 292 aa,亲水性蛋白,无跨膜区具信号肽 | MW238535 | [ |
PatFPS | 1177 | 349 aa,亲水性蛋白,无跨膜区,不含信号肽,含DDXXD保守结构域 | - | [ |
1050 | - | [ | ||
1050 | - | [ | ||
1659 | 552-570 aa,亲水性蛋白,无跨膜区,无信号肽,含DDXXD保守序列,2 个倍半萜合酶结构域 | AY508730.1 | [ | |
1659 | KF983531 | [ | ||
PatPTS | 1659 | KP694233.1 | [ | |
1713 | - | [ | ||
1659 | - | [ |
表1 广藿香百秋李醇合成途径中已经克隆的酶
Table 1 Enzymes cloned in the synthetic pathway of patchoulol in P. cablin
基因 Gene | 全长 Full length/bp | 预测蛋白特征 Predicted protein characteristics | GenBank登录号 GeneBank accession No. | 文献 Reference |
---|---|---|---|---|
PatHMGR | 2209 | 425 aa,疏水性蛋白,两个跨膜区且不含信号肽 | MK591025 | [ |
PatIPI | 1315 | 292 aa,亲水性蛋白,无跨膜区具信号肽 | MW238535 | [ |
PatFPS | 1177 | 349 aa,亲水性蛋白,无跨膜区,不含信号肽,含DDXXD保守结构域 | - | [ |
1050 | - | [ | ||
1050 | - | [ | ||
1659 | 552-570 aa,亲水性蛋白,无跨膜区,无信号肽,含DDXXD保守序列,2 个倍半萜合酶结构域 | AY508730.1 | [ | |
1659 | KF983531 | [ | ||
PatPTS | 1659 | KP694233.1 | [ | |
1713 | - | [ | ||
1659 | - | [ |
年份 Year | 生物 Organisms | 特点 Characteristics | 百秋李醇产量 Productivities of patchoulol | 文献 Reference |
---|---|---|---|---|
2020 | 酿酒酵母 Saccharomyces cerevisiae | 真菌,高生长速率, 糖代谢速率快,耐受性高。 | 42.1 mg·L-1 | [ |
2019 | 466.8 mg·L-1 | [ | ||
2015 | 41.6 mg·L-1 | [ | ||
2011 | 40.9 mg·L-1 | [ | ||
2008 | 11.5 mg·L-1 | [ | ||
2018 | 谷氨酸棒杆菌 Corynebacterium glutamicum | 革兰氏阳性细菌,细胞密度高和容积生产率高。 | 60 mg·L-1 | [ |
2019 | 荚膜红细菌 Rhodobacter capsulatus | 革兰氏阴性细菌,营光合自养, | 24 mg·L-1 | [ |
2006 | 烟草 Nicotiana tobacum | 高等植物,多年生草本常用萜类生产底盘。 | 30 µg·g-1 FW | [ |
2016 | 莱茵衣藻 Chlamydomonas reinhardtii | 低等植物,单细胞真核藻类,细胞结构简单。 | 922 µg·g-1 CDW | [ |
2020 | 小立碗藓 Physcomitrella patens | 低等植物,萜类背景简单,极高同源重组率。 | 32.9 µg·g-1 CDW | [ |
2014 | 59 µg·g-1 CDW | [ | ||
2018 | 地钱 Marchantia polymorpha | 低等植物,基因组小、冗余基因少、易繁殖培养。 | 1 000.36 μg·g-1 CDW | [ |
表2 用于合成百秋李醇的7种生物底盘
Table 2 Seven biological chassis used to synthesize patchoulol
年份 Year | 生物 Organisms | 特点 Characteristics | 百秋李醇产量 Productivities of patchoulol | 文献 Reference |
---|---|---|---|---|
2020 | 酿酒酵母 Saccharomyces cerevisiae | 真菌,高生长速率, 糖代谢速率快,耐受性高。 | 42.1 mg·L-1 | [ |
2019 | 466.8 mg·L-1 | [ | ||
2015 | 41.6 mg·L-1 | [ | ||
2011 | 40.9 mg·L-1 | [ | ||
2008 | 11.5 mg·L-1 | [ | ||
2018 | 谷氨酸棒杆菌 Corynebacterium glutamicum | 革兰氏阳性细菌,细胞密度高和容积生产率高。 | 60 mg·L-1 | [ |
2019 | 荚膜红细菌 Rhodobacter capsulatus | 革兰氏阴性细菌,营光合自养, | 24 mg·L-1 | [ |
2006 | 烟草 Nicotiana tobacum | 高等植物,多年生草本常用萜类生产底盘。 | 30 µg·g-1 FW | [ |
2016 | 莱茵衣藻 Chlamydomonas reinhardtii | 低等植物,单细胞真核藻类,细胞结构简单。 | 922 µg·g-1 CDW | [ |
2020 | 小立碗藓 Physcomitrella patens | 低等植物,萜类背景简单,极高同源重组率。 | 32.9 µg·g-1 CDW | [ |
2014 | 59 µg·g-1 CDW | [ | ||
2018 | 地钱 Marchantia polymorpha | 低等植物,基因组小、冗余基因少、易繁殖培养。 | 1 000.36 μg·g-1 CDW | [ |
[1] |
Yao G, Drew BT, Yi TS, et al. Phylogenetic relationships, character evolution and biogeographic diversification of Pogostemon s. l. (Lamiaceae)[J]. Mol Phylogenet Evol, 2016, 98:184-200.
doi: 10.1016/j.ympev.2016.01.020 URL |
[2] | Henke NA, Wichmann J, Baier T, et al. Patchoulol production with metabolically engineered Corynebacterium glutamicum[J]. Genes(Basel), 2018, 9(4):E219. |
[3] | 闵琼, 曾海荣, 陆翠燕, 等. 广藿香醇通过调控上皮间质转化抑制人胃癌细胞HGC-27的侵袭和转移[J]. 药学服务与研究, 2020, 20(1):6-11. |
Min Q, Zeng H, Lu C, et al. Patchouli alcohol inhibits invasion and metastasis of human gastric cancer cells HGC-27 by regulating epithelial mesenchymal transition[J]. Pharmaceutical Care and Research, 2020, 20(1):6-11. | |
[4] |
Zhang RQ, Yan PA, Li YX, et al. A pharmacokinetic study of patchouli alcohol after a single oral administration of patchouli alcohol or patchouli oil in rats[J]. Eur J Drug Metab Pharmacokinet, 2016, 41(4):441-448.
doi: 10.1007/s13318-015-0272-7 URL |
[5] |
Wu ZN, Zeng HR, Zhang LL, et al. Patchouli alcohol:a natural sesquiterpene against both inflammation and intestinal barrier damage of ulcerative colitis[J]. Inflammation, 2020, 43(4):1423-1435.
doi: 10.1007/s10753-020-01219-8 URL |
[6] | 徐雯, 吴艳清, 丁浩然, 等. 广藿香的药理作用及机制研究进展[J]. 上海中医药杂志, 2017, 51(10):103-106. |
Xu W, Wu YQ, Ding HR, et al. Research progress on pharmacological effects and mechanism of Herba Pogostemonis[J]. Shanghai J Tradit Chin Med, 2017, 51(10):103-106. | |
[7] |
van Beek TA, Joulain D. The essential oil of patchouli, Pogostemon cablin:a review[J]. Flavour Fragr J, 2018, 33(1):6-51.
doi: 10.1002/ffj.v33.1 URL |
[8] | Das K. Patchouli(Pogostemon cablin Benth)oils[M]//Essential Oils in Food Preservation, Flavor and Safety. Amsterdam:Elsevier, 2016:633-639. |
[9] |
Ma B, Liu M, Li ZH, et al. Significantly enhanced production of patchoulol in metabolically engineered Saccharomyces cerevisiae[J]. J Agric Food Chem, 2019, 67(31):8590-8598.
doi: 10.1021/acs.jafc.9b03456 URL |
[10] |
Swamy MK, Sinniah UR. Patchouli(Pogostemon cablin Benth.):Botany, agrotechnology and biotechnological aspects[J]. Ind Crop Prod, 2016, 87:161-176.
doi: 10.1016/j.indcrop.2016.04.032 URL |
[11] |
Gadamer J, Amenomiya T. Beiträge zur Kenntnis der Sesquiterpene und Sesquiterpenalkohole[J]. Arch Pharm Pharm Med Chem, 1903, 241(1):22-47.
doi: 10.1002/(ISSN)1521-4184 URL |
[12] |
Hybertson BM. Solubility of the sesquiterpene alcohol patchoulol in supercritical carbon dioxide[J]. J Chem Eng Data, 2007, 52(1):235-238.
pmid: 19424449 |
[13] |
Swamy MK, Mohanty SK, Sinniah UR, et al. Evaluation of patchouli(Pogostemon cablin Benth. )cultivars for growth, yield and quality parameters[J]. J Essent Oil Bear Plants, 2015, 18(4):826-832.
doi: 10.1080/0972060X.2015.1029989 URL |
[14] |
Tang Y, Zhong L, Wang X, et al. Molecular identification and expression of sesquiterpene pathway genes responsible for patchoulol biosynjournal and regulation in Pogostemon cablin[J]. Bot Stud, 2019, 60(1):11.
doi: 10.1186/s40529-019-0259-9 pmid: 31267260 |
[15] |
Faraldos JA, Wu S, Chappell J, et al. Doubly deuterium-labeled patchouli alcohol from cyclization of singly labeled[2-(2)H(1)]farnesyl diphosphate catalyzed by recombinant patchoulol synthase[J]. J Am Chem Soc, 2010, 132(9):2998-3008.
doi: 10.1021/ja909251r pmid: 20148554 |
[16] | 冯承浩. 南药广藿香药用部位形态发育与有效成分分布关系研究[D]. 广州:华南农业大学, 2003. |
Feng CH. The relationship between the morphological development of medicinal parts and the distribution of active ingredients in Pogostemon cablin[D]. Guangzhou:South China Agricultural University, 2003. | |
[17] | 唐云. 广藿香倍半萜合成通路关键酶基因鉴定和PatFPPS的功能分析[D]. 广州:广州中医药大学, 2019. |
Tang Y. Molecular identification of the biosynthesis pathway of sesquiterpenes and functional analysis of PatFPPS[D]. Guangzhou:Guangzhou University of Chinese Medicine, 2019. | |
[18] | 卢昌华. 广藿香法尼基焦磷酸合酶和倍半萜合酶的基因功能研究[D]. 广州:广东药科大学, 2020. |
Lu CH. Gene function of farnesyl pyrophosphate synthase and sesquiterpene synthase from Pogostemon cblin[D]. Guangzhou:Guangdong Pharmacetical University, 2020. | |
[19] |
Yan WP, Yang YZ, Wu YG, et al. Isopentenyl diphosphate isomerase(IPI)gene silencing negatively affects patchouli alcohol biosynjournal in Pogostemon cablin[J]. Plant Mol Biol Report, 2021. DOI: 10.1007/s11105-020-01269-0.
doi: 10.1007/s11105-020-01269-0 |
[20] |
Zhang GX, Wu YP, Haq Muhammad ZU, et al. cDNA cloning, prokaryotic expression and functional analysis of 3-hydroxy-3-methylglutaryl coenzyme A reductase(HMGCR)in Pogostemon cablin[J]. Protein Expr Purif, 2019, 163:105454.
doi: 10.1016/j.pep.2019.105454 URL |
[21] | 张贵翔, 吴友根, 陈赫, 等. 广藿香法呢基焦磷酸合成酶基因(FPS)的克隆及生物信息学分析[J]. 分子植物育种, 2019, 17(7):2163-2170. |
Zhang GX, Wu YG, Chen H, et al. Cloning and bioinformatics analysis of farnesyl diphosphate synthase(FPS)gene in Pogostemon cablin[J]. Mol Plant Breed, 2019, 17(7):2163-2170. | |
[22] |
Deguerry F, Pastore L, Wu S, et al. The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases[J]. Arch Biochem Biophys, 2006, 454(2):123-136.
doi: 10.1016/j.abb.2006.08.006 URL |
[23] |
Hartwig S, Frister T, Alemdar S, et al. Expression, purification and activity assay of a patchoulol synthase cDNA variant fused to thioredoxin in Escherichia coli[J]. Protein Expr Purif, 2014, 97:61-71.
doi: 10.1016/j.pep.2014.02.003 URL |
[24] | 陈英. 广藿香中百秋李醇的动态积累及PTS基因的克隆与表达研究[D]. 海口:海南大学, 2015. |
Chen Y. The dynamic accumulation of(-)-patchoulol and the PTS gene cloning and expression during the development of Pogostemon cablin[D]. Haikou:Hainan University, 2015. | |
[25] | 刘信丹, 张英, 吴孟华, 等. 广藿香醇合成酶基因Pc-PTS1的克隆和生物信息学分析[J]. 中药材, 2018, 41(2):292-298. |
Liu XD, Zhang Y, Wu MH, et al. Cloning and bioinformatics analysis of patchoulol synthase gene pc-PTS1 from Pogostemon cablin[J]. J Chin Med Mater, 2018, 41(2):292-298. | |
[26] | 黄伟展, 胡贞贞, 卢昌华, 等. 广藿香PTS基因的克隆及CPEC法构建其过表达载体pRI101-PTS[J]. 广东药科大学学报, 2019, 35(2):186-192. |
Huang WZ, Hu ZZ, Lu CH, et al. Cloning of Patchoulol synthase gene from Pogostemon cablin and construction of overexpression vector pRI101-PTS by circular polymerase extension cloning[J]. J Guangdong Pharm Univ, 2019, 35(2):186-192. | |
[27] |
Chen XZ, Li JR, Liu YT, et al. PatSWC4, a methyl jasmonate-responsive MYB(v-myb avian myeloblastosis viral oncogene homolog)-related transcription factor, positively regulates patchoulol biosynjournal in Pogostemon cablin[J]. Ind Crop Prod, 2020, 154:112672.
doi: 10.1016/j.indcrop.2020.112672 URL |
[28] |
Wang XB, Chen XZ, Zhong LT, et al. PatJAZ6 Acts as a repressor regulating JA-induced biosynjournal of patchouli alcohol in Pogostemon cablin[J]. Int J Mol Sci, 2019, 20(23). DOI: 10. 3390/ijms20236038.
doi: 10. 3390/ijms20236038 |
[29] |
Li JR, Chen XZ, Zhou XX, et al. Identification of trihelix transcription factors in Pogostemon cablin reveals PatGT-1 negatively regulates patchoulol biosynjournal[J]. Ind Crop Prod, 2021, 161:113182.
doi: 10.1016/j.indcrop.2020.113182 URL |
[30] |
Yu ZX, Wang LJ, Zhao B, et al. Progressive regulation of sesquiterpene biosynjournal in Arabidopsis and Patchouli(Pogostemon cablin)by the miR156-targeted SPL transcription factors[J]. Mol Plant, 2015, 8(1):98-110.
doi: 10.1016/j.molp.2014.11.002 URL |
[31] | 唐云, 吴带娣, 林凤如, 等. 广藿香(Pogostemon cablin)PatWRKY40和PatWRKY53的基因克隆与表达分析[J]. 分子植物育种, 2020, 18(11):3555-3561. |
Tang Y, Wu DD, Lin FR, et al. Gene cloning and expression analysis of PatWRKY40 and PatWRKY53 in Pogostemon cablin[J]. Mol Plant Breed, 2020, 18(11):3555-3561. | |
[32] | 李欣, 李影, 曲子越, 等. bHLH转录因子在茉莉酸信号诱导植物次生产物合成中的作用及分子机制[J]. 植物生理学报, 2017, 53(1):1-8. |
Li X, Li Y, Qu ZY, et al. The molecular mechanism and the function of bHLH regulating jasmonic acidmediated secondary metabolites synjournal[J]. Plant Physiol J, 2017, 53(1):1-8. | |
[33] | Bhatla SC. Jasmonic acid[M]// Plant Physiology, Development and Metabolism. Singapore:Springer Singapore, 2018:671-679. |
[34] |
Wasternack C. Termination in jasmonate signaling by MYC2 and MTBs[J]. Trends Plant Sci, 2019, 24(8):667-669.
doi: S1360-1385(19)30142-6 pmid: 31253555 |
[35] | 何梦玲, 何芳, 熊洋, 等. 茉莉酸甲酯对广藿香叶中百秋里醇含量的影响[J]. 北方园艺, 2014(5):147-150. |
He ML, He F, Xiong Y, et al. Effect of methyl jasmonate on the content of patchouli alcohol from the leaves of pogostemon cablin(blanco)Benth[J]. North Hortic, 2014(5):147-150. | |
[36] |
Chen XZ, Li JR, Wang XB, et al. Full-length transcriptome sequencing and methyl jasmonate-induced expression profile analysis of genes related to patchoulol biosynjournal and regulation in Pogostemon cablin[J]. BMC Plant Biol, 2019, 19(1):266.
doi: 10.1186/s12870-019-1884-x URL |
[37] |
邓文静, 张宏意, 欧晓华, 等. 茉莉酸甲酯对广藿香JA信号转导途径及倍半萜合成途径关键基因表达的影响[J]. 广西植物, 2021. DOI: 10.11931/guihaia.gxzw202005056.
doi: 10.11931/guihaia.gxzw202005056 |
Deng WJ, Zhang HY, Ou XH, et al. Effects of MeJA treatment on key genes involved in the JA signal transduction and biosynjournal pathway of sesquiterpene in Pogostemon cablin[J]. Guihaia, 2021. DOI: 10.11931/guihaia.gxzw202005056.
doi: 10.11931/guihaia.gxzw202005056 |
|
[38] | 刘璐, 吴友根, 张军锋, 等. 昼夜变化对广藿香中挥发油及其主要成分积累的影响[J]. 江苏农业科学, 2018, 46(2):124-127. |
Liu L, Wu YG, Zhang JF, et al. Effects of night changes on the accumulation of volatile oil and its main components in patchouli[J]. Jiangsu Agric Sci, 2018, 46(2):124-127. | |
[39] | 罗集鹏, 郭晓玲, 冯毅凡. 不同采收期海南广藿香挥发油成分分析[J]. 中药材, 2002, 25(1):21-23. |
Luo JP, Guo XL, Feng YF. Constituents analysis on volatile oil of Pogostemon cablin from different collection time cultivated in Hainan[J]. J Chin Med Mater, 2002, 25(1):21-23. | |
[40] |
Ouyang P, Liu Y, Wang Y, et al. Aging and/or tissue-specific regulation of patchoulol and pogostone in two Pogostemon cablin(Blanco)Benth. cultivars[J]. Physiol Plant, 2016, 158(3):272-283.
doi: 10.1111/ppl.12466 pmid: 27167188 |
[41] |
Mitsui R, Nishikawa R, Yamada R, et al. Construction of yeast producing patchoulol by global metabolic engineering strategy[J]. Biotechnol Bioeng, 2020, 117(5):1348-1356.
doi: 10.1002/bit.v117.5 URL |
[42] |
Gruchattka E, Kayser O. In vivo validation of in silico predicted metabolic engineering strategies in yeast:disruption of α-ketoglutarate dehydrogenase and expression of ATP-citrate lyase for terpenoid production[J]. PLoS One, 2015, 10(12):e0144981.
doi: 10.1371/journal.pone.0144981 URL |
[43] |
Albertsen L, Chen Y, Bach LS, et al. Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes[J]. Appl Environ Microbiol, 2011, 77(3):1033-1040.
doi: 10.1128/AEM.01361-10 URL |
[44] |
Asadollahi MA, Maury J, Møller K, et al. Production of plant sesquiterpenes in Saccharomyces cerevisiae:effect of ERG9 repression on sesquiterpene biosynjournal[J]. Biotechnol Bioeng, 2008, 99(3):666-677.
pmid: 17705244 |
[45] |
Troost K, Loeschcke A, Hilgers F, et al. Engineered Rhodobacter capsulatus as a phototrophic platform organism for the synjournal of plant sesquiterpenoids[J]. Front Microbiol, 2019, 10:1998.
doi: 10.3389/fmicb.2019.01998 URL |
[46] |
Wu SQ, Schalk M, Clark A, et al. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants[J]. Nat Biotechnol, 2006, 24(11):1441-1447.
doi: 10.1038/nbt1251 URL |
[47] |
Lauersen KJ, Baier T, Wichmann J, et al. Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii[J]. Metab Eng, 2016, 38:331-343.
doi: S1096-7176(16)30068-4 pmid: 27474353 |
[48] |
Peramuna A, Bae H, Quiñonero López C, et al. Connecting moss lipid droplets to patchoulol biosynjournal[J]. PLoS One, 2020, 15(12):e0243620.
doi: 10.1371/journal.pone.0243620 URL |
[49] |
Zhan X, Zhang YH, Chen DF, et al. Metabolic engineering of the moss Physcomitrella patens to produce the sesquiterpenoids patchoulol and α/β-santalene[J]. Front Plant Sci, 2014, 5:636.
doi: 10.3389/fpls.2014.00636 pmid: 25477891 |
[50] | 周璐, 苗志奇. 以地钱为底盘进行广藿香醇的生物制造研究[C]// 第七届长三角植物科学研讨会暨青年学术报告会论文集. 上海, 2018, 97-98. |
Zhou L, Miao ZQ. The Bomanufacture of Ptchoulol was Sudied in Marchantia polymorpha[C]// Abstracts of the 7th Yangtze River Delta Plant Science Symposium and Youth Academic Conference, Shanghai, 2018, 97-98. | |
[51] | 孙明雪, 周景文. 酿酒酵母合成异源单萜类化合物的研究进展[J]. 工业微生物, 2016, 46(6):54-58. |
Sun MX, Zhou JW. Research advances of heterologous synjournal of monoterpenes in Saccharomyces cerevisiae[J]. Ind Microbiol, 2016, 46(6):54-58. | |
[52] |
Schempp FM, Drummond L, Buchhaupt M, et al. Microbial cell factories for the production of terpenoid flavor and fragrance compounds[J]. J Agric Food Chem, 2018, 66(10):2247-2258.
doi: 10.1021/acs.jafc.7b00473 URL |
[1] | 钟李婷, 陈秀珍, 唐云, 李俊仁, 王小兵, 刘彦婷, 周璇璇, 詹若挺, 陈立凯. 广藿香FPPS重组蛋白表达及互作蛋白筛选分析[J]. 生物技术通报, 2019, 35(12): 10-15. |
[2] | 谭玉荣, 王丹, 高璇, 刘进平. 植物长链非编码RNA研究进展[J]. 生物技术通报, 2018, 34(10): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||