生物技术通报 ›› 2022, Vol. 38 ›› Issue (1): 44-50.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0406
刘向东1,2,3(), 吴锦文2,3, SHAHID Muhammad Qasim1,2,3
收稿日期:
2021-03-30
出版日期:
2022-01-26
发布日期:
2022-02-22
作者简介:
刘向东,男,博士,教授,研究方向:稻种资源保护与创新(多倍体水稻遗传育种);E-mail: 基金资助:
LIU Xiang-dong1,2,3(), WU Jin-wen2,3, SHAHID Muhammad Qasim1,2,3
Received:
2021-03-30
Published:
2022-01-26
Online:
2022-02-22
摘要:
新型四倍体水稻是本研究团队创制的一类高育性多倍体水稻新种质,携带有多种优异基因。该类材料与同源四倍体水稻杂交获得的杂种F1产量优势明显,具有应用前景。本文首先概述了同源四倍体水稻的研究进展,并重点阐述了新型四倍体水稻创制过程、主要特点、杂种优势表现及其涉及的分子遗传机理,最后提出未来研究的思路及需要解决的问题,为加快新型四倍体水稻在多倍体水稻育种中的利用提供依据。
刘向东, 吴锦文, SHAHID Muhammad Qasim. 新型四倍体水稻创制及其杂种优势利用研究进展[J]. 生物技术通报, 2022, 38(1): 44-50.
LIU Xiang-dong, WU Jin-wen, SHAHID Muhammad Qasim. Development of Neo-tetraploid Rice and Research Progress on Its Heterosis Mechanism[J]. Biotechnology Bulletin, 2022, 38(1): 44-50.
[1] |
Chen L, Lou Q, Zhuang Y, et al. Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis x hytivus[J]. Planta, 2007, 225(3):603-614.
doi: 10.1007/s00425-006-0381-2 URL |
[2] |
Zhang J, Liu Y, Xia EH, et al. Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression[J]. PNAS, 2015, 112(50):E7022-E7029.
doi: 10.1073/pnas.1515170112 URL |
[3] |
Koide Y, Kuniyoshi D, Kishima Y. Fertile tetraploids:new resources for future rice breeding?[J]. Front Plant Sci, 2020, 11:1231.
doi: 10.3389/fpls.2020.01231 URL |
[4] | Yu H, Lin T, Meng XB, et al. A route to de novo domestication of wild allotetraploid rice[J]. Cell, 2021, 184(5):1156-1170. e14. |
[5] |
Chen RR, Feng ZY, Zhang XH, et al. A new way of rice breeding:polyploid rice breeding[J]. Plants, 2021, 10(3):422.
doi: 10.3390/plants10030422 URL |
[6] | 蔡得田, 袁隆平, 卢兴桂. 二十一世纪水稻育种新战略Ⅱ. 利用远缘杂交和多倍体双重优势进行超级稻育种[J]. 作物学报, 2001, 27(1):110-116. |
Cai DT, Yuan LP, Lu XG. A new strategy of rice breeding in the 21st century Ⅱ. searching a new pathway of rice breeding by utilization of double heterosis of wide cross and polyploidization[J]. Acta Agron Sin, 2001, 27(1):110-116. | |
[7] |
Oka HI. Studies on tetraploid rice VI. fertility variation and segregation ratios for several characters in tetraploid hybrids of rice, Oryza saliva L[J]. Cytologia, 1955, 20(3):258-266.
doi: 10.1508/cytologia.20.258 URL |
[8] | 严育瑞, 鲍文奎. 禾谷类作物的多倍体育种方法的研究Ⅰ. 四倍体水稻[J]. 农业学报, 1960, 11(1):1-19. |
Yan YR, Bao WK. Investigation on the breeding method of induced polyploids of some cereal crops Ⅰ. Tetraploid rice[J]. Acta Agriculturae Sinica, 1960, 11(1):1-19. | |
[9] | 宋文昌, 张玉华. 水稻四倍化及其对农艺性状和营养成分的影响[J]. 作物学报, 1992, 18(2):137-144. |
Song WC, Zhang YH. Rice tetraploidy and its effect on agronomic traits and nutritional constituents[J]. Acta Agron Sin, 1992, 18(2):137-144. | |
[10] |
Tu Y, Jiang A, Gan L, et al. Genome duplication improves rice root resistance to salt stress[J]. Rice, 2014, 7(1):15.
doi: 10.1186/s12284-014-0015-4 URL |
[11] |
Sun Y, Wu Y, Wang YZ, et al. Homoploid F1 hybrids and segmental allotetraploids of japonica and indica rice subspecies show similar and enhanced tolerance to nitrogen deficiency than parental lines[J]. J Exp Bot, 2021. DOI: 10.1093/jxb/erab184.
doi: 10.1093/jxb/erab184 |
[12] |
Wang LF, Cao S, Wang PT, et al. DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance[J]. PNAS, 2021, 118(13):e2023981118.
doi: 10.1073/pnas.2023981118 URL |
[13] |
Yang PM, Huang QC, Qin GY, et al. Different drought-stress responses in photosynjournal and reactive oxygen metabolism between autotetraploid and diploid rice[J]. Photosynthetica, 2014, 52(2):193-202.
doi: 10.1007/s11099-014-0020-2 URL |
[14] |
Xu C, Bai Y, Lin X, et al. Genome-wide disruption of gene expression in allopolyploids but not hybrids of rice subspecies[J]. Mol Biol Evol, 2014, 31(5):1066-1076.
doi: 10.1093/molbev/msu085 URL |
[15] | Wu Y, Lin F, Zhou Y, et al. Genomic mosaicism due to homoeologous exchange generates extensive phenotypic diversity in nascent allopolyploids[J]. Natl Sci Rev, 2021, 8(5):nwaa277. |
[16] | 刘宗贤, 秦瑞珍. 四倍体水稻花药培养筛选初级三体的细胞学依据[J]. 中国农业科学, 1995, 28(6):1-8. |
Liu ZX, Qin RZ. Cytological basis of selecting primary trisomics through anther culture of tetraploid rice(Oryza sativa L.)[J]. Sci Agricutura Sin, 1995, 28(6):1-8. | |
[17] | 郭海滨, 刘向东. 同源四倍体水稻研究[M]. 广州: 华南理工大学出版社, 2014. |
Guo HB, Liu XD. The research on autotetraploid rice[M]. Guangzhou: South China University of Technology Press, 2014. | |
[18] | 黄群策, 孙梅元, 邓启云. 多倍体水稻及其潜在价值[J]. 杂交水稻, 2001, 16(1):1-3. |
Huang QC, Sun MY, Deng QY. Polyploid rice and its potential value[J]. Hybrid Rice, 2001, 16(1):1-3 | |
[19] |
Zhao L, Han L, Xiao CX, et al. Rapid and pervasive development- and tissue-specific homeolog expression partitioning in newly formed inter-subspecific rice segmental allotetraploids[J]. BMC Genom, 2018, 19(1):1-10.
doi: 10.1186/s12864-017-4368-0 URL |
[20] |
Huang YQ, Huang QC, Li JZ, et al. Photosynthetic physiology and molecular response mechanisms of indica-Japonica intersubspecific tetraploid rice seedlings to ion beams[J]. J Plant Growth Regul, 2021, 40(2):722-735.
doi: 10.1007/s00344-020-10136-x URL |
[21] |
Tu SB, Luan L, Liu YH, et al. Production and heterosis analysis of rice autotetraploid hybrids[J]. Crop Sci, 2007, 47(6):2356-2363.
doi: 10.2135/cropsci2007.01.0058 URL |
[22] | Wu J, Shahid MQ, Chen L, et al. Polyploidy enhances F1 pollen sterility loci interactions that increase meiosis abnormalities and pollen sterility in autotetraploid rice[J]. Plant Physiol, 2015, 169(4):2700-2717. |
[23] | Chen L, Yuan Y, Wu J, et al. Carbohydrate metabolism and fertility related genes high expression levels promote heterosis in autotetraploid rice harboring double neutral genes[J]. Rice:N Y, 2019, 12(1):34. |
[24] |
Zhang X, Zuo B, Song Z, et al. Breeding and study of two new photoperiod- and thermo-sensitive genic male sterile lines of polyploid rice(Oryza sativa L.)[J]. Sci Rep, 2017, 7(1):14744.
doi: 10.1038/s41598-017-15241-8 URL |
[25] | 涂升斌, 孔繁伦, 徐琼芳, 等. 水稻同源四倍体杂种优势利用技术新体系的研究[J]. 中国科学院院刊, 2003, 18(6):426-428. |
Tu SB, Kong FL, Xu QF, et al. Breakthrough in hybrid rice breeding with autotetraploid[J]. Bull Chin Acad Sci, 2003, 18(6):426-428. | |
[26] |
Luan L, Tu SB, Long WB, et al. Cytogenetic studies on two F1 hybrids of autotetraploid rice varieties showing extremely high level of heterosis[J]. Plant Syst Evol, 2007, 267(1-4):205-213.
doi: 10.1007/s00606-007-0577-3 URL |
[27] |
Hu CY, Zeng YX, Lu YG, et al. High embryo sac fertility and diversity of abnormal embryo sacs detected in autotetraploid indica/japonica hybrids in rice by whole-mount eosin B-staining confocal laser scanning microscopy[J]. Plant Breed, 2009, 128(2):187-192.
doi: 10.1111/pbr.2009.128.issue-2 URL |
[28] |
He JH, Shahid MQ, Li YJ, et al. Allelic interaction of F1 pollen sterility loci and abnormal chromosome behaviour caused pollen sterility in intersubspecific autotetraploid rice hybrids[J]. J Exp Bot, 2011, 62(13):4433-4445.
doi: 10.1093/jxb/err098 pmid: 21624978 |
[29] |
Wu J, Shahid MQ, Guo H, et al. Comparative cytological and transcriptomic analysis of pollen development in autotetraploid and diploid rice[J]. Plant Reprod, 2014, 27(4):181-196.
doi: 10.1007/s00497-014-0250-2 URL |
[30] |
Chen L, Shahid MQ, Wu J, et al. Cytological and transcriptome analyses reveal abrupt gene expression for meiosis and saccharide metabolisms that associated with pollen abortion in autotetraploid rice[J]. Mol Genet Genomics, 2018, 293(6):1407-1420.
doi: 10.1007/s00438-018-1471-0 pmid: 29974305 |
[31] | 代西梅, 黄群策, 李国平, 等. 同源四倍体水稻花粉的发育特征[J]. 中国水稻科学, 2006, 20(2):165-170. |
Dai XM, Huang QC, Li GP, et al. Developmental characters of autotetraploid rice pollen[J]. Chin J Rice Sci, 2006, 20(2):165-170. | |
[32] |
He JH, Shahid MQ, Chen ZX, et al. Abnormal PMC microtubule distribution pattern and chromosome behavior resulted in low pollen fertility of an intersubspecific autotetraploid rice hybrid[J]. Plant Syst Evol, 2011, 291(3/4):257-265.
doi: 10.1007/s00606-010-0386-y URL |
[33] |
何金华, 程杏安, 陈志雄, 等. 同源四倍体水稻花粉母细胞减数分裂期间微管骨架组织和结构变化[J]. 作物学报, 2010, 36(10):1777-1785.
doi: 10.3724/SP.J.1006.2010.01777 |
He JH, Cheng XA, Chen ZX, et al. Changes in the pattern of organization of microtubules during meiosis in pollen mother cell of autotetraploid rice[J]. Acta Agron Sin, 2010, 36(10):1777-1785. | |
[34] |
Li X, Shahid MQ, Wu JW, et al. Comparative small RNA analysis of pollen development in autotetraploid and diploid rice[J]. Int J Mol Sci, 2016, 17(4):499.
doi: 10.3390/ijms17040499 URL |
[35] |
Li X, Shahid MQ, Xia J, et al. Analysis of small RNAs revealed differential expressions during pollen and embryo sac development in autotetraploid rice[J]. BMC Genomics, 2017, 18(1):129.
doi: 10.1186/s12864-017-3526-8 URL |
[36] |
Li X, Yu H, Jiao YM, et al. Genome-wide analysis of DNA polymorphisms, the methylome and transcriptome revealed that multiple factors are associated with low pollen fertility in autotetraploid rice[J]. PLoS One, 2018, 13(8):e0201854.
doi: 10.1371/journal.pone.0201854 URL |
[37] |
Li X, Shahid MQ, Wen MS, et al. Global identification and analysis revealed differentially expressed lncRNAs associated with meiosis and low fertility in autotetraploid rice[J]. BMC Plant Biol, 2020, 20(1):82.
doi: 10.1186/s12870-020-2290-0 URL |
[38] |
Wu J, Chen L, Shahid MQ, et al. Pervasive interactions of Sa and Sb loci cause high pollen sterility and abrupt changes in gene expression during meiosis that could be overcome by double neutral genes in autotetraploid rice[J]. Rice, 2017, 10(1):49.
doi: 10.1186/s12284-017-0188-8 URL |
[39] | 蔡得田, 陈建国, 陈冬玲, 等. 两个具多倍体减数分裂稳定性的多倍体水稻品系的选育[J]. 中国科学:C辑:生命科学, 2007, 37(2):217-226. |
Cai DT, Chen JG, Chen DL, et al. The breeding of two polyploid rice lines with the characteristic of polyploid meiosis stability[J]. Sci China:Ser C:Life Sci, 2007, 37(2):217-226. | |
[40] |
Guo H, Mendrikahy JN, Xie L, et al. Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis[J]. Sci Rep, 2017, 7:40139.
doi: 10.1038/srep40139 URL |
[41] |
He Y, Wei Q, Ge J, et al. Genome duplication effects on pollen development and the interrelated physiological substances in tetraploid rice with polyploid meiosis stability[J]. Planta, 2010, 232(5):1219-1228.
doi: 10.1007/s00425-010-1249-z URL |
[42] |
He YC, Ge J, Wei Q, et al. Using a polyploid meiosis stability (PMeS)line as a parent improves embryo development and the seed set rate of a tetraploid rice hybrid[J]. Can J Plant Sci, 2011, 91(2):325-335.
doi: 10.4141/CJPS09190 URL |
[43] |
Xiong YG, Gan L, Hu YP, et al. OsMND1 regulates early meiosis and improves the seed set rate in polyploid rice[J]. Plant Growth Regul, 2019, 87(2):341-356.
doi: 10.1007/s10725-019-00476-4 URL |
[44] |
Ghaleb MAA, Li C, Shahid MQ, et al. Heterosis analysis and underlying molecular regulatory mechanism in a wide-compatible neo-tetraploid rice line with long panicles[J]. BMC Plant Biol, 2020, 20(1):83.
doi: 10.1186/s12870-020-2291-z URL |
[45] |
Yu H, Shahid MQ, Li QH, et al. Production assessment and genome comparison revealed high yield potential and novel specific alleles associated with fertility and yield in neo-tetraploid rice[J]. Rice, 2020, 13(1):32.
doi: 10.1186/s12284-020-00387-3 URL |
[46] |
Yu Z, Haage K, Streit VE, et al. A large number of tetraploid Arabidopsis thaliana lines, generated by a rapid strategy, reveal high stability of neo-tetraploids during consecutive generations[J]. Theor Appl Genet, 2009, 118(6):1107-1119.
doi: 10.1007/s00122-009-0966-9 URL |
[47] |
Wu JW, Chen YM, Lin H, et al. Comparative cytological and transcriptome analysis revealed the normal pollen development process and up-regulation of fertility-related genes in newly developed tetraploid rice[J]. Int J Mol Sci, 2020, 21(19):7046.
doi: 10.3390/ijms21197046 URL |
[48] |
Bei XJ, Shahid MQ, Wu JW, et al. Re-sequencing and transcriptome analysis reveal rich DNA variations and differential expressions of fertility-related genes in neo-tetraploid rice[J]. PLoS One, 2019, 14(4):e0214953.
doi: 10.1371/journal.pone.0214953 URL |
[49] |
Yu H, Li Q, Li Y, et al. Genomics analyses reveal unique classification, population structure and novel allele of neo-tetraploid rice[J]. Rice, 2021, 14(1):16.
doi: 10.1186/s12284-021-00459-y URL |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[3] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[4] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[5] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[6] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[7] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[8] | 李怡君, 吴晨晨, 李睿, 王喆, 何山文, 韦善君, 张晓霞. 水稻内生细菌新资源分离培养方案探究[J]. 生物技术通报, 2023, 39(4): 201-211. |
[9] | 卢振万, 李雪琪, 黄金光, 周焕斌. 利用胞嘧啶碱基编辑技术创制耐草甘膦水稻[J]. 生物技术通报, 2023, 39(2): 63-69. |
[10] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[11] | 蒋铭轩, 李康, 罗亮, 刘建祥, 芦海平. 植物表达外源蛋白研究进展及展望[J]. 生物技术通报, 2023, 39(11): 110-122. |
[12] | 姜南, 石杨, 赵志慧, 李斌, 赵熠辉, 杨俊彪, 闫家铭, 靳雨璠, 陈稷, 黄进. 镉胁迫下水稻OsPT1的表达及功能分析[J]. 生物技术通报, 2023, 39(1): 166-174. |
[13] | 孔德真, 聂迎彬, 崔凤娟, 桑伟, 徐红军, 田笑明. 杂交小麦制种研究现状及展望[J]. 生物技术通报, 2023, 39(1): 95-103. |
[14] | 陈光, 李佳, 杜瑞英, 王旭. 水稻盐敏感突变体ss2的鉴定与基因功能分析[J]. 生物技术通报, 2022, 38(9): 158-166. |
[15] | 高晓蓉, 丁尧, 吕军. 芘降解菌Pseudomonas sp. PR3的植物促生特性及其对芘胁迫下水稻生长的影响[J]. 生物技术通报, 2022, 38(9): 226-236. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||