生物技术通报 ›› 2021, Vol. 37 ›› Issue (10): 45-56.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1315
李珍阳1,2(), 姜润2, 刘琳2, 李思琦2, 王晓慧2()
收稿日期:
2020-10-24
出版日期:
2021-10-26
发布日期:
2021-11-12
作者简介:
李珍阳,女,硕士研究生,研究方向:水处理及环境管理;E-mail: 基金资助:
LI Zhen-yang1,2(), JIANG Run2, LIU Lin2, LI Si-qi2, WANG Xiao-hui2()
Received:
2020-10-24
Published:
2021-10-26
Online:
2021-11-12
摘要:
从冬季北京化工大学污水处理站活性污泥、江苏省某污水处理厂生物转盘污泥和实验室的好氧颗粒污泥中筛选出3株较好的低温异养硝化的菌株制成混合菌剂,解决低温条件下异养硝化菌硝化能力差的问题。应用传统分离纯化培养技术筛选菌株,纳氏试剂分光光度法评价菌株的异养硝化能力,通过形态观察、生理生化特性和16S rDNA测序对菌株进行种属鉴定,设计正交试验和单因素试验,确定菌剂复配比并进行固定化,探究低温异养硝化的最优条件。在13℃下共筛选出3株脱氮效果好的菌株,经鉴定均属于不动杆菌(Acinetobacter sp.),复合菌剂最佳复配比为1:1:1,进行固定化后在碳源为柠檬酸钠、pH为8、NH4+-N浓度为50 mg/L、NaCl浓度为10 g/L-20 g/L时,其氨氮去除效率可达95.86%,对高氨氮,高盐度废水具有较高耐受性,在低温废水处理方面具有潜在的应用价值。
李珍阳, 姜润, 刘琳, 李思琦, 王晓慧. 低温异养硝化菌的筛选、鉴定及降解特性研究[J]. 生物技术通报, 2021, 37(10): 45-56.
LI Zhen-yang, JIANG Run, LIU Lin, LI Si-qi, WANG Xiao-hui. Screening of Low-temperature Heterotrophic Nitrifying Bacteria and Their Physiological and Biochemical Characteristics[J]. Biotechnology Bulletin, 2021, 37(10): 45-56.
培养基 Medium | 成分Composition |
---|---|
活化培养基Activation medium | 胰蛋白胨Petpone 5 g·L-1,酵母浸粉Yeast extract powder 5 g·L-1,NaCl 5 g·L-1,蒸馏水Distilled water 1 000 mL |
富集培养基Enrichment medium | NH4Cl 0.5 g·L-1,CH3COONa 3.5 g·L-1,MgSO4·7H2O 0.05 g·L-1,K2HPO4·3H2O 0.2 g·L-1,NaCl 0.12 g·L-1,MnSO4·H2O 0.01 g·L-1,FeSO4·7H2O 0.01 g·L-1,蒸馏水Distilled water 1000 mL |
异养硝化液体培养基 Heterotrophic nitrification liquid medium | NH4Cl 0.382 g·L-1,CH3COONa 2.0 g·L-1,MgSO4·7H2O 0.05 g·L-1,K2HPO4·3H2O 0.2 g·L-1,NaCl 0.12 g·L-1,MnSO4·H2O 0.01 g·L-1,FeSO4·7H2O 0.01 g·L-1,蒸馏水 Distilled water 1000 mL |
异养硝化液体培养基 Heterotrophic nitrification solid medium | NH4Cl 0.382 g·L-1,CH3COONa 2.0 g·L-1,MgSO4·7H2O 0.05 g·L-1,K2HPO4·3H2O 0.2 g·L-1,NaCl 0.12 g·L-1,MnSO4·H2O 0.01 g·L-1,FeSO4·7H2O 0.01 g·L-1,蒸馏水 Distilled water 1 000 mL,琼脂Agar powder 0.12 g·L-1 |
表1 培养基成分表
Table 1 Medium composition
培养基 Medium | 成分Composition |
---|---|
活化培养基Activation medium | 胰蛋白胨Petpone 5 g·L-1,酵母浸粉Yeast extract powder 5 g·L-1,NaCl 5 g·L-1,蒸馏水Distilled water 1 000 mL |
富集培养基Enrichment medium | NH4Cl 0.5 g·L-1,CH3COONa 3.5 g·L-1,MgSO4·7H2O 0.05 g·L-1,K2HPO4·3H2O 0.2 g·L-1,NaCl 0.12 g·L-1,MnSO4·H2O 0.01 g·L-1,FeSO4·7H2O 0.01 g·L-1,蒸馏水Distilled water 1000 mL |
异养硝化液体培养基 Heterotrophic nitrification liquid medium | NH4Cl 0.382 g·L-1,CH3COONa 2.0 g·L-1,MgSO4·7H2O 0.05 g·L-1,K2HPO4·3H2O 0.2 g·L-1,NaCl 0.12 g·L-1,MnSO4·H2O 0.01 g·L-1,FeSO4·7H2O 0.01 g·L-1,蒸馏水 Distilled water 1000 mL |
异养硝化液体培养基 Heterotrophic nitrification solid medium | NH4Cl 0.382 g·L-1,CH3COONa 2.0 g·L-1,MgSO4·7H2O 0.05 g·L-1,K2HPO4·3H2O 0.2 g·L-1,NaCl 0.12 g·L-1,MnSO4·H2O 0.01 g·L-1,FeSO4·7H2O 0.01 g·L-1,蒸馏水 Distilled water 1 000 mL,琼脂Agar powder 0.12 g·L-1 |
反应物Reactant | 体积Volume/μL |
---|---|
10×Ex Taq buffer | 5.0 |
2.5 mmol/L dNTP Mix | 4.0 |
10p Primer 1 | 2.0 |
10p Primer 2 | 2.0 |
5U Ex Taq | 0.5 |
Template | 2.0 |
ddH2O | 36.5 |
Total volume | 50 |
表2 PCR反应体系
Table 2 PCR reaction system
反应物Reactant | 体积Volume/μL |
---|---|
10×Ex Taq buffer | 5.0 |
2.5 mmol/L dNTP Mix | 4.0 |
10p Primer 1 | 2.0 |
10p Primer 2 | 2.0 |
5U Ex Taq | 0.5 |
Template | 2.0 |
ddH2O | 36.5 |
Total volume | 50 |
水平 Level | 因素Factors | |||
---|---|---|---|---|
A AJ-5/mL | B BJ-4/mL | C CJ-1/mL | 氨氮去除率Removal rate of ammonia nitrogen/% | |
1 | 1 | 1 | 1 | 72.94 |
2 | 1 | 2 | 3 | 69.19 |
3 | 1 | 3 | 2 | 66.26 |
4 | 2 | 1 | 3 | 66.36 |
5 | 2 | 1 | 3 | 68.52 |
6 | 2 | 2 | 2 | 66.23 |
7 | 3 | 2 | 1 | 68.93 |
8 | 3 | 2 | 1 | 65.66 |
9 | 3 | 3 | 3 | 62.40 |
K1 | 69.46 | 68.32 | 70.13 | |
K2 | 67.04 | 68.12 | 66.05 | |
K3 | 65.66 | 65.73 | 65.98 | |
R | 3.80 | 2.59 | 4.15 |
表3 正交实验设计及结果
Table 3 Design and results of orthogonal experiment
水平 Level | 因素Factors | |||
---|---|---|---|---|
A AJ-5/mL | B BJ-4/mL | C CJ-1/mL | 氨氮去除率Removal rate of ammonia nitrogen/% | |
1 | 1 | 1 | 1 | 72.94 |
2 | 1 | 2 | 3 | 69.19 |
3 | 1 | 3 | 2 | 66.26 |
4 | 2 | 1 | 3 | 66.36 |
5 | 2 | 1 | 3 | 68.52 |
6 | 2 | 2 | 2 | 66.23 |
7 | 3 | 2 | 1 | 68.93 |
8 | 3 | 2 | 1 | 65.66 |
9 | 3 | 3 | 3 | 62.40 |
K1 | 69.46 | 68.32 | 70.13 | |
K2 | 67.04 | 68.12 | 66.05 | |
K3 | 65.66 | 65.73 | 65.98 | |
R | 3.80 | 2.59 | 4.15 |
图8 菌剂在不同碳源下OD600浓度变化(A)及NH4+-N去除率变化(B)
Fig.8 Change of NH4+-N removal rate (A) and OD600 con-centration (B) of microbial inoculum under different carbon sources
图9 菌剂在不同氮源浓度下OD600浓度变化(A)及NH4+-N去除率变化(B)
Fig.9 Change of NH4+-N removal rate (A) and OD600 con-centration (B) of microbial inoculum under different nitrogen source concentration
图10 菌剂在不同pH下OD600浓度变化(A)以及NH4+-N去除率变化(B)
Fig.10 Change of NH4+-N removal rate (A) and OD600 concentration (B) of microbial inoculum under different pH
图11 菌剂在不同盐度下OD600浓度变化(A)及NH4+-N去除率变化(B)
Fig.11 Change of NH4+-N removal rate (A) and OD600 concentration (B) of microbial inoculum under different salinities
[1] | 何潇, 罗建中, 蔡宗岳. 微污染水源水中氨氮的危害与现代处理技术[J]. 工业水处理, 2017, 37(4):6-11. |
He X, Luo JZ, Cai ZY. Harm of ammonia nitrogen in micro-polluted source water and modern treatment technology[J]. Industrial Water Treatment, 2017, 37(4):6-11. | |
[2] | 崔英玉. 氨氮的危害与治理[J]. 中国科技投资, 2017(8):328. |
Cui YY. Harm and treatment of ammonia nitrogen[J]. China Venture Capital, 2017(8):328. | |
[3] | 杨墨, 刘乾亮, 吕东伟, 等. 低温异养硝化-好氧反硝化菌筛选及其脱氮特性[J]. 中国给水排水, 2019, 35(23):100-104. |
Yang M, Liu QL, Lv DW, et al. Isolation of cold-resistant heterotrophic nitrification-aerobic denitrification strain and its nitrogen removal performance[J]. China Water&Wastewater, 2019, 35(23):100-104. | |
[4] | 肖才林, 沈建华, 李甫昌, 等. 连续流分段进水生物脱氮工艺研究进展[J]. 水处理技术. 2016, 42(7):1-5. |
Xiao CL, Shen JH, Li CP, et al. Advances in continuous step feed biological nutrient removal process research[J]. Technology of Water Treatment, 2016, 42(7):1-5. | |
[5] | 李会东, 张琳, 刘俊良, 高桂芝. OAA/SBR生物脱氮工艺的抗冲击负荷性能[J]. 中国给水排水, 2016, 32(19):80-82. |
Li HD, Zhang L, Liu JL, Gao GZ, et al. Anti-shock loading performance of OAA/SBR process in biological nitrogen removal[J]. China Water&Wastewater, 2016, 32(19):80-82. | |
[6] |
Yang M, Lu DW, Yang JX, et al. Carbon and nitrogen metabolic pathways and interaction of cold-resistant heterotrophic nitrifying bacteria under aerobic and anaerobic conditions[J]. Chemosphere, 2019, 234:162-170.
doi: S0045-6535(19)31290-1 pmid: 31207421 |
[7] | Sun J, Li J, Yuan Y, et al. Study on isolation and identification of heterotrophic nitrifying bacteria and optimal denitrification conditions.[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34:35-41. |
[8] | 汪旭晖, 杨垒, 任勇翔, 等. 异养硝化细菌Pseudomonas putida YH的脱氮特性及降解动力学[J]. 环境科学, 2019, 40(4):1892-1899. |
Wang XH, Yang L, Ren YX, et al. Nitrogen removal by heterotrophic nitrifying bacterium Pseudomonas putida YH and its kinetic characteristics[J]. Environmental Science, 2019, 40(4):1892-1899.
doi: 10.1021/es051712y URL |
|
[9] |
Qin W, Li WG, Zhang DY, et al. Ammonium removal of drinking water at low temperature by activated carbon filter biologically enhanced with heterotrophic nitrifying bacteria[J]. Environmental Science and Pollution Research, 2016, 23(5):4650-4659.
doi: 10.1007/s11356-015-5561-9 URL |
[10] |
Gupta AB. Thiosphaeera Pantotropha a sulphur bacterium capable of simultaneous heterotrop hic nitrification and aerobic denitrification[J]. Enzyme and Microbial Technology, 1997, 21(8):589-595.
doi: 10.1016/S0141-0229(97)00070-7 URL |
[11] |
Joo HS, Hirai M, Shoda M. Piggery wastewater treatment using Alcaligenes faecalis strain No. 4 with heterotrophic nitrification and aerobic denitrification[J]. Water Research, 2006, 40(16):3029-3036.
doi: 10.1016/j.watres.2006.06.021 URL |
[12] |
Rout PR, Bhunia P, Dash RR. Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal[J]. Bioresource Technology, 2017, 244:484-495.
doi: 10.1016/j.biortech.2017.07.186 URL |
[13] |
Zhang JB, Wu PX, Hao B, et al. Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001[J]. Bioresource Technology, 2011, 102(21):9866-9869.
doi: 10.1016/j.biortech.2011.07.118 URL |
[14] | 张多英, 李伟光, 刘苗, 等. 低温异养硝化菌群去除氨氮的动力学[J]. 环境工程学报, 2015, 8:3 751-3756. |
Zhang DY, Li WG, Liu M, et al. Ammonium removal kinetics of heterotrophic nitrification bacterial community at low temperatures[J]. Chinese Journal of Environmental Engineering, 2015, 8:3 751-3756. | |
[15] | 赵燕. 耐冷氨氮降解菌的分离、鉴定及其在废水处理中的应用研究[D]. 兰州:兰州交通大学, 2013. |
Zhao Y. Separation and identification of psychrotrophic ammonia degradation bacteria and their applications in wastewater treatment[D]. Lan Zhou:Lanzhou Jiaotong University, 2013. | |
[16] | 孙静, 袁敏, 孙贻超, 等. 北方人工湿地耐冷菌的分离、鉴定与降解特性研究[J]. 安徽农业科学, 2012, 40(24):12184-12187. |
Sun J, Yuan M, Sun YC, et al. Isolation, identification and degradation characteristics of cold-resistant bacteria in constructed wetland in north China[J]. Journal of Anhui Agricultural Sciences, 2012, 40(24):12184-12187. | |
[17] | 袁雪娇. 高效异养硝化细菌的筛选、鉴定及其脱氨氮特性研究[D]. 曲阜:曲阜师范大学, 2017. |
Yuan XJ. Screening, Identification and ammonia removal characteristics of high efficiency heterotrophic nitrifying bacteria[D]. Qufu:Qufu Normal University, 2017. | |
[18] | 李忠徽, 王淼, 衣萌萌, 等. 一株异养硝化巨大芽胞杆菌的分离鉴定及其脱氮性能研究[J]. 农业生物技术学报, 2019, 27(8):1331-1340. |
Li ZH, Wang M, Yi MM, et al. Isolation, identification and denitrification performance of a heterophic nitrifying Bacillus megaterium[J]. Journal of Agricultural Biotechnology, 2019, 27(8):1331-1340. | |
[19] | 张婷月, 丁钰, 黄民生. 异养硝化-好氧反硝化细菌的筛选及其脱氮性能研究[J]. 华东师范大学学报:自然科学版, 2018(6):22-31. |
Zhang TY, Ding Y, Huang MS. Screening of heterotrophic nitrifying-aerobic denitrifying bacteria and its nitrogen removal performance[J]. Journal of East China Normal University:Natural Science, 2018(6):22-31. | |
[20] | 李思琦, 杨静丹, 刘琳, 等. 好氧反硝化菌Achromobacter sp. L16的脱氮特性[J]. 生物技术通报, 2020, 36(6):93-101. |
Li SQ, Yang JD, Liu L, et al. Denitrification characteristics of aerobic denitrifying bacteria Achromobacter sp. L16[J]. Biotechnology Bulletin, 2020, 36(6):93-101. | |
[21] |
Zeng XY, Huang JH, Hua BB, et al. Nitrogen removal bacterial strains, MSNA-1 and MSD4, with wide ranges of salinity and pH resistances[J]. Bioresource Technology, 2020, 310. DOI: 10. 1016/j. biortech. 2020. 123309.
doi: 10. 1016/j. biortech. 2020. 123309 |
[22] |
Zhang XY, Zheng SH, Zhang HY, et al. Autotrophic and heterotrophic nitrification-anoxic denitrification dominated the anoxic/oxic sewage treatment process during optimization for higher loading rate and energy savings[J]. Bioresource Technology, 2018, 263:84-93.
doi: 10.1016/j.biortech.2018.04.113 URL |
[23] | 翁梓航, 吕红, 周集体. 异养硝化-好氧反硝化菌的脱氮性能研究进展[J]. 工业水处理, 2017, 37(3):21-25. |
Weng ZH, Lv H, Zhou JT. Research progress on nitrogen removal performance of heterotrophic nitrifying-aerobic denitrifying bacteria[J]. Industrial Water Treatment, 2017, 37(3):21-25. | |
[24] | Liu HJ, Yang FL, Shi SY, et al. Effect of substrate COD/N ratio on performance and microbial community structure of a membrane aerated biofilm reactor[J]. J Environ Sci(China), 2010(4):540. |
[25] |
Mevel G, Prieur D. Heterotrophic nitrification by a thermophilic Bacillus species as influenced by different culture conditions[J]. Canadian Journal of Microbiology, 2000, 46(5):465-473.
doi: 10.1139/w00-005 URL |
[26] |
Joo HS, Hirai M, Shoda M. Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No. 4[J]. Journal of Bioscience and Bioengineering, 2005, 100(2):184-191.
doi: 10.1263/jbb.100.184 URL |
[27] | 刘祥, 何成达, 苗小丽, 等. A2N工艺碳源分子质量分布及利用对脱氮特性的影响[J]. 水处理技术, 2014, 40(1):96-99, 103. |
Liu X, He CD, Miao XL, et al. The influence of the molecular weight distribution and utilization of carbon source to denitrification characteristic in A2N process[J]. Technology of Water Treatment, 2014, 40(1):96-99, 103. | |
[28] | 张喜娟. 城镇生活污水中氨氮去除方法探讨[J]. 煤, 2014, 23(9):102-104. |
Zhang XJ. Discussion on removal method of ammonia nitrogen in Urban domestic sewage[J]. Coal, 2014, 23(9):102-104. | |
[29] | 王洁, 蓝江林, 刘波. 一株异养硝化细菌的分离鉴定和脱氮特性研究[J]. 农业环境科学学报, 2013, 32(4):805-810. |
Wang J, Lan JL, Liu B. Isolation and denitrification characteristics of a heterotrophic nitrification bacterium[J]. Journal of Agro-Environment Science, 2013, 32(4):805-810. | |
[30] |
Choi K J, Zhang S, Song JH, Hwang SJ. Aerobic denitrification by a heterotrophic nitrifying-aerobic denitrifying(HN-AD)culture enriched activated sludge[J]. Ksce Journal of Civil Engineering, 2017, 21(6):2113-2118.
doi: 10.1007/s12205-016-1287-6 URL |
[31] |
Duan JM, Fang HD, Su B, et al. Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application for treatment of saline wastewater[J]. Bioresource Technology, 2015, 179:421-428.
doi: 10.1016/j.biortech.2014.12.057 URL |
[32] |
Guo Y, Zhou X, Li Y, et al. Heterotrophic nitrification and aerobic denitrification by a novel Halomonas campisalis[J]. Biotechnology Letters, 2013, 35:2045-2049.
doi: 10.1007/s10529-013-1294-3 URL |
[33] |
Chen MX, Wang WC, Feng Y, et al. Impact resistance of different factors on ammonia removal by heterotrophic nitrification-aerobic denitrification bacterium Aeromonas sp. HN-02[J]. Bioresource Technology, 2014, 147:456-461.
doi: 10.1016/j.biortech.2013.08.068 URL |
[34] | 张武, 董春霞, 纪妍妍. 石油降解菌的固定化材料研究进展[J]. 材料导报, 2017, 31(S2):214-218. |
Zhang W, Dong CX, Ji YY. Progress of research on carrier materials for oil degrading bacteria immobilization[J]. Materials Reports, 2017, 31(S2):214-218. | |
[35] | 马银鹏, 李伟光, 孟利强, 等. 异养硝化菌Acinetobacter harbinensis HITLi 7T冷休克蛋白基因生物信息学分析与不同温度下的表达[J]. 基因组学与应用生物学, 2020, 39(9):4003-4009. |
Ma YP, Li WG, Meng LQ, et al. Bioinformatics analysis of cold shock protein gene from heterotrophic nitrifying bacteria Acinetobacter harbinensis HITLi 7T and its relative expression under different temperatures[J]. Genomics and Applied Biology, 2020, 39(9):4003-4009. | |
[36] | Richardson DJ, Wehrfritz JM, Keech A, et al. The diversity of redox proteins involved in bacterial heterotrophic nitrification and aerobic denitrification[J]. Biochemical Society Tansactions, 1998, 26(3):401-408. |
[1] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[2] | 袁野, 周佳, 屈建航, 张博源, 罗宇, 李海峰. 高效反硝化聚磷菌的筛选及其脱氮除磷条件和性能研究[J]. 生物技术通报, 2023, 39(7): 266-276. |
[3] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[4] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[5] | 张宇红, 董先博, 刘香宇, 许家琪, 徐子祾. 新型异养硝化-好氧反硝化菌Paracoccus sp. QD-19的分离及脱氮特性研究[J]. 生物技术通报, 2023, 39(3): 301-310. |
[6] | 王凤婷, 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210. |
[7] | 高宇轩, 靳静晨, 徐利杉, 高雅娟, 张闻天, 李晨晨, 张国伟, 靳永胜. 耐盐异养硝化-好氧反硝化菌Bacillus megatherium N07的分离及脱氮特性[J]. 生物技术通报, 2022, 38(7): 247-257. |
[8] | 祖雪, 周瑚, 朱华珺, 任佐华, 刘二明. 枯草芽孢杆菌K-268的分离鉴定及对水稻稻瘟病的防病效果[J]. 生物技术通报, 2022, 38(6): 136-146. |
[9] | 王春艳, 腊贵晓, 苏秀红, 李萌, 董诚明. 地黄不同时期内生促生细菌的筛选及其促生特性分析[J]. 生物技术通报, 2022, 38(4): 242-252. |
[10] | 张功友, 王一涵, 郭敏, 张婷婷, 王兵, 刘红美. 重楼中一株产纤维素酶内生真菌的分离及鉴定[J]. 生物技术通报, 2022, 38(2): 95-104. |
[11] | 牛鸿宇, 舒倩, 杨海君, 颜智勇, 谭菊. 一株十二烷基硫酸钠高效降解菌的分离鉴定、降解特性及代谢途径研究[J]. 生物技术通报, 2022, 38(12): 287-299. |
[12] | 赵洋, 孙慧明, 林浩澎, 罗娉婷, 朱雅婷, 陈琼华, 舒琥. 一株安全高效的好氧反硝化菌Pseudomonas stutzeri DZ11的生物安全性及脱氮性能研究[J]. 生物技术通报, 2022, 38(10): 226-234. |
[13] | 崔欣雨, 李荣荣, 蔡瑞, 王妍, 郑猛虎, 徐春城. 苜蓿青贮中乳酸降解菌的分离、鉴定及降解性能研究[J]. 生物技术通报, 2021, 37(9): 58-67. |
[14] | 李瑾, 彭可为, 潘求一, 朱哲远, 彭迪. 解淀粉芽胞杆菌HR-2的分离鉴定及对水稻稻瘟病菌的拮抗效果[J]. 生物技术通报, 2021, 37(3): 27-34. |
[15] | 卫晓博, 侯颖, 程豪杰, 秦翠丽, 牛明福, 徐建强. 一种苯酚降解菌Pseudoxanthomonas sp. BF-6的分离鉴定及其降解特性及途径研究[J]. 生物技术通报, 2021, 37(10): 72-80. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||