生物技术通报 ›› 2022, Vol. 38 ›› Issue (1): 215-227.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0253
收稿日期:
2021-03-05
出版日期:
2022-01-26
发布日期:
2022-02-22
作者简介:
姜炎柯,女,硕士研究生,研究方向:植物保护;E-mail: 基金资助:
JIANG Yan-ke(), LU Chong-chong, YIN Zi-yi, LI Yang, DING Xin-hua()
Received:
2021-03-05
Published:
2022-01-26
Online:
2022-02-22
摘要:
可变剪接是生物重要的转录后修饰过程,是转录组和蛋白组多样性的重要来源。可变剪接参与了植物众多生理过程,包括植物昼夜节律、生长发育等,在植物响应生物和非生物胁迫过程中尤为普遍。近年来,可变剪接被认为是植物抵御病原菌侵染的重要调控机制。本文综述了可变剪接在植物免疫各个层面的调控作用,包括调节重要免疫受体、R基因、激素信号路径关键基因,此外,一些剪接因子也在植物的免疫过程中起着重要作用。讨论了可变剪接在植物与病原微生物互作过程以及在转录水平参与植物防御基因的动态重编程的重要贡献,并对未来可变剪接在植物免疫中的研究进行了展望,旨在为可变剪接在植物免疫中的研究提供有益的参考。
姜炎柯, 路冲冲, 尹梓屹, 李洋, 丁新华. 可变剪接在植物免疫中的研究进展[J]. 生物技术通报, 2022, 38(1): 215-227.
JIANG Yan-ke, LU Chong-chong, YIN Zi-yi, LI Yang, DING Xin-hua. Research Progress in Alternative Splicing in Plant Immunity[J]. Biotechnology Bulletin, 2022, 38(1): 215-227.
[1] |
Rigo R, Bazin JRM, Crespi M, et al. Alternative splicing in the regulation of plant-microbe interactions[J]. Plant Cell Physiol, 2019, 60(9):1906-1916.
doi: 10.1093/pcp/pcz086 URL |
[2] |
Martin G, Marquez Y, Mantica F, et al. Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals[J]. Genome Biology, 2021, 22(1):35.
doi: 10.1186/s13059-020-02258-y URL |
[3] |
Irimia M, Blencowe BJ. Alternative splicing:decoding an expansive regulatory layer[J]. Curr Opin Cell Biol, 2012, 24(3):323-332.
doi: 10.1016/j.ceb.2012.03.005 URL |
[4] |
Staiger D, Brown JWS. Alternative splicing at the intersection of biological timing, development, and stress responses[J]. Plant Cell, 2013, 25(10):3640-3656.
doi: 10.1105/tpc.113.113803 URL |
[5] |
Filichkin S, Priest HD, Megraw M, et al. Alternative splicing in plants:directing traffic at the crossroads of adaptation and environmental stress[J]. Curr Opin Plant Biol, 2015, 24:125-135.
doi: 10.1016/j.pbi.2015.02.008 pmid: 25835141 |
[6] |
Syed NH, Kalyna M, Marquez Y, et al. Alternative splicing in plants——coming of age[J]. Trends Plant Sci, 2012, 17(10):616-623.
doi: 10.1016/j.tplants.2012.06.001 URL |
[7] |
Matera AG, Wang Z. A day in the life of the spliceosome[J]. Nat Rev Mol Cell Biol, 2014, 15(2):108-121.
doi: 10.1038/nrm3742 URL |
[8] |
Reddy AS. Alternative splicing of pre-messenger RNAs in plants in the genomic era[J]. Annu Rev Plant Biol, 2007, 58:267-294.
doi: 10.1146/arplant.2007.58.issue-1 URL |
[9] |
Selenko P, Gregorovic G, Sprangers R, et al. Structural basis for the molecular recognition between human splicing factors U2AF65 and SF1/mBBP[J]. Mol Cell, 2003, 11(4):965-976.
doi: 10.1016/S1097-2765(03)00115-1 URL |
[10] |
Sergei A, Jason S, Palitha D, et al. Environmental stresses modulate abundance and timing of alternatively spliced circadian transcripts in Arabidopsis[J]. Mol Plant, 2015, 8(2):207-227.
doi: 10.1016/j.molp.2014.10.011 URL |
[11] |
Baralle FE, Giudice J. Alternative splicing as a regulator of development and tissue identity[J]. Nat Rev Mol Cell Biol, 2017, 18(7):437-451.
doi: 10.1038/nrm.2017.27 URL |
[12] |
Li S, Yamada M, Han X, et al. High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation[J]. Dev Cell, 2016, 39(4):508-522.
doi: 10.1016/j.devcel.2016.10.012 URL |
[13] |
Zhang XN, Mount SM. Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development[J]. Plant Physiol, 2009, 150(3):1450-1458.
doi: 10.1104/pp.109.138180 URL |
[14] |
Severing EI, van Dijk AD, Morabito G, et al. Predicting the impact of alternative splicing on plant MADS domain protein function[J]. PLoS One, 2012, 7(1):e30524.
doi: 10.1371/journal.pone.0030524 URL |
[15] |
Stamm S, Ben-Ari S, Rafalska I, et al. Function of alternative splicing[J]. Gene, 2005, 344:1-20.
doi: 10.1016/j.gene.2004.10.022 URL |
[16] |
Lewis BP, Green RE, Brenner SE. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans[J]. PNAS, 2003, 100(1):189-192.
doi: 10.1073/pnas.0136770100 URL |
[17] |
Kalyna M, Simpson CG, Syed NH, et al. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis[J]. Nucleic Acids Res, 2012, 40(6):2454-2469.
doi: 10.1093/nar/gkr932 pmid: 22127866 |
[18] |
Drechsel G, Kahles A, Kesarwani AK, et al. Nonsense-mediated decay of alternative precursor mRNA splicing variants is a major determinant of the Arabidopsis steady state transcriptome[J]. Plant Cell, 2013, 25(10):3726-3742.
doi: 10.1105/tpc.113.115485 URL |
[19] |
Wang BB, Brendel V. Genomewide comparative analysis of alternative splicing in plants[J]. Proc Natl Acad Sci USA, 2006, 103(18):7175-7180.
doi: 10.1073/pnas.0602039103 URL |
[20] |
Hiller M, Huse K, Szafranski K, et al. Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome plasticity[J]. Nat Genet, 2004, 36(12):1255-1257.
doi: 10.1038/ng1469 URL |
[21] |
Shi YJ, Sha GL, Sun XY. Genome-wide study of NAGNAG alternative splicing in Arabidopsis[J]. Planta, 2014, 239(1):127-138.
doi: 10.1007/s00425-013-1965-2 URL |
[22] |
Scotti MM, Swanson MS. RNA mis-splicing in disease[J]. Nat Rev Genet, 2016, 17(1):19-32.
doi: 10.1038/nrg.2015.3 URL |
[23] |
Park E, Pan Z, Zhang Z, et al. The expanding landscape of alternative splicing variation in human populations[J]. Am J Hum Genet, 2018, 102(1):11-26.
doi: 10.1016/j.ajhg.2017.11.002 URL |
[24] |
Marquez Y, Brown JW, Simpson C, et al. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis[J]. Genome Res, 2012, 22(6):1184-1195.
doi: 10.1101/gr.134106.111 pmid: 22391557 |
[25] |
Lu T, Lu G, Fan D, et al. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq[J]. Genome Res, 2010, 20(9):1238-1249.
doi: 10.1101/gr.106120.110 URL |
[26] |
Chisholm ST, Coaker G, Day B, et al. Host-microbe interactions:shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4):803-814.
pmid: 16497589 |
[27] |
Zhang R, Calixto CPG, Marquez Y, et al. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing[J]. Nucleic Acids Res, 2017, 45(9):5061-5073.
doi: 10.1093/nar/gkx267 URL |
[28] |
Loraine AE, McCormick S, Estrada A, et al. RNA-seq of Arabidopsis pollen uncovers novel transcription and alternative splicing[J]. Plant Physiol, 2013, 162(2):1092-1109.
doi: 10.1104/pp.112.211441 pmid: 23590974 |
[29] |
Zhu FY, Chen MX, Ye NH, et al. Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings[J]. Plant J, 2017, 91(3):518-533.
doi: 10.1111/tpj.13571 URL |
[30] |
Cheng CY, Krishnakumar V, Chan AP, et al. Araport11:a complete reannotation of the Arabidopsis thaliana reference genome[J]. Plant J, 2017, 89(4):789-804.
doi: 10.1111/tpj.2017.89.issue-4 URL |
[31] |
Gibilisco L, Zhou Q, Mahajan S, et al. Alternative splicing within and between Drosophila species, sexes, tissues, and developmental stages[J]. PLoS Genet, 2016, 12(12):e1006464.
doi: 10.1371/journal.pgen.1006464 URL |
[32] |
Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing[J]. Nat Genet, 2008, 40(12):1413-1415.
doi: 10.1038/ng.259 URL |
[33] |
Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes[J]. Nature, 2008, 456(7221):470-476.
doi: 10.1038/nature07509 URL |
[34] |
Vaneechoutte D, Estrada AR, Lin YC, et al. Genome-wide characterization of differential transcript usage in Arabidopsis thaliana[J]. Plant J, 2017, 92(6):1218-1231.
doi: 10.1111/tpj.2017.92.issue-6 URL |
[35] |
Laloum T, Martín G, Duque P. Alternative splicing control of abiotic stress responses[J]. Trends Plant Sci, 2018, 23(2):140-150.
doi: S1360-1385(17)30218-2 pmid: 29074233 |
[36] |
Kalsotra A, Cooper TA. Functional consequences of developmentally regulated alternative splicing[J]. Nat Rev Genet, 2011, 12(10):715-729.
doi: 10.1038/nrg3052 pmid: 21921927 |
[37] |
Bonnal SC, López-Oreja I, Valcárcel J. Roles and mechanisms of alternative splicing in cancer-implications for care[J]. Nat Rev Clin Oncol, 2020, 17(8):457-474.
doi: 10.1038/s41571-020-0350-x URL |
[38] |
Jones JDG, Dangl JL. The plant immune system[J]. Nature, 2006, 444(7117):323-329.
doi: 10.1038/nature05286 URL |
[39] |
Cheng Q, Xiao H, Xiong Q. Conserved exitrons of FLAGELLIN-SENSING 2(FLS2)across dicot plants and their functions[J]. Plant Sci, 2020, 296:110507.
doi: 10.1016/j.plantsci.2020.110507 URL |
[40] |
Dangl JL, Jones JDG. Plant pathogens and integrated defence responses to infection[J]. Nature, 2001, 411(6839):826-833.
doi: 10.1038/35081161 URL |
[41] |
Ausubel FM. Are innate immune signaling pathways in plants and animals conserved?[J]. Nat Immunol, 2005, 6(10):973-979.
doi: 10.1038/ni1253 URL |
[42] |
Macho AP, Schwessinger B, Ntoukakis V, et al. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation[J]. Science, 2014, 343(6178):1509-1512.
doi: 10.1126/science.1248849 URL |
[43] |
Pieterse CM, Van Loon LC. NPR1:the spider in the web of induced resistance signaling pathways[J]. Curr Opin Plant Biol, 2004, 7(4):456-464.
pmid: 15231270 |
[44] |
Zhang YL, Li X. A putative nucleoporin 96 is required for both basal defense and constitutive resistance responses mediated by suppressor of npr1-1, constitutive 1[J]. Plant Cell, 2005, 17(4):1306-1316.
doi: 10.1105/tpc.104.029926 URL |
[45] |
Xu F, Xu S, Wiermer M, et al. The cyclin L homolog MOS12 and the MOS4-associated complex are required for the proper splicing of plant resistance genes[J]. Plant J, 2012, 70(6):916-928.
doi: 10.1111/tpj.2012.70.issue-6 URL |
[46] |
Zhang Z, Liu Y, Ding P, et al. Splicing of receptor-like kinase-encoding SNC4 and CERK1 is regulated by two conserved splicing factors that are required for plant immunity[J]. Mol Plant, 2014, 7(12):1766-1775.
doi: 10.1093/mp/ssu103 URL |
[47] |
Dodds PN, Lawrence GJ, Catanzariti AM, et al. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes[J]. PNAS, 2006, 103(23):8888-8893.
doi: 10.1073/pnas.0602577103 URL |
[48] |
van der Biezen EA, Jones JDG. Plant disease-resistance proteins and the gene-for-gene concept[J]. Trends Biochem Sci, 1998, 23(12):454-456.
pmid: 9868361 |
[49] |
Zhang XC, Gassmann W. RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames[J]. Plant Cell, 2003, 15(10):2333-2342.
doi: 10.1105/tpc.013474 URL |
[50] |
Zhang XC, Gassmann W. Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defense responses[J]. Plant Physiol, 2007, 145(4):1577-1587.
doi: 10.1104/pp.107.108720 URL |
[51] |
Whitham S, Dinesh-Kumar SP, Choi D, et al. The product of the tobacco mosaic virus resistance gene N:similarity to toll and the interleukin-1 receptor[J]. Cell, 1994, 78(6):1101-1115.
pmid: 7923359 |
[52] |
Ayliffe MA, Frost DV, Finnegan EJ, et al. Analysis of alternative transcripts of the flax L6 rust resistance gene[J]. Plant J, 1999, 17(3):287-292.
pmid: 10097386 |
[53] |
Kim SH, Kwon SI, Saha D, et al. Resistance to the Pseudomonas syringae effector HopA1 is governed by the TIR-NBS-LRR protein RPS6 and is enhanced by mutations in SRFR1[J]. Plant Physiol, 2009, 150(4):1723-1732.
doi: 10.1104/pp.109.139238 URL |
[54] |
Borhan MH, Holub EB, Beynon JL, et al. The Arabidopsis TIR-NB-LRR gene RAC1 confers resistance to Albugo candida(white rust)and is dependent on EDS1 but not PAD4[J]. Mol Plant Microbe Interact, 2004, 17(7):711-719.
doi: 10.1094/MPMI.2004.17.7.711 URL |
[55] |
Parker JE, Coleman MJ, Szabò V, et al. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6[J]. Plant Cell, 1997, 9(6):879-894.
pmid: 9212464 |
[56] |
Gassmann W, Hinsch ME, Staskawicz BJ. The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes[J]. Plant J, 1999, 20(3):265-277.
pmid: 10571887 |
[57] |
Yi H, Richards EJ. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing[J]. Plant Cell, 2007, 19(9):2929-2939.
doi: 10.1105/tpc.107.051821 URL |
[58] |
Schornack S, Ballvora A, Gürlebeck D, et al. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3[J]. Plant J, 2004, 37(1):46-60.
doi: 10.1046/j.1365-313X.2003.01937.x URL |
[59] |
Vidal S, Cabrera H, Andersson RA, et al. Potato gene Y-1 is an N gene homolog that confers cell death upon infection with potato virus Y[J]. Mol Plant Microbe Interact, 2002, 15(7):717-727.
doi: 10.1094/MPMI.2002.15.7.717 URL |
[60] |
Yang SM, Gao MQ, Xu CW, et al. Alfalfa benefits from Medicago truncatula:the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa[J]. Proc Natl Acad Sci USA, 2008, 105(34):12164-12169.
doi: 10.1073/pnas.0802518105 URL |
[61] |
Ule J, Blencowe BJ. Alternative splicing regulatory networks:functions, mechanisms, and evolution[J]. Mol Cell, 2019, 76(2):329-345.
doi: 10.1016/j.molcel.2019.09.017 URL |
[62] |
Erickson FL, Holzberg S, Calderon-Urrea A, et al. The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco[J]. Plant J, 1999, 18(1):67-75.
pmid: 10341444 |
[63] |
Dinesh-Kumar SP, Baker BJ. Alternatively spliced N resistance gene transcripts:their possible role in tobacco mosaic virus resistance[J]. PNAS, 2000, 97(4):1908-1913.
pmid: 10660679 |
[64] |
Tang F, Yang S, Gao M, et al. Alternative splicing is required for RCT1-mediated disease resistance in Medicago truncatula[J]. Plant Mol Biol, 2013, 82(4/5):367-374.
doi: 10.1007/s11103-013-0068-6 URL |
[65] |
Yang S, Tang F, Zhu H. Alternative splicing in plant immunity[J]. Int J Mol Sci, 2014, 15(6):10424-10445.
doi: 10.3390/ijms150610424 URL |
[66] |
Sánchez-Martín J, Widrig V, Herren G, et al. Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins[J]. Nat Plants, 2021, 7(3):327-341.
doi: 10.1038/s41477-021-00869-2 pmid: 33707738 |
[67] | Singh R, Rajaram S. in Bread Wheat:Improvement and Production[J], 2002, 141-156. |
[68] |
Vlot AC, Dempsey DA, Klessig DF. Salicylic Acid, a multifaceted hormone to combat disease[J]. Annu Rev Phytopathol, 2009, 47:177-206.
doi: 10.1146/phyto.2009.47.issue-1 URL |
[69] |
Pauwels L, Inzé D, Goossens A. Jasmonate-inducible gene:What does it mean?[J]. Trends Plant Sci, 2009, 14(2):87-91.
doi: 10.1016/j.tplants.2008.11.005 URL |
[70] |
Mersmann S, Bourdais G, Rietz S, et al. Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity[J]. Plant Physiol, 2010, 154(1):391-400.
doi: 10.1104/pp.110.154567 pmid: 20592040 |
[71] |
Kazan K, Manners JM. Linking development to defense:auxin in plant-pathogen interactions[J]. Trends Plant Sci, 2009, 14(7):373-382.
doi: 10.1016/j.tplants.2009.04.005 URL |
[72] |
Choi J, Huh SU, Kojima M, et al. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis[J]. Dev Cell, 2010, 19(2):284-295.
doi: 10.1016/j.devcel.2010.07.011 URL |
[73] |
Asselbergh B, De Vleesschauwer D, Höfte M. Global switches and fine-tuning-ABA modulates plant pathogen defense[J]. Mol Plant Microbe Interact, 2008, 21(6):709-719.
doi: 10.1094/MPMI-21-6-0709 URL |
[74] |
Alonso-Ramírez A, Rodríguez D, Reyes D, et al. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds[J]. Plant Physiol, 2009, 150(3):1335-1344.
doi: 10.1104/pp.109.139352 pmid: 19439570 |
[75] |
Oh MH, Wang X, Wu X, et al. Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression[J]. PNAS, 2010, 107(41):17827-17832.
doi: 10.1073/pnas.0915064107 URL |
[76] |
Berens ML, Berry HM, Mine A, et al. Evolution of hormone signaling networks in plant defense[J]. Annu Rev Phytopathol, 2017, 55:401-425.
doi: 10.1146/phyto.2017.55.issue-1 URL |
[77] |
Grant MR, Kazan K, Manners JM. Exploiting pathogens’ tricks of the trade for engineering of plant disease resistance:challenges and opportunities[J]. Microb Biotechnol, 2013, 6(3):212-222.
doi: 10.1111/1751-7915.12017 URL |
[78] |
Campos ML, Kang JH, Howe GA. Jasmonate-triggered plant immunity[J]. J Chem Ecol, 2014, 40(7):657-675.
doi: 10.1007/s10886-014-0468-3 URL |
[79] |
Santner A, Estelle M. The JAZ proteins link jasmonate perception with transcriptional changes[J]. Plant Cell, 2007, 19(12):3839-3842.
doi: 10.1105/tpc.107.056960 pmid: 18165326 |
[80] |
Chung HS, Cooke TF, Depew CL, et al. Alternative splicing expands the repertoire of dominant JAZ repressors of jasmonate signaling[J]. Plant J, 2010, 63(4):613-622.
doi: 10.1111/j.1365-313X.2010.04265.x URL |
[81] |
Zhang F, Ke J, Zhang L, et al. Structural insights into alternative splicing-mediated desensitization of jasmonate signaling[J]. PNAS, 2017, 114(7):1720-1725.
doi: 10.1073/pnas.1616938114 pmid: 28137867 |
[82] |
Yan YX, Stolz S, Chételat A, et al. A downstream mediator in the growth repression limb of the jasmonate pathway[J]. Plant Cell, 2007, 19(8):2470-2483.
doi: 10.1105/tpc.107.050708 URL |
[83] |
Chung HS, Howe GA. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis[J]. Plant Cell, 2009, 21(1):131-145.
doi: 10.1105/tpc.108.064097 pmid: 19151223 |
[84] |
You Y, Zhai Q, An C, et al. LEUNIG_HOMOLOG mediates MYC2-dependent transcriptional activation in cooperation with the coactivators HAC1 and MED25[J]. Plant Cell, 2019, 31(9):2187-2205.
doi: 10.1105/tpc.19.00115 URL |
[85] |
Chung T, Dongfang W, Kim CS, et al. Plant SMU-1 and SMU-2 homologues regulate pre-mRNA splicing and multiple aspects of development[J]. Plant Physiol, 2009, 151(3):1498-1512.
doi: 10.1104/pp.109.141705 URL |
[86] |
Chuanfu An Zhonglin Mou. Salicylic acid and its function in plant immunity[J]. J Integr Plant Biol, 2011, 53(6):412-428.
doi: 10.1111/j.1744-7909.2011.01043.x pmid: 21535470 |
[87] |
Cao H, Glazebrook J, Clarke JD, et al. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats[J]. Cell, 1997, 88(1):57-63.
pmid: 9019406 |
[88] |
Zhang JK, Jiao P, Zhang C, et al. Apple NPR1 homologs and their alternative splicing forms may contribute to SA and disease responses[J]. Tree Genet Genomes, 2016, 12(5):1-14.
doi: 10.1007/s11295-015-0959-6 URL |
[89] |
Wei Z, Li J. Brassinosteroids regulate root growth, development, and symbiosis[J]. Mol Plant, 2016, 9(1):86-100.
doi: 10.1016/j.molp.2015.12.003 URL |
[90] |
Yu X, Li L, Zola J, et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana[J]. Plant J, 2011, 65(4):634-646.
doi: 10.1111/tpj.2011.65.issue-4 URL |
[91] | Kang S, Yang F, Li L, et al. The Arabidopsis transcription factor BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 is a direct substrate of MITOGEN-ACTIVATED PROTEIN KINASE6 and regulates immunity[J]. Plant Physiol, 2015, 167(3):1076-1086. |
[92] | Will CL, Lührmann R. Spliceosome structure and function[J]. Cold Spring Harb Perspect Biol, 2011, 3(7):a003707. |
[93] |
Matlin AJ, Clark F, Smith CW. Understanding alternative splicing:towards a cellular code[J]. Nat Rev Mol Cell Biol, 2005, 6(5):386-398.
doi: 10.1038/nrm1645 URL |
[94] |
Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing[J]. Nature, 2010, 463(7280):457-463.
doi: 10.1038/nature08909 URL |
[95] |
Witten JT, Ule J. Understanding splicing regulation through RNA splicing maps[J]. Trends Genet, 2011, 27(3):89-97.
doi: 10.1016/j.tig.2010.12.001 URL |
[96] | Wachter A, Rühl C, Stauffer E. The role of polypyrimidine tract-binding proteins and other hnRNP proteins in plant splicing regulation[J]. Front Plant Sci, 2012, 3:81. |
[97] |
de la Fuente van Bentem S, Anrather D, Roitinger E, et al. Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNA metabolism[J]. Nucleic Acids Res, 2006, 34(11):3267-3278.
doi: 10.1093/nar/gkl429 URL |
[98] |
Feilner T, Hultschig C, Lee J, et al. High throughput identification of potential Arabidopsis mitogen-activated protein kinases substrates[J]. Mol Cell Proteomics, 2005, 4(10):1558-1568.
pmid: 16009969 |
[99] |
de la Fuente van Bentem S, Anrather D, Dohnal I, et al. Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis[J]. J Proteome Res, 2008, 7(6):2458-2470.
doi: 10.1021/pr8000173 URL |
[100] |
Huang J, Gu L, Zhang Y, et al. An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity[J]. Nat Commun, 2017, 8(1):2051.
doi: 10.1038/s41467-017-02233-5 pmid: 29233978 |
[101] |
Dressano K, Weckwerth PR, Poretsky E, et al. Dynamic regulation of Pep-induced immunity through post-translational control of defence transcript splicing[J]. Nat Plants, 2020, 6(8):1008-1019.
doi: 10.1038/s41477-020-0724-1 pmid: 32690890 |
[102] |
Wang BB, Brendel V. The ASRG database:identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing[J]. Genome Biol, 2004, 5(12):R102.
doi: 10.1186/gb-2004-5-12-r102 URL |
[103] | Koncz C, Dejong F, Villacorta N, et al. The spliceosome-activating complex:molecular mechanisms underlying the function of a pleiotropic regulator[J]. Front Plant Sci, 2012, 3:9. |
[104] |
Rayapuram N, Bonhomme L, Bigeard J, et al. Identification of novel PAMP-triggered phosphorylation and dephosphorylation events in Arabidopsis thaliana by quantitative phosphoproteomic analysis[J]. J Proteome Res, 2014, 13(4):2137-2151.
doi: 10.1021/pr401268v pmid: 24601666 |
[105] |
Rayapuram N, Bigeard J, Alhoraibi H, et al. Quantitative phosphoproteomic analysis reveals shared and specific targets of Arabidopsis mitogen-activated protein kinases(MAPKs)MPK3, MPK4, and MPK6[J]. Mol Cell Proteomics, 2018, 17(1):61-80.
doi: 10.1074/mcp.RA117.000135 pmid: 29167316 |
[106] |
Dong S, Qutob D, Tedman-Jones J, et al. The Phytophthora sojae avirulence locus Avr3c encodes a multi-copy RXLR effector with sequence polymorphisms among pathogen strains[J]. PLoS One, 2009, 4(5):e5556.
doi: 10.1371/journal.pone.0005556 URL |
[107] |
Zhang Y, Huang J, Ochola SO, et al. Functional analysis of PsAvr3c effector family from Phytophthora provides probes to dissect SKRP mediated plant susceptibility[J]. Front Plant Sci, 2018, 9:1105.
doi: 10.3389/fpls.2018.01105 pmid: 30090111 |
[108] |
Verma A, Lee C, Morriss S, et al. The novel cyst nematode effector protein 30D08 targets host nuclear functions to alter gene expression in feeding sites[J]. New Phytol, 2018, 219(2):697-713.
doi: 10.1111/nph.15179 pmid: 29726613 |
[109] |
Fu ZQ, Guo M, Jeong BR, et al. A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity[J]. Nature, 2007, 447(7142):284-288.
doi: 10.1038/nature05737 URL |
[110] |
Jeong BR, Lin Y, Joe A, et al. Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity[J]. J Biol Chem, 2011, 286(50):43272-43281.
doi: 10.1074/jbc.M111.290122 URL |
[111] |
Rigo R, Bazin JRM, Crespi M, et al. Alternative splicing in the regulation of plant-microbe interactions[J]. Plant Cell Physiol, 2019, 60(9):1906-1916.
doi: 10.1093/pcp/pcz086 URL |
[112] |
Hackmann C, Korneli C, Kutyniok M, et al. Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity[J]. Plant Cell Environ, 2014, 37(3):696-706.
doi: 10.1111/pce.2014.37.issue-3 URL |
[113] |
Huisman R, Hontelez J, Mysore KS, et al. A symbiosis-dedicated SYNTAXIN OF PLANTS 13II isoform controls the formation of a stable host-microbe interface in symbiosis[J]. New Phytol, 2016, 211(4):1338-1351.
doi: 10.1111/nph.13973 pmid: 27110912 |
[114] |
Oldroyd GE, Murray JD, Poole PS, et al. The rules of engagement in the legume-rhizobial symbiosis[J]. Annu Rev Genet, 2011, 45:119-144.
doi: 10.1146/annurev-genet-110410-132549 pmid: 21838550 |
[115] |
Pan HR, Oztas O, Zhang XW, et al. A symbiotic SNARE protein generated by alternative termination of transcription[J]. Nat Plants, 2016, 2:15197.
doi: 10.1038/nplants.2015.197 URL |
[116] |
Liu J, Qian C, Cao X. Post-translational modification control of innate immunity[J]. Immunity, 2016, 45(1):15-30.
doi: 10.1016/j.immuni.2016.06.020 URL |
[117] |
Xu G, Greene GH, Yoo H, et al. Global translational reprogramming is a fundamental layer of immune regulation in plants[J]. Nature, 2017, 545(7655):487-490.
doi: 10.1038/nature22371 URL |
[118] |
Nühse TS, Bottrill AR, Jones AM, et al. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses[J]. Plant J, 2007, 51(5):931-940.
doi: 10.1111/j.1365-313X.2007.03192.x URL |
[119] |
Withers J, Dong X. Post-translational regulation of plant immunity[J]. Curr Opin Plant Biol, 2017, 38:124-132.
doi: S1369-5266(17)30072-9 pmid: 28538164 |
[120] |
Tena G, Boudsocq M, Sheen J. Protein kinase signaling networks in plant innate immunity[J]. Curr Opin Plant Biol, 2011, 14(5):519-529.
doi: 10.1016/j.pbi.2011.05.006 URL |
[121] |
Lu D, Lin W, Gao X, et al. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity[J]. Science, 2011, 332(6036):1439-1442.
doi: 10.1126/science.1204903 URL |
[122] |
Feng B, Liu C, de Oliveira MV, et al. Protein poly(ADP-ribosyl)ation regulates Arabidopsis immune gene expression and defense responses[J]. PLoS Genet, 2015, 11(1):e1004936.
doi: 10.1371/journal.pgen.1004936 URL |
[123] |
Yan Q, Xia X, Sun Z, et al. Depletion of Arabidopsis SC35 and SC35-like serine/arginine-rich proteins affects the transcription and splicing of a subset of genes[J]. PLoS Genet, 2017, 13(3):e1006663.
doi: 10.1371/journal.pgen.1006663 URL |
[124] | Maquat LE. Nonsense-mediated mRNA decay:splicing, translation and mRNP dynamics[J]. Nat Rev Mol Cell Biol, 2004, 5(2):89-99. |
[125] |
Gassmann W. Alternative splicing in plant defense[J]. Curr Top Microbiol Immunol, 2008, 326:219-233.
pmid: 18630755 |
[126] |
McGlincy NJ, Smith CW. Alternative splicing resulting in nonsense-mediated mRNA decay:what is the meaning of nonsense?[J]. Trends Biochem Sci, 2008, 33(8):385-393.
doi: 10.1016/j.tibs.2008.06.001 URL |
[127] |
Jeong HJ, Kim YJ, Kim SH, et al. Nonsense-mediated mRNA decay factors, UPF1 and UPF3, contribute to plant defense[J]. Plant Cell Physiol, 2011, 52(12):2147-2156.
doi: 10.1093/pcp/pcr144 URL |
[128] |
Rayson S, Arciga-Reyes L, Wootton L, et al. A role for nonsense-mediated mRNA decay in plants:pathogen responses are induced in Arabidopsis thaliana NMD mutants[J]. PLoS One, 2012, 7(2):e31917.
doi: 10.1371/journal.pone.0031917 URL |
[129] |
Howard BE, Hu Q, Babaoglu AC, et al. High-throughput RNA sequencing of Pseudomonas-infected Arabidopsis reveals hidden transcriptome complexity and novel splice variants[J]. PLoS One, 2013, 8(10):e74183.
doi: 10.1371/journal.pone.0074183 URL |
[130] |
Simpson CG, Fuller J, Maronova M, et al. Monitoring changes in alternative precursor messenger RNA splicing in multiple gene transcripts[J]. Plant J, 2008, 53(6):1035-1048.
doi: 10.1111/j.1365-313X.2007.03392.x URL |
[131] |
Rühl C, Stauffer E, Kahles A, et al. Polypyrimidine tract binding protein homologs from Arabidopsis are key regulators of alternative splicing with implications in fundamental developmental processes[J]. Plant Cell, 2012, 24(11):4360-4375.
doi: 10.1105/tpc.112.103622 URL |
[132] |
Raczynska KD, Simpson CG, Ciesiolka A, et al. Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana[J]. Nucleic Acids Res, 2010, 38(1):265-278.
doi: 10.1093/nar/gkp869 URL |
[133] |
Streitner C, Köster T, Simpson CG, et al. An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana[J]. Nucleic Acids Res, 2012, 40(22):11240-11255.
doi: 10.1093/nar/gks873 pmid: 23042250 |
[1] | 郑向, 段左平, 张杰, 潘素君, 戴良英, 刘世名, 李魏. 大豆疫霉菌效应子研究进展[J]. 生物技术通报, 2022, 38(11): 10-20. |
[2] | 武欣媛, 王广超, 林金星, 荆艳萍. 光电关联显微镜技术及其在植物学研究中的应用[J]. 生物技术通报, 2022, 38(1): 278-288. |
[3] | 蒋钰琪, 舒新月, 郑爱萍, 王爱军. 水稻与稻粒黑粉病菌互作分子机制研究进展[J]. 生物技术通报, 2021, 37(9): 248-254. |
[4] | 山草梅, 叶蕾, 张连虎, 况卫刚, 孙晓棠, 马建, 崔汝强. 水稻抗潜根线虫基因OsRAI1的克隆及功能分析[J]. 生物技术通报, 2021, 37(7): 146-155. |
[5] | 邓苗苗, 郭晓黎. 植物响应寄生线虫侵染机制的研究进展[J]. 生物技术通报, 2021, 37(7): 25-34. |
[6] | 魏英, 罗萌, 戴良英, 彭德良, 刘敬. 植物寄生线虫钙网蛋白的研究进展[J]. 生物技术通报, 2021, 37(7): 81-87. |
[7] | 鲍晶晶, 浦亚斌, 马月辉, 赵倩君. 绵羊不同发育阶段背最长肌组织中可变剪接的鉴定与分析[J]. 生物技术通报, 2019, 35(7): 33-38. |
[8] | 郑永杰, 伍艳芳, 李江, 章挺, 汪信东. 樟树NBS-LRR类抗病基因家族分析与CcRNL基因克隆[J]. 生物技术通报, 2018, 34(2): 142-149. |
[9] | 龚前园, 张超, 李为民, 张永强. 拟南芥NDR1基因介导的广谱抗病性研究进展[J]. 生物技术通报, 2014, 0(6): 29-33. |
[10] | 肖欢欢,辛翠花,丁艳,朱佳莉,郭江波. 马铃薯晚疫病防治的转基因策略[J]. 生物技术通报, 2014, 0(1): 15-18. |
[11] | 吴星波,岳欢,郝俊杰,张晓艳,李红卫,王珍青,吕享华. 普通菜豆抗锈病基因SCAR 标记鉴定[J]. 生物技术通报, 2013, 0(10): 81-86. |
[12] | 魏芳;马鸿翔;. 小麦抗赤霉病品种NBS同源序列克隆与分析[J]. , 2012, 0(02): 128-135. |
[13] | 简桂良;赵磊;张文蔚;齐放军;王升正;. 陆地棉抗病基因同源序列的克隆与分析[J]. , 2011, 0(10): 101-108. |
[14] | 徐金刚;向旭;蔡礼鸿;孟祥春;黄秉智;. 香蕉抗病种质NBS类RGAs的克隆及相关序列差异分析[J]. , 2008, 0(S1): 200-209. |
[15] | 王文娟;张飞云;. 植物抗病分子机制研究进展[J]. , 2007, 0(01): 19-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||