生物技术通报 ›› 2021, Vol. 37 ›› Issue (10): 34-44.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0139
卫华宁1,2(), 王灵1,2, 李涛1,3,4, 王娜1,2, 吴华莲1,3,4(), 向文洲1,3,4()
收稿日期:
2021-02-03
出版日期:
2021-10-26
发布日期:
2021-11-12
作者简介:
卫华宁,女,硕士研究生,研究方向:微藻生物技术;E-mail: 基金资助:
WEI Hua-ning1,2(), WANG Ling1,2, LI Tao1,3,4, WANG Na1,2, WU Hua-lian1,3,4(), XIANG Wen-zhou1,3,4()
Received:
2021-02-03
Published:
2021-10-26
Online:
2021-11-12
摘要:
以经海水驯化后的藻株Asterarcys sp. SCSIO-44020为材料,以30‰海水改良ZSNT为基础培养基,在柱式光生物反应器中分别加入3种不同类型氮源(硝酸钠、尿素及碳酸氢铵)和3组氮浓度(3 mmol/L、6 mmol/L及18 mmol/L),研究不同氮源及氮浓度对Asterarcys sp.生长及生化组成的影响。结果显示,Asterarcys sp.生物质浓度均随着氮浓度的升高而增加,在氮浓度18 mmol/L条件下,硝酸钠组获得最大生物质浓度(7.78 g/L),其次为尿素(6.61 g/L),最低为碳酸氢铵(5.33 g/L)。低氮胁迫有利于藻细胞油脂和总糖的积累,最大油脂含量和多糖含量分别达到46.78% DW(碳酸氢铵,3.0 mmol/L)和29.70% DW(尿素,3.0 mmol/L)。该藻中性脂比例大于82.58%,在3种氮源随着氮浓度的降低而升高;脂肪酸主要包括C16:0(棕榈酸)、C16:1(棕榈油酸)、C18:0(硬脂酸)、C18:1(油酸)、C18:2(亚油酸)和C18:3(亚麻酸),其中油酸含量最高(占总脂含量38.75%);高氮有利藻细胞蛋白质积累,在尿素为氮源18 mmol/L条件下的蛋白质含量最高(17.61% DW);在以硝酸钠为氮源18 mmol/L条件下,该藻总脂、总糖、总蛋白质及总类胡萝卜素均获得最大产量,分别为2.79 g/L、1.71 g/L、1.22 g/L和30.29 mg/L。总之,本研究显示Asterarcys sp. SCSIO-44020在海水中生长良好,初步确定高浓度(18 mmol/L)硝酸钠为其小型柱式光生物反应器培养较佳的氮源条件。
卫华宁, 王灵, 李涛, 王娜, 吴华莲, 向文洲. 不同氮源及氮浓度对海水驯化藻株Asterarcys sp.生长及生化组成的影响[J]. 生物技术通报, 2021, 37(10): 34-44.
WEI Hua-ning, WANG Ling, LI Tao, WANG Na, WU Hua-lian, XIANG Wen-zhou. Effects of Different Nitrogen Sources and Concentrations on the Growth and Biochemical Composition of Asterarcys sp. Accimated by Seawater[J]. Biotechnology Bulletin, 2021, 37(10): 34-44.
图1 不同氮源及氮浓度对Asterarcys sp. SCSIO-44020生长的影响 A:硝酸钠;B:尿素;C:碳酸氢铵
Fig.1 Effects of different nitrogen sources and concentra-tions on the growth of Asterarcys sp. SCSIO-44020 A:Sodium nitrate. B:Urea. C:Ammonium bicarbonate
图2 不同氮源及氮浓度对Asterarcys sp. SCSIO-44020总脂含量的影响
Fig. 2 Effects of different nitrogen sources and concentra-tions on total lipid content of Asterarcys sp. SCSIO-44020
图3 不同氮源及氮浓度对Asterarcys sp. SCSIO-44020总脂组分的影响 a: 3.0 mmol/L;b:6.0 mmol/L;c:18.0 mmol/L;PLs:磷脂;GLs:糖脂;NLs:中性脂
Fig. 3 Effects of different nitrogen sources and concentra-tions on the lipid components of Asterarcys sp. SCSIO-44020 PLs:Phospholipid. GLs:Glycolipid. NLs:Neutral lipid
图4 不同氮源及氮浓度对Asterarcys sp. SCSIO-44020总糖含量的影响
Fig. 4 Effects of different nitrogen sources and concentra-tions on the carbohydrates content of Asterarcys sp. SCSIO-44020
图5 不同氮源及氮浓度对Asterarcys sp. SCSIO-44020粗蛋白含量的影响
Fig. 5 Effects of different nitrogen sources and concentra-tions on the protein content of Asterarcys sp. SCSIO-44020
Nitrogen source | Concentration/(mmol·L-1) | % TFA | ||||||
---|---|---|---|---|---|---|---|---|
C16:0 | C16:1 | C18:0 | C18:1 | C18:2 | C18:3 | Other | ||
NaNO3 | 3.0 | 26.94±0.22 | 1.58±0.04 | 3.52±0.25 | 37.64±0.08 | 10.94±0.15 | 10.49±0.27 | 8.90±0.53 |
6.0 | 25.37±0.14 | 1.92±0.01 | 3.96±0.03 | 37.53±0.12 | 12.55±0.09 | 9.17±0.03 | 9.50±0.08 | |
18.0 | 20.93±0.09 | 2.11±0.01 | 4.39±0.04 | 34.93±0.31 | 16.69±0.04 | 8.83±0.02 | 12.12±0.45 | |
CH4N2O | 3.0 | 26.87±0.11 | 1.86±0.01 | 3.36±0.03 | 37.01±0.11 | 10.78±0.04 | 10.87±0.17 | 9.23±0.04 |
6.0 | 25.09±0.11 | 1.83±0.03 | 4.11±0.01 | 37.72±0.07 | 11.66±0.03 | 9.99±0.07 | 9.60±0.31 | |
18.0 | 21.66±0.01 | 2.36±0.02 | 4.07±0.01 | 33.47±0.13 | 17.79±0.18 | 9.90±0.16 | 10.75±0.50 | |
NH4HCO3 | 3.0 | 27.34±0.04 | 2.05±0.05 | 2.95±0.05 | 36.13±0.15 | 11.83±0.02 | 10.65±0.06 | 9.04±0.05 |
6.0 | 27.42±0.18 | 1.82±0.06 | 3.36±0.02 | 36.76±0.09 | 11.24±0.07 | 10.43±0.05 | 8.96±0.11 | |
18.0 | 26.20±0.28 | 1.68±0.02 | 4.51±0.07 | 38.75±0.15 | 11.65±0.13 | 8.61±0.23 | 8.60±0.15 |
表1 不同氮源及氮浓度对Asterarcys sp. SCSIO-44020脂肪酸组成的影响
Table 1 Effects of different nitrogen sources and concentrations on the fatty acid composition of Asterarcys sp. SCSIO-44020
Nitrogen source | Concentration/(mmol·L-1) | % TFA | ||||||
---|---|---|---|---|---|---|---|---|
C16:0 | C16:1 | C18:0 | C18:1 | C18:2 | C18:3 | Other | ||
NaNO3 | 3.0 | 26.94±0.22 | 1.58±0.04 | 3.52±0.25 | 37.64±0.08 | 10.94±0.15 | 10.49±0.27 | 8.90±0.53 |
6.0 | 25.37±0.14 | 1.92±0.01 | 3.96±0.03 | 37.53±0.12 | 12.55±0.09 | 9.17±0.03 | 9.50±0.08 | |
18.0 | 20.93±0.09 | 2.11±0.01 | 4.39±0.04 | 34.93±0.31 | 16.69±0.04 | 8.83±0.02 | 12.12±0.45 | |
CH4N2O | 3.0 | 26.87±0.11 | 1.86±0.01 | 3.36±0.03 | 37.01±0.11 | 10.78±0.04 | 10.87±0.17 | 9.23±0.04 |
6.0 | 25.09±0.11 | 1.83±0.03 | 4.11±0.01 | 37.72±0.07 | 11.66±0.03 | 9.99±0.07 | 9.60±0.31 | |
18.0 | 21.66±0.01 | 2.36±0.02 | 4.07±0.01 | 33.47±0.13 | 17.79±0.18 | 9.90±0.16 | 10.75±0.50 | |
NH4HCO3 | 3.0 | 27.34±0.04 | 2.05±0.05 | 2.95±0.05 | 36.13±0.15 | 11.83±0.02 | 10.65±0.06 | 9.04±0.05 |
6.0 | 27.42±0.18 | 1.82±0.06 | 3.36±0.02 | 36.76±0.09 | 11.24±0.07 | 10.43±0.05 | 8.96±0.11 | |
18.0 | 26.20±0.28 | 1.68±0.02 | 4.51±0.07 | 38.75±0.15 | 11.65±0.13 | 8.61±0.23 | 8.60±0.15 |
图6 不同氮源及氮浓度对Asterarcys sp. SCSIO-44020总叶绿素含量的影响
Fig. 6 Effects of different nitrogen sources and concentra-tions on the chlorophyll content of Asterarcys sp. SCSIO-44020
图7 不同氮源及氮浓度对Asterarcys sp. SCSIO-44020类胡萝卜素含量的影响
Fig. 7 Effects of different nitrogen sources and concentra-tions on the carotenoids content of Asterarcys sp. SCSIO-44020
Nitrogen source | Concentration /(mmol·L-1) | Biomass/ (g·L-1) | Lipid yield/ (g·L-1) | Carbohydrates yield/ (g·L-1) | Protein yield/ (g·L-1) | Carotenoids yield/ (mg·L-1) |
---|---|---|---|---|---|---|
NaNO3 | 3.0 | 3.35 | 1.45 | 0.97 | 0.20 | 4.45 |
6.0 | 5.02 | 2.21 | 1.23 | 0.41 | 8.85 | |
18.0 | 7.78 | 2.79 | 1.71 | 1.22 | 30.29 | |
CH4N2O | 3.0 | 3.63 | 1.49 | 1.08 | 0.15 | 4.81 |
6.0 | 5.13 | 2.09 | 1.38 | 0.23 | 8.88 | |
18.0 | 6.61 | 2.14 | 1.42 | 1.17 | 25.27 | |
NH4HCO3 | 3.0 | 1.95 | 0.91 | 0.45 | 0.17 | 3.41 |
6.0 | 2.90 | 1.24 | 0.80 | 0.25 | 4.51 | |
18.0 | 5.33 | 2.45 | 1.28 | 0.62 | 11.22 |
表2 不同氮源及氮浓度对Asterarcys sp. SCSIO-44020总脂、总糖、总蛋白质和总类胡萝卜素产量的影响
Table 2 Effects of different nitrogen sources and concentrations on the total lipid,carbohydrates,protein and carotenoids yields of Asterarcys sp.SCSIO-44020
Nitrogen source | Concentration /(mmol·L-1) | Biomass/ (g·L-1) | Lipid yield/ (g·L-1) | Carbohydrates yield/ (g·L-1) | Protein yield/ (g·L-1) | Carotenoids yield/ (mg·L-1) |
---|---|---|---|---|---|---|
NaNO3 | 3.0 | 3.35 | 1.45 | 0.97 | 0.20 | 4.45 |
6.0 | 5.02 | 2.21 | 1.23 | 0.41 | 8.85 | |
18.0 | 7.78 | 2.79 | 1.71 | 1.22 | 30.29 | |
CH4N2O | 3.0 | 3.63 | 1.49 | 1.08 | 0.15 | 4.81 |
6.0 | 5.13 | 2.09 | 1.38 | 0.23 | 8.88 | |
18.0 | 6.61 | 2.14 | 1.42 | 1.17 | 25.27 | |
NH4HCO3 | 3.0 | 1.95 | 0.91 | 0.45 | 0.17 | 3.41 |
6.0 | 2.90 | 1.24 | 0.80 | 0.25 | 4.51 | |
18.0 | 5.33 | 2.45 | 1.28 | 0.62 | 11.22 |
[1] | 梁晶晶, 蒋霞敏, 叶丽, 等. 氮、磷、铁对三角褐指藻诱变株生长、总脂及脂肪酸的影响[J]. 生态学杂志, 2016, 35(1):189-198. |
Liang JJ, Jiang XM, Ye L, et al. Effects of nitrogen, phosphorus and iron on the growth, total lipid content and fatty acid composition of Phaeodactylum tricornutum mutant strain[J]. Chinese Journal of Ecology, 2016, 35(1):189-198. | |
[2] | 戴晨明, 高保燕, 苏敏, 等. 光强及氮浓度对丝状绿藻双星藻生长及生化组成的影响[J]. 微生物学通报, 2020, 47(1):172-181. |
Dai CM, Gao BY, Su M, et al. Effects of light intensity and nitrogen concentration on the growth and biochemical composition of filamentous green alga Zygnema sp.[J]. Microbiology China, 2020, 47(1):172-181. | |
[3] |
Hegewald E, Wolf M, Keller A, et al. ITS2 sequence-structure phylogeny in the Scenedesmaceae with special reference to Coelastrum(Chlorophyta, Chlorophyceae), including the new genera Coma-siella and Pectinodesmus[J]. Phycologia, 2010, 49(4):325-335.
doi: 10.2216/09-61.1 URL |
[4] | Hong JW, Kim SA, Chang JW, et al. Isolation and description of a Korean microalga, Asterarcys quadricellulare KNUA020, and analysis of its biotechnological potential[J]. Korean Journal of Pesticide Science, 2012, 27(3):197-203. |
[5] |
Varshney P, Beardall J, Bhattacharya S, et al. Effect of elevated carbon dioxide and nitric oxide on the physiological responses of two green algae, Asterarcys quadricellulare and Chlorella sorokiniana[J]. Journal of Applied Phycology, 2020, 32(1):189-204.
doi: 10.1007/s10811-019-01950-2 |
[6] |
Li T, Yang F, Xu J, et al. Evaluating differences in growth, photosynthetic efficiency, and transcriptome of Asterarcys sp. SCS-1881 under autotrophic, mixotrophic, and heterotrophic culturing conditions[J]. Algal Research, 2020, 45:101753.
doi: 10.1016/j.algal.2019.101753 URL |
[7] | Syrett PJ, Leftley JW. Nitrate and urea assimilation by algae[J]. Perspectives in Experimental Biology, 2016, 2:221-234. |
[8] |
Alonso DL, Belarbi EH, Rodríguez-Ruiz J, et al. Acyl lipids of three microalgae[J]. Phytochemistry, 1998, 47(8):1473-1481.
doi: 10.1016/S0031-9422(97)01080-7 URL |
[9] |
Gao B, Xia S, Lei X, Zhang C, et al. Combined effects of different nitrogen sources and levels and light intensities on growth and fatty acid and lipid production of oleaginous eustigmatophycean microalga Eustigmatos cf. polyphem[J]. Journal of Applied Phycology, 2018, 30(1):215-229.
doi: 10.1007/s10811-017-1180-9 URL |
[10] |
Illman AM, Scragg AH, Shales SW, et al. Increase in Chlorella strains calorific values when grown in low nitrogen medium[J]. Enzyme and Microbial Technology, 2000, 27(8):631-635.
pmid: 11024528 |
[11] |
Arumugam M, Agarwal A, Arya MC, et al. Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus[J]. Bioresource Technology, 2013, 131:246-249.
doi: 10.1016/j.biortech.2012.12.159 pmid: 23353039 |
[12] | 吴桂秀, 黄罗冬, 高保燕, 等. 不同氮源及其浓度对标志链带藻合成淀粉和油脂的影响[J]. 微生物学报, 2016(7):1168-1177. |
Wu GX, Huang LD, Gao BY, et al. Effects of different nitrogen sources and concentrations on starch and lipid biosynjournal by Desmodesmus insignis[J]. Acta Microbiologica Sinica, 2016(7):1168-1177. | |
[13] | 吴伯堂, 何汝洪, 彭云辉. 钝顶螺旋藻海水驯化的初步研究[J]. 海洋与湖沼, 1988, 19(2):197-200. |
Wu BT, He RH, Peng YH. A preliminary study of the effects of NaCl crude salt, and sea water on spirulina growth[J]. Oceanologia et Limnologia Sinica, 1988, 19(2):197-200. | |
[14] | 李嘉颖, 李涛, 谭丽, 等. 盐度对一株淡水栅藻Scenedesmus sp. 生长及生化组成的影响[J]. 生物技术通报, 2017, 33(7):155-161. |
Li JY, Li T, Tan L, et al. Effects of salinity on the growth and biochemical properties of a freshwater algae Scenedesmus sp.[J]. Biotechnology Bulletin, 2017, 33(7):155-161. | |
[15] | Khozin-Goldberg I, Shrestha P, Cohen Z. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa[J]. BBA-Molecular and Cell Biology of Lipids, 2005, 1738(1-3):63-71. |
[16] |
Bigogno C, Khozin-Goldberg I, Boussiba S, et al. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid[J]. Phytochemistry, 2002, 60(5):497-503.
pmid: 12052516 |
[17] |
Scheiner D. Determination of ammonia and Kjeldahl nitrogen by indophenol method[J]. Water Research, 1976, 10(1):31-36.
doi: 10.1016/0043-1354(76)90154-8 URL |
[18] |
Li T, Xu J, Gao B, et al. Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris(Trebouxiophyceae)under low and high nitrogen supplies[J]. Algal Research, 2016, 16:481-491.
doi: 10.1016/j.algal.2016.04.008 URL |
[19] |
Pruvost J, Vooren GV, Cogne G, et al. Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor[J]. Bioresource Technology, 2009, 100(23):5988-5995.
doi: 10.1016/j.biortech.2009.06.004 pmid: 19560349 |
[20] | 许海, 陈丹, 陈洁, 等. 氮磷形态与浓度对铜绿微囊藻和斜生栅藻生长的影响[J]. 中国环境科学, 2019, 39(6):2560-2567. |
Xu H, Chen D, Chen J, et al. Effects of nitrogen and phosphorus forms and concentrations on the growth of Microcystis aeruginosa and Scenedesmus obliquus[J]. China Environmental Science, 2019, 39(6):2560-2567. | |
[21] | Muro-Pastor MI, Florencio FJ. Regulation of ammonium assimilation in cyanobacteria[J]. Plant Physiology & Biochemistry, 2003, 41(6-7):595-603. |
[22] | 胡章喜, 安民, 段舜山, 等. 不同氮源对布朗葡萄藻生长、总脂和总烃含量的影响[J]. 生态学报, 2009(6):3288-3294. |
Hu ZX, An M, Duan SS, et al. Effects of nitrogen sources on the growth, contents of total lipids and total hydrocarbons of Botryococcus braunii[J]. Acta Ecologica Sinica, 2009(6):3288-3294. | |
[23] | 赵伟, 李涛, 吴华莲, 等. 不同氮源及氮浓度对耐高盐真眼点藻生长、脂类积累及脂肪酸组成的影响[J]. 生物技术通报, 2019, 35(6):62-68. |
Zhao W, Li T, Wu HL, et al. Growth, lipid accumulation, and fat composition of Eustigmatos sp. under different nitrogen source and concentration[J]. Biotechnology Bulletin, 2019, 35(6):62-68. | |
[24] | 罗宁, 张森, 刘平怀. 氮、磷对热带海洋富油微藻Desmodesmus sp. WC08生长及油脂积累的影响[J]. 食品工业科技, 2016, 37(4):223-227. |
Luo N, Zhang S, Liu PH, et al. Effects of nitrogen and phosphorus on cell growth and lipid accumulation of tropic ocean microalgae strain Desmodesmus sp. WC08[J]. Science and Technology of Food Industry, 2016, 37(4):223-227. | |
[25] | Dai G, Qiu B, Forchhammer K. Ammonium tolerance in the cyanobacterium Synechocystis sp. strain PCC 6803 and the role of the psbA multigene family[J]. Plant Cell & Environment, 2013, 37(4):840-851. |
[26] | 吴琼芳, 张莹, 罗舒怀, 等. 氮限制对普通小球藻积累油脂过程中生化组成与光合生理的影响[J]. 植物科学学报, 2016, 34(2):280-288. |
Wu QF, Zhang Y, Luo SH, et al. Effects of nitrogen limitation on biochemical composition and photosynthetic physiology during lipid accumulation in Chlorella vulgaris Beijierineck[J]. Plant Science Journal, 2016, 34(2):280-288. | |
[27] | 刘金丽, 王俊峰, 刘天中, 等. 缺氮条件对栅藻油脂积累与光合作用的影响[J]. 海洋科学, 2013(7):13-19. |
Liu JL, Wang JF, Liu TZ, et al. The effects of nitrogen starvation on lipid accumulation and photosynjournal of Scenedesmus dimorphus[J]. Marine Sciences, 2013(7):13-19. | |
[28] | 赵萍. 三角褐指藻富油培养条件的优化及活性物质分析[D]. 烟台:鲁东大学, 2013. |
Zhao P. Optimizationn of culture conditions for oil production of Pheaodactylum tricornutum and analysis of active substances in the cells[D]. Yantai:Ludong University, 2013. | |
[29] | 郝宗娣, 刘平怀, 杨勋, 等. 两株热带淡水微藻的海水驯化及总脂含量变化[J]. 广东农业科学, 2013(4):111-113. |
Hao ZD, Liu PH, Yang X, et al. Salinty acclimation of Coelastrum reticulatum & Scenedesums sp. and variation of lipid content[J]. Guangdong Agricultural Sciences, 2013(4):111-113. | |
[30] | 向文洲, 李涛, 吴华莲, 等. 海水螺旋藻产业发展战略研究[J]. 广西科学, 2014, 21(6):573-579. |
Xiang WZ, Li T, Wu HL, et al. The strategic studies on developing industry of seawater spirulina with efforts[J]. Guangxi Sciences, 2014, 21(6):573-579. | |
[31] | Singh DP, Khattar JS, Rajput A, et al. High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5. 1. 1 under optimized culture conditions[J]. PLoS One, 2019, 14(9):0221930. |
[1] | 吕俊, 潘洪祥, 于存. 马尾松根际溶磷细菌Paraburkholderia sp.的筛选、鉴定及溶磷特性研究[J]. 生物技术通报, 2020, 36(9): 147-156. |
[2] | 赵伟, 李涛, 吴华莲, 陈浩, 刘德海, 向文洲, 吴后波. 不同氮源及氮浓度对耐高盐真眼点藻生长、脂类积累及脂肪酸组成的影响[J]. 生物技术通报, 2019, 35(6): 62-68. |
[3] | 李嘉颖,李涛,谭丽,吴嘉仪,向文洲,刘德海. 盐度对一株淡水栅藻Scenedesmus sp.生长及生化组成的影响[J]. 生物技术通报, 2017, 33(7): 155-161. |
[4] | 李敬阳;张建斌;徐碧玉;金志强;. 香蕉转化中的抗褐化及再生研究[J]. , 2008, 0(05): 115-117. |
[5] | . 食品上的应用[J]. , 1992, 0(07): 85-92. |
[6] | . 环境保护及农业废物利用[J]. , 1992, 0(07): 92-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||