生物技术通报 ›› 2021, Vol. 37 ›› Issue (7): 25-34.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0669
收稿日期:
2021-05-27
出版日期:
2021-07-26
发布日期:
2021-08-13
作者简介:
邓苗苗,博士研究生,研究方向:大豆抗线虫机制;E-mail:基金资助:
DENG Miao-miao(), GUO Xiao-li()
Received:
2021-05-27
Published:
2021-07-26
Online:
2021-08-13
摘要:
植物寄生线虫(plant parasitic nematode,PPN)是一类重要的植物病原物,它们分布广泛,适应性强,通过与寄主植物建立长期、稳定的寄生关系对粮食作物、园艺作物以及森林植物构成严重危害。其中,根结线虫(root-knot nematode,RKN)和孢囊线虫(cyst nematode,CN)是影响最大研究最多的2类定居型植物内寄生线虫,其侵染方式、取食细胞的形成及繁殖方式等存在很多差异,导致这两种PPNs在侵染植物后会对寄主产生多种不同的影响。近年来在线虫抗病基因克隆、效应蛋白作用机制、寄主响应等方面取得了大量研究进展。本文将对CNs和RKNs与植物互作的机理进行概括总结,主要从寄主抗病基因、线虫分泌蛋白以及植物激素响应3个方面侧重比较CNs和RKNs之间存在的差异,并对相关理论研究结果在线虫防治中的潜在应用进行展望。
邓苗苗, 郭晓黎. 植物响应寄生线虫侵染机制的研究进展[J]. 生物技术通报, 2021, 37(7): 25-34.
DENG Miao-miao, GUO Xiao-li. Research Progress on Plants Responses to Parasitic Nematodes Infection[J]. Biotechnology Bulletin, 2021, 37(7): 25-34.
[1] |
Abad P,Gouzy J,Aury JM,et al.Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita[J].Nat Biotechnol,2008,26(8):909-915.
doi: 10.1038/nbt.1482 URL |
[2] |
Jones JT,Haegeman A,Danchin EGJ,et al.Top 10 plant-parasitic nematodes in molecular plant pathology[J].Mol Plant Pathol,2013,14(9):946-961.
doi: 10.1111/mpp.12057 pmid: 23809086 |
[3] |
Kyndt T,Vieira P,Gheysen G.Nematode feeding sites:unique organs in plant roots[J].Planta,2013,238(5):807-818.
doi: 10.1007/s00425-013-1923-z pmid: 23824525 |
[4] |
Cai DG,Kleine M,Kifle S,et al.Positional cloning of a gene for nematode resistance in sugar beet[J].Science,1997,275(5301):832-834.
pmid: 9012350 |
[5] |
Kumar A,Harloff HJ,Melzer S,et al.A rhomboid-like protease gene from an interspecies translocation confers resistance to cyst nematodes[J].New Phytol,2021.231(2):801-813.
doi: 10.1111/nph.v231.2 URL |
[6] |
Bryan GJ,McLean K,Bradshaw JE,et al.Mapping QTLs for resistance to the cyst nematode Globodera pallida derived from the wild potato species Solanum vernei[J].Theor Appl Genet,2002,105(1):68-77.
pmid: 12582563 |
[7] |
Bryan GJ,McLean K,Pande B,et al.Genetical dissection of H3-mediated polygenic PCN resistance in a heterozygous autotetraploid potato population[J].Mol Breeding,2004,14(2):105-116.
doi: 10.1023/B:MOLB.0000037999.13581.9c URL |
[8] |
van der Vossen EAG,van der Voort JNAMR,Kanyuka K,et al.Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens:a virus and a nematode[J].Plant J,2000,23(5):567-576.
pmid: 10972883 |
[9] |
Paal J,Henselewski H,Muth J,et al.Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach[J].Plant J,2004,38(2):285-297.
doi: 10.1111/tpj.2004.38.issue-2 URL |
[10] |
Ernst K,Kumar A,Kriseleit D,et al.The broad-spectrum potato cyst nematode resistance gene(Hero)from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region[J].Plant J,2002,31(2):127-136.
doi: 10.1046/j.1365-313X.2002.01341.x URL |
[11] |
Lozano-Torres JL,Wilbers RHP,Gawronski P,et al.Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode[J].Proc Natl Acad Sci,2012,109(25):10119-10124.
doi: 10.1073/pnas.1202867109 URL |
[12] |
Meksem K,Pantazopoulos P,Njiti VN,et al.‘Forrest’ resistance to the soybean cyst nematode is bigenic:saturation mapping of the Rhg1 and Rhg4 loci[J].Theor Appl Genet,2001,103(5):710-717.
doi: 10.1007/s001220100597 URL |
[13] |
Liu SM,Kandoth PK,Warren SD,et al.A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens[J].Nature,2012,492(7428):256-260.
doi: 10.1038/nature11651 URL |
[14] |
Liu SM,Kandoth PK,Lakhssassi N,et al.The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode[J].Nat Commun,2017,8:14822.
doi: 10.1038/ncomms14822 URL |
[15] |
Lakhssassi N,Liu SM,Bekal S,et al.Characterization of the Soluble NSF Attachment Protein gene family identifies two members involved in additive resistance to a plant pathogen[J].Sci Rep,2017,7:1-11.
doi: 10.1038/s41598-016-0028-x URL |
[16] | Bayless AM,Smith JM,Song JQ,et al.Disease resistance through impairment of alpha-SNAP-NSF interaction and vesicular trafficking by soybean Rhg1[J].Proc Natl Acad Sci,2016,113(47):7375-7382. |
[17] | Bayless AM,Zapotocny RW,Grunwald DJ,et al.An atypical N-ethylmaleimide sensitive factor enables the viability of nematode-resistant Rhg1 soybeans[J].Proc Natl Acad Sci,2018,115(19):4512-4521. |
[18] |
Lakhssassi N,Piya S,Bekal S,et al.A pathogenesis-related protein GmPR08-Bet VI promotes a molecular interaction between the GmSHMT08 and GmSNAP18 in resistance to Heterodera glycines[J].Plant Biotechnol J,2020,18(8):1810-1829.
doi: 10.1111/pbi.13343 pmid: 31960590 |
[19] |
Lakhssassi N,Piya S,Knizia D,et al.Mutations at the serine hydroxymethyltransferase impact its interaction with a soluble NSF attachment protein and a pathogenesis-related protein in soybean[J].Vaccines,2020,8(3):349.
doi: 10.3390/vaccines8030349 URL |
[20] | Wang R,Deng M,Yang C,et al.A Qa-SNARE complex protein contributes to soybean cyst nematode resistance through regulation of mitochondria-mediated cell death[J].J Exp Bot,2021.erab301. |
[21] |
Wu WW,Shen HL,Yang WC.Sources for heat-stable resistance to southern root-knot nematode(Meloidogyne incognita)in Solanum lycopersicum[J].Agr Sci China,2009,8(6):697-702.
doi: 10.1016/S1671-2927(08)60267-9 URL |
[22] |
Rashid MH,Al-Mamun MH,Uddin MN.How durable is root knot nematode resistance in tomato?[J].Plant Breed Biotech,2017,5(3):143-162.
doi: 10.9787/PBB.2017.5.3.143 URL |
[23] |
Ammiraju JSS,Veremis JC,Huang X,et al.The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6[J].Theor Appl Genet,2003,106(3):478-484.
pmid: 12589548 |
[24] |
Milligan SB,Bodeau J,Yaghoobi J,et al.The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes[J].Plant Cell,1998,10(8):1307-1319.
pmid: 9707531 |
[25] |
Bhattarai KK,Li Q,Liu Y,et al.The Mi-1-mediated pest resistance requires Hsp90 and Sgt1[J].Plant Physiol,2007,144(1):312-323.
pmid: 17351050 |
[26] |
Bhattarai KK,Atamian HS,Kaloshian I,et al.WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1[J].Plant J,2010,63(2):229-240.
doi: 10.1111/j.1365-313X.2010.04232.x URL |
[27] |
Atamian HS,Eulgem T,Kaloshian I.SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato[J].Planta,2012,235(2):299-309.
doi: 10.1007/s00425-011-1509-6 pmid: 21898085 |
[28] |
de Ilarduya OM,Moore AE,Kaloshian I.The tomato Rme1 locus is required for Mi-1-mediated resistance to root-knot nematodes and the potato aphid[J].Plant J,2001,27(5):417-425.
pmid: 11576426 |
[29] |
Claverie M,Dirlewanger E,Bosselut N,et al.The Ma gene for complete-spectrum resistance to Meloidogyne species in prunus is a TNL with a huge repeated C-terminal post-LRR region[J].Plant Physiol,2011,156(2):779-792.
doi: 10.1104/pp.111.176230 pmid: 21482634 |
[30] |
Barbary A,Palloix A,Fazari A,et al.The plant genetic background affects the efficiency of the pepper major nematode resistance genes Me1 and Me3[J].Theor Appl Genet,2014,127(2):499-507.
doi: 10.1007/s00122-013-2235-1 pmid: 24258389 |
[31] |
Xu XY,Zeng L,Tao Y,et al.Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing[J].Proc Natl Acad Sci,2013,110(33):13469-13474.
doi: 10.1073/pnas.1222368110 URL |
[32] |
Sacco MA,Koropacka K,Grenier E,et al.The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2-and RanGAP2-dependent plant cell death[J].PLoS Pathog,2009,5(8):e1000564.
doi: 10.1371/journal.ppat.1000564 URL |
[33] |
Lozano-Torres JL,Wilbers RHP,Warmerdam S,et al.Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors[J].PLoS Pathog,2014,10(12):e1004569.
doi: 10.1371/journal.ppat.1004569 URL |
[34] |
Semblat JP,Rosso MN,Hussey RS,et al.Molecular cloning of a cDNA encoding an amphid-secreted putative avirulence protein from the root-knot nematode Meloidogyne incognita[J].Mol Plant Microbe Interact,2001,14(1):72-79.
doi: 10.1094/MPMI.2001.14.1.72 URL |
[35] |
Gleason CA,Liu QL,Williamson VM.Silencing a candidate nematode effector gene corresponding to the tomato resistance gene Mi-1 leads to acquisition of virulence[J].Mol Plant Microbe Interact,2008,21(5):576-585.
doi: 10.1094/MPMI-21-5-0576 URL |
[36] |
Mitchum MG,Wang XH,Davis EL.Diverse and conserved roles of CLE peptides[J].Curr Opin Plant Biol,2008,11(1):75-81.
doi: 10.1016/j.pbi.2007.10.010 URL |
[37] |
Bird DM,Jones JT,Opperman CH,et al.Signatures of adaptation to plant parasitism in nematode genomes[J].Parasitology,2015,142:71-84.
doi: 10.1017/S0031182013002163 |
[38] |
Lu SW,Chen SY,Wang JY,et al.Structural and functional diversity of CLAVATA3/ESR(CLE)-like genes from the potato cyst nematode Globodera rostochiensis[J].Mol Plant Microbe Interact,2009,22(9):1128-1142.
doi: 10.1094/MPMI-22-9-1128 URL |
[39] |
Mitchum MG,Hussey RS,Baum TJ,et al.Nematode effector proteins:an emerging paradigm of parasitism[J].New Phytol,2013,199(4):879-894.
doi: 10.1111/nph.2013.199.issue-4 URL |
[40] |
Wang J,Joshi S,Korkin D,et al.Variable domain I of nematode CLEs directs post-translational targeting of CLE peptides to the extracellular space[J].Plant Signal Behav,2010,5(12):1633-1635.
doi: 10.4161/psb.5.12.13774 URL |
[41] |
Guo XL,Chronis D,De La Torre CM,et al.Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors[J].Plant Biotechnol J,2015,13(6):801-810.
doi: 10.1111/pbi.2015.13.issue-6 URL |
[42] |
Guo XL,Wang JY,Gardner M,et al.Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation[J].PLoS Pathog,2017,13(2):e1006142.
doi: 10.1371/journal.ppat.1006142 URL |
[43] |
Delay C,Imin N,Djordjevic MA.CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants[J].J Exp Bot,2013,64(17):5383-5394.
doi: 10.1093/jxb/ert332 URL |
[44] |
Taleski M,Imin N,Djordjevic MA.CEP peptide hormones:key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development[J].J Exp Bot,2018,69(8):1829-1836.
doi: 10.1093/jxb/ery037 URL |
[45] |
Tucker ML,Yang RH.A gene encoding a peptide with similarity to the plant IDA signaling peptide(AtIDA)is expressed most abundantly in the root-knot nematode(Meloidogyne incognita)soon after root infection[J].Exp Parasitol,2013,134(2):165-170.
doi: 10.1016/j.exppara.2013.03.019 pmid: 23538028 |
[46] |
Kim J,Yang RH,Chang C,et al.The root-knot nematode Meloidogyne incognita produces a functional mimic of the Arabidopsis INFLORESCENCE DEFICIENT IN ABSCISSION signaling peptide[J].J Exp Bot,2018,69(12):3009-3021.
doi: 10.1093/jxb/ery135 URL |
[47] |
Zhang X,Peng H,Zhu SR,et al.Nematode-encoded RALF peptide mimics facilitate parasitism of plants through the FERONIA receptor kinase[J].Mol Plant,2020,13(10):1434-1454.
doi: 10.1016/j.molp.2020.08.014 URL |
[48] |
Patel N,Hamamouch N,Li CY,et al.A nematode effector protein similar to annexins in host plants[J].J Exp Bot,2010,61(1):235-248.
doi: 10.1093/jxb/erp293 URL |
[49] |
Chen CL,Liu SS,Liu Q,et al.An ANNEXIN-like protein from the cereal cyst nematode Heterodera avenae suppresses plant defense[J].PLoS One,2015,10(4):e0122256.
doi: 10.1371/journal.pone.0122256 URL |
[50] |
Zhao JL,Li LJ,Liu Q,et al.A MIF-like effector suppresses plant immunity and facilitates nematode parasitism by interacting with plant annexins[J].J Exp Bot,2019,70(20):5943-5958.
doi: 10.1093/jxb/erz348 URL |
[51] |
Doyle EA,Lambert KN.Meloidogyne javanica chorismate mutase 1 alters plant cell development[J].Mol Plant Microbe Interact,2003,16(2):123-131.
doi: 10.1094/MPMI.2003.16.2.123 URL |
[52] |
Lee C,Chronis D,Kenning C,et al.The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development[J].Plant Physiol,2011,155(2):866-880.
doi: 10.1104/pp.110.167197 URL |
[53] |
Hewezi T,Juvale PS,Piya S,et al.The cyst nematode effector protein 10A07 targets and recruits host posttranslational machinery to mediate its nuclear trafficking and to promote parasitism in Arabidopsis[J].Plant Cell,2015,27(3):891-907.
doi: 10.1105/tpc.114.135327 URL |
[54] |
Chen JS,Hu LL,Sun LH,et al.A novel Meloidogyne graminicola effector, MgMO237, interacts with multiple host defence-related proteins to manipulate plant basal immunity and promote parasitism[J].Mol Plant Pathol,2018,19(8):1942-1955.
doi: 10.1111/mpp.2018.19.issue-8 URL |
[55] |
Al-Banna L,Sadder MT,Lafi HA,et al.Bioinformatics analysis of ubiquitin expression protein gene from Heterodera latipons[J].Saudi J Biol Sci,2019,26(7):1463-1467.
doi: 10.1016/j.sjbs.2018.06.005 pmid: 31762610 |
[56] |
Leelarasamee N,Zhang L,Gleason C.The root-knot nematode effector MiPFN3 disrupts plant actin filaments and promotes parasitism[J].PLoS Pathog,2018,14(3):e1006947.
doi: 10.1371/journal.ppat.1006947 URL |
[57] |
Huang GZ,Dong RH,Allen R,et al.A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor[J].Mol Plant Microbe Interact,2006,19(5):463-470.
doi: 10.1094/MPMI-19-0463 URL |
[58] |
Souza DDDE,de Souza JDA,Grossi-de-Sa M,et al.Ectopic expression of a Meloidogyne incognita dorsal gland protein in tobacco accelerates the formation of the nematode feeding site[J].Plant Sci,2011,180(2):276-282.
doi: 10.1016/j.plantsci.2010.09.003 URL |
[59] |
Xue BY,Hamamouch N,Li CY,et al.The 8D05 parasitism gene of Meloidogyne incognita is required for successful infection of host roots[J].Phytopathology,2013,103(2):175-181.
doi: 10.1094/PHYTO-07-12-0173-R URL |
[60] |
Hewezi T.Cellular signaling pathways and posttranslational modifications mediated by nematode effector proteins[J].Plant Physiol,2015,169(2):1018-1026.
doi: 10.1104/pp.15.00923 pmid: 26315856 |
[61] |
Chen S,Chronis D,Wang X.The novel GrCEP12 peptide from the plant-parasitic nematode Globodera rostochiensis suppresses flg22-mediated PTI[J].Plant Signal Behav,2013,8(9):e25359.
doi: 10.4161/psb.25359 URL |
[62] |
Diaz-Granados A,Petrescu AJ,Goverse A,et al.SPRYSEC effectors:A versatile protein-binding platform to disrupt plant innate immunity[J].Front Plant Sci,2016,7:1575.
pmid: 27812363 |
[63] |
Kud J,Wang WJ,Gross R,et al.The potato cyst nematode effector RHA1B is a ubiquitin ligase and uses two distinct mechanisms to suppress plant immune signaling[J].PLoS Pathog,2019,15(4):e1007720.
doi: 10.1371/journal.ppat.1007720 URL |
[64] |
Ali S,Magne M,Chen SY,et al.Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses[J].PLoS One,2015,10(1):e0115042.
doi: 10.1371/journal.pone.0115042 URL |
[65] |
Noon JB,Qi MS,Sill DN,et al.A Plasmodium-like virulence effector of the soybean cyst nematode suppresses plant innate immunity[J].New Phytol,2016,212(2):444-460.
doi: 10.1111/nph.2016.212.issue-2 URL |
[66] |
Hamamouch N,Li CY,Hewezi T,et al.The interaction of the novel 30C02 cyst nematode effector protein with a plant beta-1, 3-endoglucanase may suppress host defence to promote parasitism[J].J Exp Bot,2012,63(10):3683-3695.
doi: 10.1093/jxb/ers058 URL |
[67] |
Hewezi T,Howe PJ,Maier TR,et al.Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii[J].Plant Physiol,2010,152(2):968-984.
doi: 10.1104/pp.109.150557 pmid: 19965964 |
[68] |
Barnes SN,Wram CL,Mitchum MG,et al.The plant-parasitic cyst nematode effector GLAND4 is a DNA-binding protein[J].Mol Plant Pathol,2018,19(10):2263-2276.
doi: 10.1111/mpp.2018.19.issue-10 URL |
[69] |
Yang SS,Dai YR,Chen YP,et al.A novel G16B09-like effector from Heterodera avenae suppresses plant defenses and promotes parasitism[J].Front Plant Sci,2019,10:66.
doi: 10.3389/fpls.2019.00066 URL |
[70] |
Lin BR,Zhuo K,Chen SY,et al.A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system[J].New Phytol,2016,209(3):1159-1173.
doi: 10.1111/nph.2016.209.issue-3 URL |
[71] |
Jaouannet M,Magliano M,Arguel MJ,et al.The root-knot nematode calreticulin Mi-CRT is a key effector in plant defense suppression[J].Mol Plant Microbe Interact,2013,26(1):97-105.
doi: 10.1094/MPMI-05-12-0130-R URL |
[72] |
Niu JH,Liu P,Liu Q,et al.Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism[J].Sci Rep,2016,6:19443.
doi: 10.1038/srep19443 URL |
[73] |
Chen JS,Lin BR,Huang QL,et al.A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism[J].PLoS Pathog,2017,13(4):e1006301.
doi: 10.1371/journal.ppat.1006301 URL |
[74] |
Zhuo K,Naalden D,Nowak S,et al.A Meloidogyne graminicola C-type lectin, Mg01965, is secreted into the host apoplast to suppress plant defence and promote parasitism[J].Mol Plant Pathol,2019,20(3):346-355.
doi: 10.1111/mpp.12759 pmid: 30315612 |
[75] | Song H,Lin B,Huang Q,et al.The Meloidogyne graminicola effector MgMO289 targets a novel rice copper metallochaperone to suppress plant immunity[J].J Exp Bot,2021.erab208. |
[76] |
Gleason C,Polzin F,Habash SS,et al.Identification of two Meloidogyne hapla genes and an investigation of their roles in the plant-nematode interaction[J].Mol Plant Microbe Interact,2017,30(2):101-112.
doi: 10.1094/MPMI-06-16-0107-R URL |
[77] |
Pieterse CMJ,Leon-Reyes A,Van der Ent S,et al.Networking by small-molecule hormones in plant immunity[J].Nat Chem Biol,2009,5(5):308-316.
doi: 10.1038/nchembio.164 pmid: 19377457 |
[78] |
Hu YF,You J,Li CJH,et al.Exogenous application of methyl jasmonate induces defence against Meloidogyne hapla in soybean[J].Nematology,2017,19(3):293-304.
doi: 10.1163/15685411-00003049 URL |
[79] |
Bhattarai KK,Xie QG,Mantelin S,et al.Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signaling pathway[J].Mol Plant Microbe Interact,2008,21(9):1205-1214.
doi: 10.1094/MPMI-21-9-1205 URL |
[80] |
Ozalvo R,Cabrera J,Escobar C,et al.Two closely related members of Arabidopsis 13-lipoxygenases(13-LOXs), LOX3 and LOX4, reveal distinct functions in response to plant-parasitic nematode infection[J].Mol Plant Pathol,2014,15(4):319-332.
doi: 10.1111/mpp.2014.15.issue-4 URL |
[81] |
Kyndt T,Nahar K,Haeck A,et al.Interplay between Carotenoids, Abscisic Acid and Jasmonate Guides the Compatible Rice-Meloidogyne graminicola Interaction[J].Front Plant Sci,2017,8:951.
doi: 10.3389/fpls.2017.00951 pmid: 28642770 |
[82] |
Yimer HZ,Nahar K,Kyndt T,et al.Gibberellin antagonizes jasmonate-induced defense against Meloidogyne graminicola in rice[J].New Phytol,2018,218(2):646-660.
doi: 10.1111/nph.15046 URL |
[83] |
Lahari Z,Ullah C,Kyndt T,et al.Strigolactones enhance root-knot nematode(Meloidogyne graminicola)infection in rice by antagonizing the jasmonate pathway[J].New Phytol,2019,224(1):454-465.
doi: 10.1111/nph.v224.1 URL |
[84] |
Nahar K,Kyndt T,Hause B,et al.Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway[J].Mol Plant Microbe Interact,2013,26(1):106-115.
doi: 10.1094/MPMI-05-12-0108-FI URL |
[85] |
Shukla N,Yadav R,Kaur P,et al.Transcriptome analysis of root-knot nematode(Meloidogyne incognita)-infected tomato(Solanum lycopersicum)roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses[J].Mol Plant Pathol,2018,19(3):615-633.
doi: 10.1111/mpp.12547 pmid: 28220591 |
[86] |
Tucker ML,Xue P,Yang RH.1-Aminocyclopropane-1-carboxylic acid(ACC)concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode(Heterodera glycines)-infected roots[J].J Exp Bot,2010,61(2):463-472.
doi: 10.1093/jxb/erp317 pmid: 19861652 |
[87] |
Hu YF,You J,Li CJ,et al.Ethylene response pathway modulates attractiveness of plant roots to soybean cyst nematode Heterodera glycines[J].Sci Rep,2017,7:41282.
doi: 10.1038/srep41282 URL |
[88] |
Bakshi A,Wilson RL,Lacey RF,et al.Identification of regions in the receiver domain of the ETHYLENE RESPONSE1 ethylene receptor of Arabidopsis important for functional divergence[J].Plant Physiol,2015,169(1):219-232.
doi: 10.1104/pp.15.00626 URL |
[89] |
Siddique S,Radakovic ZS,De La Torre CM,et al.A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants[J].Proc Natl Acad Sci,2015,112(41):12669-12674.
doi: 10.1073/pnas.1503657112 URL |
[90] |
Karczmarek A,Overmars H,Helder J,et al.Feeding cell development by cyst and root-knot nematodes involves a similar early, local and transient activation of a specific auxin-inducible promoter element[J].Mol Plant Pathol,2004,5(4):343-346.
doi: 10.1111/j.1364-3703.2004.00230.x pmid: 20565601 |
[91] |
Grunewald W,Cannoot B,Friml J,et al.Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection[J].PLoS Pathog,2009,5(1):e1000266.
doi: 10.1371/journal.ppat.1000266 URL |
[92] |
Dowd CD,Chronis D,Radakovic ZS,et al.Divergent expression of cytokinin biosynjournal, signaling and catabolism genes underlying differences in feeding sites induced by cyst and root-knot nematodes[J].Plant J,2017,92(2):211-228.
doi: 10.1111/tpj.2017.92.issue-2 URL |
[93] |
Shanks CM,Rice JH,Yan ZB,et al.The role of cytokinin during infection of Arabidopsis thaliana by the cyst nematode Heterodera schachtii[J].Mol Plant Microbe Interact,2016,29(1):57-68.
doi: 10.1094/MPMI-07-15-0156-R URL |
[94] |
van Megen H,van den Elsen S,Holterman M,et al.A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences[J].Nematology,2009,11:927-950.
doi: 10.1163/156854109X456862 URL |
[95] |
Goverse A,Smant G.The activation and suppression of plant innate immunity by parasitic nematodes[J].Annu Rev Phytopathol,2014,52:243-265.
doi: 10.1146/annurev-phyto-102313-050118 pmid: 24906126 |
[1] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
[2] | 丁丽, 都婷婷, 唐琼英, 高权新, 易少奎, 杨国梁. 罗氏沼虾蜕皮周期中内分泌调控和蜕皮信号通路相关基因的表达分析[J]. 生物技术通报, 2023, 39(9): 300-310. |
[3] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[4] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[5] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[6] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[7] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[8] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[9] | 葛颜锐, 赵冉, 徐静, 李若凡, 胡云涛, 李瑞丽. 植物维管形成层发育及其调控的研究进展[J]. 生物技术通报, 2023, 39(3): 13-25. |
[10] | 扈丽丽, 林柏荣, 王宏洪, 陈建松, 廖金铃, 卓侃. 最短尾短体线虫转录组及潜在效应蛋白分析[J]. 生物技术通报, 2023, 39(3): 254-266. |
[11] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[12] | 于世霞, 姜雨彤, 林文慧. 胚珠原基起始的信号与分子机制研究进展[J]. 生物技术通报, 2023, 39(2): 1-9. |
[13] | 罗宁, 焦阳, 茆振川, 李惠霞, 谢丙炎. 木霉菌对根结线虫和孢囊线虫防治机理研究进展[J]. 生物技术通报, 2023, 39(2): 35-50. |
[14] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[15] | 白苗, 田雯青, 武帅, 王敏, 王利祥, 岳爱琴, 牛景萍, 张永坡, 高春艳, 张武霞, 郭数进, 杜维俊, 赵晋忠. 激素和逆境胁迫对大豆维生素E和γ-TMT表达的影响[J]. 生物技术通报, 2023, 39(10): 148-162. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||