生物技术通报 ›› 2022, Vol. 38 ›› Issue (4): 242-252.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0964
王春艳1,2(), 腊贵晓3, 苏秀红1,2(), 李萌1,2, 董诚明1,2
收稿日期:
2021-07-28
出版日期:
2022-04-26
发布日期:
2022-05-06
通讯作者:
苏秀红,女,博士,教授,研究方向:中药资源学;E-mail: suxiuhong80@163.com作者简介:
王春艳,女,硕士研究生,研究方向:中药资源学;E-mail: 1739080605@qq.com
基金资助:
WANG Chun-yan1,2(), LA Gui-xiao3, SU Xiu-hong1,2(), LI Meng1,2, DONG Cheng-ming1,2
Received:
2021-07-28
Published:
2022-04-26
Online:
2022-05-06
摘要:
从地黄中开发优势菌种资源并分析促生特性,为开发地黄微生物专用促生菌肥提供基础。采用稀释平板法,以地黄不同时期根、茎、叶为材料分离内生细菌,根据形态学、生理生化、16S rRNA分析进行分类归属。选出54株内生细菌对产IAA、铁载体活性,溶磷以及固氮能力进行了评价,结果显示在不同时期共分离出512株内生细菌,将其归类为54组,每组选出1株进行检测,其中41株具有产IAA的能力;29株具有溶磷能力;28株具有产铁载体能力;25株具有固氮能力。该结果为研究地黄专用微生物促生菌肥提供参考,并为后续微生物促生菌肥应用到地黄大田实验中奠定基础。
王春艳, 腊贵晓, 苏秀红, 李萌, 董诚明. 地黄不同时期内生促生细菌的筛选及其促生特性分析[J]. 生物技术通报, 2022, 38(4): 242-252.
WANG Chun-yan, LA Gui-xiao, SU Xiu-hong, LI Meng, DONG Cheng-ming. Screening of Endophytic Bacteria from Rehmannia glutinosa at Different Stages and Analysis of Their Growth-promoting Characteristics[J]. Biotechnology Bulletin, 2022, 38(4): 242-252.
菌株 Strain | 最相近菌种 The closest strain | 登录号 Login number | 相似性 Similarity/% | 菌株 Strain | 最相近菌种 The closest strain | 登录号 Login number | 相似性 Similarity/% | |
---|---|---|---|---|---|---|---|---|
ER1 | Bacillus proteolyticus | NR157735 | 99.9 | ER28 | Bacillus paramycoides | MT124553 | 99.72 | |
ER2 | Bacillus methylotrophicus | KC790266 | 99.9 | ER29 | Pseudomonas plecoglossicida | MT124554 | 100.0 | |
ER3 | Bacillus toyoneusis | NR121761 | 100.0 | ER30 | Pseudomonas monteilii | MT124555 | 98.0 | |
ER4 | Bacillus licheniformis | MH842141 | 99.9 | ER31 | Pseudomonas taiwanensis | JF911384 | 100.0 | |
ER5 | Bacillus cereus | FJ501984 | 100.0 | ER32 | Pseudomonas aeruginosa | NR117678 | 100.0 | |
ER6 | Bacillus wiedmannii | MK088275 | 100.0 | ER33 | Pseudomonas fluorescens | MN256396 | 99.0 | |
ER7 | Bacillus amyloliquefacieus | KU291367 | 100.0 | ER34 | Pseudomonas oryzihabitans | JQ660200 | 100.0 | |
ER8 | Bacillus velezensis | MG996871 | 100.0 | ER35 | Pseudomonas psychrotolerans | KY882047 | 99.9 | |
ER9 | Bacillus siamensis | MN166187 | 100.0 | ER36 | Pseudomonas stutzeri | FJ768951 | 99.9 | |
ER10 | Bacillus subtilis | MK860021 | 100.0 | ER37 | Proteus mirabilis | MK332376 | 100.0 | |
ER11 | Bacillus anthracis | CP031642 | 99.9 | ER38 | Micrococcus luteus | MH045862 | 100.0 | |
ER12 | Bacillus aryabhattai | MK859946 | 100.0 | ER39 | Stenotrophomonas maltophilia | MH000623 | 100.0 | |
ER13 | Bacillus vallismortis | NR024696 | 100.0 | ER40 | Lysinibacillus parvibpronicapiens | NR114213 | 99.7 | |
ER14 | Bacillus oryzaecorticis | KU877642 | 99.9 | ER41 | Brachybacterium paraconglomeratum | NR025502 | 100.0 | |
ER15 | Bacillus aquimaris | KF358255 | 99.8 | ER42 | Agrobacterium tumefaciens | MN094859 | 99.9 | |
ER16 | Bacillus marisflavi | KX495310 | 99.8 | ER43 | Lysinibacillus fusiformis | KP980567 | 99.9 | |
ER17 | Bacillus sonerensis | MK860002 | 100.0 | ER44 | Enterobacter cloacae | KM538690 | 99.9 | |
ER18 | Bacillus thuringiensis | KJ769222 | 99.5 | ER45 | Enterobacter bugandensis | CP039453 | 99.8 | |
ER19 | Bacillus safensis | MK859936 | 100.0 | ER46 | Enterobacter hormaechei | CP027142 | 100.0 | |
ER20 | Bacillus simplex | KF818647 | 99.9 | ER47 | Enterobacter ludwigii | NR042349 | 99.9 | |
ER21 | Bacillus firmus | KP165527 | 99.9 | ER48 | Enterobacter xiangfangensis | MH200641 | 99.5 | |
ER22 | Bacillus altitudinis | KU663665 | 100.0 | ER49 | Enterobacter soli | NR117547 | 99.3 | |
ER23 | Bacillus flexus | KR999917 | 100.0 | ER50 | Terribacillus goriensis | CP008876 | 100.0 | |
ER24 | Bacillus horikoshii | CP020880 | 99.9 | ER51 | Kocuria rosea | MK696247 | 100.0 | |
ER25 | Bacillus tequilensis | MH762888 | 100.0 | ER52 | Brevibacterium frigoritolerans | KY753242 | 99.9 | |
ER26 | Bacillus pseudomycoides | MH578628 | 99.6 | ER53 | Halomonas hydrothermalis | CP023656 | 99.8 | |
ER27 | Bacillus mycoides | JN215520 | 99.6 | ER54 | Microbacterium barkeri | KY882051 | 99.6 |
表1 地黄内生细菌16S rRNA鉴定
Table 1 Identification of endophytic bacteria in R. glutinosa via16S rRNA
菌株 Strain | 最相近菌种 The closest strain | 登录号 Login number | 相似性 Similarity/% | 菌株 Strain | 最相近菌种 The closest strain | 登录号 Login number | 相似性 Similarity/% | |
---|---|---|---|---|---|---|---|---|
ER1 | Bacillus proteolyticus | NR157735 | 99.9 | ER28 | Bacillus paramycoides | MT124553 | 99.72 | |
ER2 | Bacillus methylotrophicus | KC790266 | 99.9 | ER29 | Pseudomonas plecoglossicida | MT124554 | 100.0 | |
ER3 | Bacillus toyoneusis | NR121761 | 100.0 | ER30 | Pseudomonas monteilii | MT124555 | 98.0 | |
ER4 | Bacillus licheniformis | MH842141 | 99.9 | ER31 | Pseudomonas taiwanensis | JF911384 | 100.0 | |
ER5 | Bacillus cereus | FJ501984 | 100.0 | ER32 | Pseudomonas aeruginosa | NR117678 | 100.0 | |
ER6 | Bacillus wiedmannii | MK088275 | 100.0 | ER33 | Pseudomonas fluorescens | MN256396 | 99.0 | |
ER7 | Bacillus amyloliquefacieus | KU291367 | 100.0 | ER34 | Pseudomonas oryzihabitans | JQ660200 | 100.0 | |
ER8 | Bacillus velezensis | MG996871 | 100.0 | ER35 | Pseudomonas psychrotolerans | KY882047 | 99.9 | |
ER9 | Bacillus siamensis | MN166187 | 100.0 | ER36 | Pseudomonas stutzeri | FJ768951 | 99.9 | |
ER10 | Bacillus subtilis | MK860021 | 100.0 | ER37 | Proteus mirabilis | MK332376 | 100.0 | |
ER11 | Bacillus anthracis | CP031642 | 99.9 | ER38 | Micrococcus luteus | MH045862 | 100.0 | |
ER12 | Bacillus aryabhattai | MK859946 | 100.0 | ER39 | Stenotrophomonas maltophilia | MH000623 | 100.0 | |
ER13 | Bacillus vallismortis | NR024696 | 100.0 | ER40 | Lysinibacillus parvibpronicapiens | NR114213 | 99.7 | |
ER14 | Bacillus oryzaecorticis | KU877642 | 99.9 | ER41 | Brachybacterium paraconglomeratum | NR025502 | 100.0 | |
ER15 | Bacillus aquimaris | KF358255 | 99.8 | ER42 | Agrobacterium tumefaciens | MN094859 | 99.9 | |
ER16 | Bacillus marisflavi | KX495310 | 99.8 | ER43 | Lysinibacillus fusiformis | KP980567 | 99.9 | |
ER17 | Bacillus sonerensis | MK860002 | 100.0 | ER44 | Enterobacter cloacae | KM538690 | 99.9 | |
ER18 | Bacillus thuringiensis | KJ769222 | 99.5 | ER45 | Enterobacter bugandensis | CP039453 | 99.8 | |
ER19 | Bacillus safensis | MK859936 | 100.0 | ER46 | Enterobacter hormaechei | CP027142 | 100.0 | |
ER20 | Bacillus simplex | KF818647 | 99.9 | ER47 | Enterobacter ludwigii | NR042349 | 99.9 | |
ER21 | Bacillus firmus | KP165527 | 99.9 | ER48 | Enterobacter xiangfangensis | MH200641 | 99.5 | |
ER22 | Bacillus altitudinis | KU663665 | 100.0 | ER49 | Enterobacter soli | NR117547 | 99.3 | |
ER23 | Bacillus flexus | KR999917 | 100.0 | ER50 | Terribacillus goriensis | CP008876 | 100.0 | |
ER24 | Bacillus horikoshii | CP020880 | 99.9 | ER51 | Kocuria rosea | MK696247 | 100.0 | |
ER25 | Bacillus tequilensis | MH762888 | 100.0 | ER52 | Brevibacterium frigoritolerans | KY753242 | 99.9 | |
ER26 | Bacillus pseudomycoides | MH578628 | 99.6 | ER53 | Halomonas hydrothermalis | CP023656 | 99.8 | |
ER27 | Bacillus mycoides | JN215520 | 99.6 | ER54 | Microbacterium barkeri | KY882051 | 99.6 |
菌株 Strain | 产IAA量 IAA yield/(mg·L-1) | 菌株 Strain | 产IAA量 IAA yield/(mg·L-1) | 菌株 Strain | 产IAA量 IAA yield/(mg·L-1) | 菌株 Strain | 产IAA量 IAA yield/(mg·L-1) |
---|---|---|---|---|---|---|---|
ER1 | 3.94±0.45r | ER31 | 11.24±0.18gh | ER18 | 6.52±0.26nop | ER44 | 27.29±1.86a |
ER2 | 9.22±0.29ij | ER32 | 5.21±0.22pqr | ER19 | 5.98±0.35opq | ER45 | 25.93±0.54a |
ER4 | 4.76±0.20qr | ER35 | 8.26±0.13jkl | ER20 | 7.60±0.08klmn | ER46 | 11.43±0.35fg |
ER5 | 5.91±0.19opq | ER36 | 10.74±0.11gh | ER21 | 8.64±0.18ijk | ER48 | 22.02±0.89b |
ER6 | 7.49±0.42klmn | ER37 | 13.89±0.24de | ER24 | 6.72±0.21mno | ER49 | 27.35±0.20a |
ER7 | 7.63±0.33klmn | ER38 | 4.12±0.33r | ER25 | 5.13±0.09pqr | ER50 | 6.96±0.50lmno |
ER8 | 5.19±0.34pqr | ER40 | 7.30±0.22klmno | ER27 | 8.08±0.12jklm | ER51 | 16.20±0.21c |
ER9 | 2.15±0.14s | ER41 | 16.05±0.14c | ER28 | 12.73±0.14ef | ER52 | 15.29±0.24cd |
ER10 | 15.64±0.25c | ER42 | 3.89±0.27r | ER29 | 7.50±0.69klmn | ER53 | 11.61±0.34fg |
ER12 | 13.8±0.94e | ER43 | 7.59±0.22klmn | ER30 | 7.01±0.15lmno | ER54 | 9.93±0.23hi |
ER17 | 6.37±0.25nop |
表2 内生细菌IAA分泌量
Table 2 IAA secretion from endophytic bacteria
菌株 Strain | 产IAA量 IAA yield/(mg·L-1) | 菌株 Strain | 产IAA量 IAA yield/(mg·L-1) | 菌株 Strain | 产IAA量 IAA yield/(mg·L-1) | 菌株 Strain | 产IAA量 IAA yield/(mg·L-1) |
---|---|---|---|---|---|---|---|
ER1 | 3.94±0.45r | ER31 | 11.24±0.18gh | ER18 | 6.52±0.26nop | ER44 | 27.29±1.86a |
ER2 | 9.22±0.29ij | ER32 | 5.21±0.22pqr | ER19 | 5.98±0.35opq | ER45 | 25.93±0.54a |
ER4 | 4.76±0.20qr | ER35 | 8.26±0.13jkl | ER20 | 7.60±0.08klmn | ER46 | 11.43±0.35fg |
ER5 | 5.91±0.19opq | ER36 | 10.74±0.11gh | ER21 | 8.64±0.18ijk | ER48 | 22.02±0.89b |
ER6 | 7.49±0.42klmn | ER37 | 13.89±0.24de | ER24 | 6.72±0.21mno | ER49 | 27.35±0.20a |
ER7 | 7.63±0.33klmn | ER38 | 4.12±0.33r | ER25 | 5.13±0.09pqr | ER50 | 6.96±0.50lmno |
ER8 | 5.19±0.34pqr | ER40 | 7.30±0.22klmno | ER27 | 8.08±0.12jklm | ER51 | 16.20±0.21c |
ER9 | 2.15±0.14s | ER41 | 16.05±0.14c | ER28 | 12.73±0.14ef | ER52 | 15.29±0.24cd |
ER10 | 15.64±0.25c | ER42 | 3.89±0.27r | ER29 | 7.50±0.69klmn | ER53 | 11.61±0.34fg |
ER12 | 13.8±0.94e | ER43 | 7.59±0.22klmn | ER30 | 7.01±0.15lmno | ER54 | 9.93±0.23hi |
ER17 | 6.37±0.25nop |
菌株 Strain | D/d | 溶磷量P-solubilizing capability /(mg·L-1) | pH | 菌株 Strain | D/d | 溶磷量P-solubilizing capability /(mg·L-1) | pH | 菌株 Strain | D/d | 溶磷量P-solubilizing capability /(mg·L-1) | pH |
---|---|---|---|---|---|---|---|---|---|---|---|
ER4 | + | 36.56±0.58k | 5.07±0.07ef | ER35 | +++ | 23.25±1.53n | 6.35±0.23a | ER24 | + | 19.03±0.91op | 4.54±0.29gh |
ER5 | ++ | 60.50±1.16i | 5.49±0.07bcd | ER36 | + | 82.95±0.98ef | 5.69±0.10bc | ER26 | ++ | 59.38±1.03i | 5.48±0.17bcde |
ER6 | +++ | 34.75±0.91kl | 5.88±0.14b | ER37 | + | 73.67±0.77g | 5.49±0.15bcd | ER29 | ++ | 79.52±1.74f | 79.52±1.74f |
ER7 | + | 7.25±0.82a | 6.47±0.06a | ER39 | ++ | 54.65±1.04j | 4.78±0.21fg | ER32 | +++ | 133.65±0.64a | 133.65±0.64a |
ER9 | +++ | 120.52±1.49b | 4.39±0.10gh | ER41 | ++ | 84.20±0.58e | 5.75±0.11bc | ER33 | ++ | 67.27±1.41h | 5.65±0.21bc |
ER10 | ++ | 59.85±1.40i | 5.41±0.09cde | ER42 | ++ | 59.29±2.32i | 4.37±0.1gh | ER48 | + | 66.25±0.77h | 5.48±0.12bcde |
ER12 | ++ | 15.92±0.64p | 6.34±0.07a | ER43 | ++ | 29.14±1.21m | 5.17±0.08def | ER50 | + | 6.32±0.28q | 5.64±0.13bc |
ER15 | + | 103.27±0.66d | 4.42±0.06gh | ER45 | + | 17.36±0.49p | 6.34±0.06a | ER51 | +++ | 112.91±0.61c | 4.58±0.18gh |
ER17 | +++ | 7.94±1.74a | 5.46±0.09bcde | ER46 | + | 22.69±0.35no | 5.34±0.12cde | ER53 | ++ | 32.20±0.77lm | 6.46±0.09a |
ER20 | + | 60.73±2.02i | 4.64±0.07gh | ER47 | + | 53.86±1.53j | 4.34±0.04h |
表3 内生细菌溶磷能力测定
Table 3 Determination of phosphorus dissolving capacity of endophytic bacteria(D/d)
菌株 Strain | D/d | 溶磷量P-solubilizing capability /(mg·L-1) | pH | 菌株 Strain | D/d | 溶磷量P-solubilizing capability /(mg·L-1) | pH | 菌株 Strain | D/d | 溶磷量P-solubilizing capability /(mg·L-1) | pH |
---|---|---|---|---|---|---|---|---|---|---|---|
ER4 | + | 36.56±0.58k | 5.07±0.07ef | ER35 | +++ | 23.25±1.53n | 6.35±0.23a | ER24 | + | 19.03±0.91op | 4.54±0.29gh |
ER5 | ++ | 60.50±1.16i | 5.49±0.07bcd | ER36 | + | 82.95±0.98ef | 5.69±0.10bc | ER26 | ++ | 59.38±1.03i | 5.48±0.17bcde |
ER6 | +++ | 34.75±0.91kl | 5.88±0.14b | ER37 | + | 73.67±0.77g | 5.49±0.15bcd | ER29 | ++ | 79.52±1.74f | 79.52±1.74f |
ER7 | + | 7.25±0.82a | 6.47±0.06a | ER39 | ++ | 54.65±1.04j | 4.78±0.21fg | ER32 | +++ | 133.65±0.64a | 133.65±0.64a |
ER9 | +++ | 120.52±1.49b | 4.39±0.10gh | ER41 | ++ | 84.20±0.58e | 5.75±0.11bc | ER33 | ++ | 67.27±1.41h | 5.65±0.21bc |
ER10 | ++ | 59.85±1.40i | 5.41±0.09cde | ER42 | ++ | 59.29±2.32i | 4.37±0.1gh | ER48 | + | 66.25±0.77h | 5.48±0.12bcde |
ER12 | ++ | 15.92±0.64p | 6.34±0.07a | ER43 | ++ | 29.14±1.21m | 5.17±0.08def | ER50 | + | 6.32±0.28q | 5.64±0.13bc |
ER15 | + | 103.27±0.66d | 4.42±0.06gh | ER45 | + | 17.36±0.49p | 6.34±0.06a | ER51 | +++ | 112.91±0.61c | 4.58±0.18gh |
ER17 | +++ | 7.94±1.74a | 5.46±0.09bcde | ER46 | + | 22.69±0.35no | 5.34±0.12cde | ER53 | ++ | 32.20±0.77lm | 6.46±0.09a |
ER20 | + | 60.73±2.02i | 4.64±0.07gh | ER47 | + | 53.86±1.53j | 4.34±0.04h |
菌株 Strain | 产铁载体 Iron-producing carrier | 产铁载体能力 Capacity of iron-producing carrier | 菌株 Strain | 产铁载体 Iron-producing carrier | 产铁载体能力 Capacity of iron-producing carrier | 菌株 Strain | 产铁载体 Iron-producing carrier | 产铁载体能力 Capacity of iron-producing carrier |
---|---|---|---|---|---|---|---|---|
ER1 | 0.29±0.03m | ++++ | ER13 | 0.28±0.01m | ++++ | ER36 | 0.32±0.03klm | ++++ |
ER3 | 0.31±0.03lm | ++++ | ER15 | 0.74±0.03ab | ++ | ER41 | 0.46±0.04fgh | +++ |
ER4 | 0.39±0.05hijkl | ++++ | ER16 | 0.69±0.03bc | ++ | ER43 | 0.16±0.01n | +++++ |
ER7 | 0.20±0.01n | +++++ | ER17 | 0.43±0.02hij | +++ | ER45 | 0.17±0.02n | +++++ |
ER8 | 0.66±0.01bc | ++ | ER24 | 0.33±0.02klm | ++++ | ER47 | 0.79±0.02a | ++ |
ER9 | 0.45±0.04gh | +++ | ER30 | 0.44±0.04hi | +++ | ER48 | 0.57±0.03de | +++ |
ER10 | 0.14±0.02n | +++++ | ER32 | 0.36±0.01ijklm | ++++ | ER49 | 0.53±0.05efg | +++ |
ER11 | 0.54±0.02def | +++ | ER33 | 0.47±0.01fgh | +++ | ER52 | 0.39±0.01hijk | ++++ |
ER12 | 0.35±0.03jklm | ++++ | ER35 | 0.57±0.03de | +++ | ER53 | 0.62±0.03cd | ++ |
ER22 | 0.42±0.03hij | +++ |
表4 内生细菌产铁载体的能力
Table 4 Abilities of producing iron carrier by endophytic bacteria
菌株 Strain | 产铁载体 Iron-producing carrier | 产铁载体能力 Capacity of iron-producing carrier | 菌株 Strain | 产铁载体 Iron-producing carrier | 产铁载体能力 Capacity of iron-producing carrier | 菌株 Strain | 产铁载体 Iron-producing carrier | 产铁载体能力 Capacity of iron-producing carrier |
---|---|---|---|---|---|---|---|---|
ER1 | 0.29±0.03m | ++++ | ER13 | 0.28±0.01m | ++++ | ER36 | 0.32±0.03klm | ++++ |
ER3 | 0.31±0.03lm | ++++ | ER15 | 0.74±0.03ab | ++ | ER41 | 0.46±0.04fgh | +++ |
ER4 | 0.39±0.05hijkl | ++++ | ER16 | 0.69±0.03bc | ++ | ER43 | 0.16±0.01n | +++++ |
ER7 | 0.20±0.01n | +++++ | ER17 | 0.43±0.02hij | +++ | ER45 | 0.17±0.02n | +++++ |
ER8 | 0.66±0.01bc | ++ | ER24 | 0.33±0.02klm | ++++ | ER47 | 0.79±0.02a | ++ |
ER9 | 0.45±0.04gh | +++ | ER30 | 0.44±0.04hi | +++ | ER48 | 0.57±0.03de | +++ |
ER10 | 0.14±0.02n | +++++ | ER32 | 0.36±0.01ijklm | ++++ | ER49 | 0.53±0.05efg | +++ |
ER11 | 0.54±0.02def | +++ | ER33 | 0.47±0.01fgh | +++ | ER52 | 0.39±0.01hijk | ++++ |
ER12 | 0.35±0.03jklm | ++++ | ER35 | 0.57±0.03de | +++ | ER53 | 0.62±0.03cd | ++ |
ER22 | 0.42±0.03hij | +++ |
菌株Strain | 菌膜Biofilm | nifH基因NifH gene | 菌株Strain | 菌膜Biofilm | nifH基因NifH gene | 菌株Strain | 菌膜Biofilm | nifH基因NifH gene |
---|---|---|---|---|---|---|---|---|
ER1 | - | - | ER28 | - | - | ER45 | - | - |
ER2 | - | - | ER29 | - | - | ER46 | - | - |
ER3 | + | + | ER30 | + | + | ER47 | - | - |
ER4 | + | + | ER31 | + | + | ER48 | - | - |
ER5 | + | + | ER32 | + | + | ER49 | + | + |
ER6 | - | - | ER33 | + | + | ER50 | + | + |
ER7 | + | + | ER34 | - | - | ER51 | + | + |
ER8 | - | - | ER35 | - | - | ER52 | - | - |
ER9 | + | + | ER36 | + | + | ER53 | + | + |
ER10 | + | + | ER37 | - | - | ER54 | + | + |
ER11 | - | - | ER38 | - | - | ER18 | - | - |
ER12 | + | + | ER39 | - | - | ER19 | - | - |
ER13 | - | - | ER40 | + | + | ER20 | + | + |
ER14 | - | - | ER41 | + | + | ER21 | - | - |
ER15 | - | - | ER42 | - | - | ER22 | - | - |
ER16 | + | + | ER43 | + | + | ER23 | + | + |
ER17 | - | - | ER44 | + | + | ER24 | - | - |
ER26 | - | - | ER27 | + | + | ER25 | - | - |
表5 内生细菌固氮能力的筛选
Table 5 Screening the nitrogen fixation abilities of endophytic bacteria
菌株Strain | 菌膜Biofilm | nifH基因NifH gene | 菌株Strain | 菌膜Biofilm | nifH基因NifH gene | 菌株Strain | 菌膜Biofilm | nifH基因NifH gene |
---|---|---|---|---|---|---|---|---|
ER1 | - | - | ER28 | - | - | ER45 | - | - |
ER2 | - | - | ER29 | - | - | ER46 | - | - |
ER3 | + | + | ER30 | + | + | ER47 | - | - |
ER4 | + | + | ER31 | + | + | ER48 | - | - |
ER5 | + | + | ER32 | + | + | ER49 | + | + |
ER6 | - | - | ER33 | + | + | ER50 | + | + |
ER7 | + | + | ER34 | - | - | ER51 | + | + |
ER8 | - | - | ER35 | - | - | ER52 | - | - |
ER9 | + | + | ER36 | + | + | ER53 | + | + |
ER10 | + | + | ER37 | - | - | ER54 | + | + |
ER11 | - | - | ER38 | - | - | ER18 | - | - |
ER12 | + | + | ER39 | - | - | ER19 | - | - |
ER13 | - | - | ER40 | + | + | ER20 | + | + |
ER14 | - | - | ER41 | + | + | ER21 | - | - |
ER15 | - | - | ER42 | - | - | ER22 | - | - |
ER16 | + | + | ER43 | + | + | ER23 | + | + |
ER17 | - | - | ER44 | + | + | ER24 | - | - |
ER26 | - | - | ER27 | + | + | ER25 | - | - |
[1] |
Hallmann J, Quadt-Hallmann A, Mahaffee WF, et al. Bacterial endophytes in agricultural crops[J]. Can J Microbiol, 1997, 43(10):895-914.
doi: 10.1139/m97-131 URL |
[2] | Xu CP, Zhao SS, Liu YS, et al. Chemical composition and comparison of the Rehmannia glutinosa Libosch oil using steam distillation and solvent extraction[J]. J Biol Active Prod From Nat, 2016, 6(1):25-31. |
[3] | 王丰青, 王丽娜, 智惊宇, 等. 不同品种地黄中毛蕊花糖苷的动态积累规律变化[J]. 中国实验方剂学杂志, 2017, 23(24):78-83. |
Wang FQ, Wang LN, Zhi JY, et al. Changes in dynamic accumulation of acteoside from different Rehmannia glutinosa cultivars[J]. Chin J Exp Tradit Med Formulae, 2017, 23(24):78-83. | |
[4] |
Feng WS, Li M, Zheng XK, et al. Two new ionone glycosides from the roots of Rehmannia glutinosa Libosch[J]. Nat Prod Res, 2015, 29(1):59-63.
doi: 10.1080/14786419.2014.958735 URL |
[5] |
Teng ZQ, Shen Y, Li J, et al. Construction and quality analysis of transgenic Rehmannia glutinosa containing TMV and CMV coat protein[J]. Molecules, 2016, 21(9):1134.
doi: 10.3390/molecules21091134 URL |
[6] |
Chao CH, Hsu JL, Chen MF, et al. Anti-hypertensive effects of Radix Rehmanniae and its active ingredients[J]. Nat Prod Res, 2020, 34(11):1547-1552.
doi: 10.1080/14786419.2018.1516660 URL |
[7] | 赵龙飞, 徐亚军, 邓振山, 等. 拮抗棉花枯萎病菌的地黄内生细菌筛选、鉴定和促生潜能[J]. 微生物学报, 2021, 61(8):2338-2357. |
Zhao LF, Xu YJ, Deng ZS, et al. Screening, identification and growth-promoting of antagonistic endophytic bacteria associated with Rehmannia glutinosa against Fusarium oxysporum f. sp. vasinfectum[J]. Acta Microbiol Sin, 2021, 61(8):2338-2357. | |
[8] |
Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system[J]. Appl Environ Microbiol, 2002, 68(8):3795-3801.
doi: 10.1128/AEM.68.8.3795-3801.2002 URL |
[9] | 唐玉娟. 山豆根内生细菌的促生活性菌株筛选及其促生作用研究[D]. 南宁:广西大学, 2017. |
Tang YJ. Selection of survivorous strains for endophytic bacteria of Sophora tonkinensis gagnep. and its promoting effect research[D]. Nanning:Guangxi University, 2017. | |
[10] |
Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores[J]. Anal Biochem, 1987, 160(1):47-56.
pmid: 2952030 |
[11] | Garrity G. Bergey’s manual of systematic bacteriology[J]. Bergeys Manual of Systematic Bacteriology, 1984, 38(4):443-491. |
[12] | 东秀珠, 蔡妙英, 等. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 418-419. |
Dong XZ, Cai MY, et al. Handbook for identification of common bacterial systems[M]. Beijing: Science Press, 2001: 418-419. | |
[13] | 李朝辉, 包艳, 苗成琪, 等. 梨炭疽菌拮抗细菌CL01的鉴定及其抗菌活性[J]. 中国生物防治学报, 2021, 37(4):837-845. |
Li CH, Bao Y, Miao CQ, et al. Identification of antagonistic bacteria CL01 against pear anthracnose and its anti-pathogenic activity[J]. Chin J Biol Control, 2021, 37(4):837-845. | |
[14] |
Schmidt CS, Lovecká P, Mrnka L, et al. Distinct communities of poplar endophytes on an unpolluted and a risk element-polluted site and their plant growth-promoting potential in vitro[J]. Microb Ecol, 2018, 75(4):955-969.
doi: 10.1007/s00248-017-1103-y pmid: 29127500 |
[15] | 王欢, 韩丽珍. 4株茶树根际促生菌菌株的鉴定及促生作用[J]. 微生物学通报, 2019, 46(3):548-562. |
Wang H, Han LZ. Identification of four plant growth-promoting rhizobacteria isolated from tea rhizosphere[J]. Microbiol China, 2019, 46(3):548-562. | |
[16] |
Andrade LF, de Souza GL, Nietsche S, et al. Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth[J]. J Microbiol, 2014, 52(1):27-34.
doi: 10.1007/s12275-014-3019-2 URL |
[17] | 李振东, 陈秀蓉, 李鹏, 等. 珠芽蓼内生固氮菌鉴定及其固氮基因分析[J]. 草地学报, 2009, 17(5):552-557. |
Li ZD, Chen XR, Li P, et al. Identification of endogenous nitrogen-fixing bacteria of Polygonum viviparum and analysis on nitrogen fixation gene(nifH)[J]. Acta Agrestia Sin, 2009, 17(5):552-557. | |
[18] |
Ali S, Isaacson J, Kroner Y, et al. Corn Sap bacterial endophytes and their potential in plant growth-promotion[J]. Environ Sustain, 2018, 1(4):341-355.
doi: 10.1007/s42398-018-00030-4 URL |
[19] | 许进娇, 宋萍, 封磊, 等. 雷公藤内生细菌的促生作用及其对雷公藤甲素生成的影响[J]. 应用生态学报, 2014, 25(6):1681-1687. |
Xu JJ, Song P, Feng L, et al. Growth-promoting effect and triptolide production regulation of endophytic bacteria from Tripterygium wilfordii[J]. Chin J Appl Ecol, 2014, 25(6):1681-1687. | |
[20] | 杨清香, 谢永生, 张昊, 等. 怀地黄活性内生菌的分离鉴定及抗菌抗肿瘤活性[J]. 微生物学通报, 2010, 37(10):1467-1474. |
Yang QX, Xie YS, Zhang H, et al. Isolation, identification and antagonism on microorganisms and cancer cells by active endophytes from Rehmannia glutinosa libosch[J]. Microbiol China, 2010, 37(10):1467-1474. | |
[21] | 王瑞飞, 康春晓, 许圆圆, 等. 怀地黄内生细菌的分离鉴定及抗菌活性[J]. 江苏农业科学, 2017, 45(13):82-86. |
Wang RF, Kang CX, Xu YY, et al. Isolation, identification and antibacterial activity of endophytic bacteria from Rehmannia glutinosa[J]. Jiangsu Agric Sci, 2017, 45(13):82-86. | |
[22] | 杜晓宁, 徐惠娟, 黄盼盼, 等. 宁夏枸杞内生细菌的多样性及其抑菌活性研究[J]. 微生物学通报, 2015, 42(9):1779-1787. |
Du XN, Xu HJ, Huang PP, et al. Diversity and antimicrobial activity of endophytic bacteria isolated from Lycium barbarum of Ningxia[J]. Microbiol China, 2015, 42(9):1779-1787. | |
[23] |
Dias ACF, Costa FEC, Andreote FD, et al. Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion[J]. World J Microbiol Biotechnol, 2009, 25(2):189-195.
doi: 10.1007/s11274-008-9878-0 URL |
[24] |
Forchetti G, Masciarelli O, Alemano S, et al. Endophytic bacteria in sunflower(Helianthus annuus L.):isolation, characterization, and production of jasmonates and abscisic acid in culture medium[J]. Appl Microbiol Biotechnol, 2007, 76(5):1145-1152.
pmid: 17657487 |
[25] |
王华笑, 刘环, 杨国平, 等. Bacillus amyloliquefaciens YM6对盐胁迫条件下玉米促生长作用研究[J]. 生物技术通报, 2019, 35(12):45-49.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0263 |
Wang HX, Liu H, Yang GP, et al. Effect of Bacillus amyloliquefaciens YM6 on growth promotion of maize under salt stress[J]. Biotechnol Bull, 2019, 35(12):45-49. | |
[26] |
Lee JC, Whang KS. Optimization of indole-3-acetic acid(IAA)production by Bacillus megaterium BM5[J]. Korean J Soil Sci Fertil, 2016, 49(5):461-468.
doi: 10.7745/KJSSF.2016.49.5.461 URL |
[27] | 翟颖妍, 崔传斌, 张家韬, 等. 一株拮抗烟草炭疽病的菌株ZYY-4的筛选、鉴定及生防活性测定[J]. 四川农业大学学报, 2020, 38(1):29-35. |
Zhai YY, Cui CB, Zhang JT, et al. Screening, identification and biocontrol activity of the strain ZYY-4 against tobacco anthracnose[J]. J Sichuan Agric Univ, 2020, 38(1):29-35. | |
[28] |
Rahman M, Prasad KN, Gupta S, et al. Prevalence and molecular characterization of new Delhi metallo-beta-lactamases in multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii from India[J]. Microb Drug Resist, 2018, 24(6):792-798.
doi: 10.1089/mdr.2017.0078 URL |
[29] | 马荣琴, 曹毅, 周俊雄, 等. 番茄根内生假单胞菌的分离与鉴定[J]. 生物技术, 2015, 25(6):564-568, 580. |
Ma RQ, Cao Y, Zhou JX, et al. Isolation and identification of endophytic Pseudomonas from tomato roots[J]. Biotechnology, 2015, 25(6):564-568, 580. | |
[30] |
Strano CP, Bella P, Licciardello G, et al. Role of secondary metabolites in the biocontrol activity of Pseudomonas corrugata and Pseudomonas mediterranea[J]. Eur J Plant Pathol, 2017, 149(1):103-115.
doi: 10.1007/s10658-017-1169-x URL |
[31] | 徐幼平, 臧荣春, 陈卫良, 等. 阴沟肠杆菌B8发酵液对植物的促生作用和IAA分析[J]. 浙江大学学报:农业与生命科学版, 2001, 27(3):282-284. |
Xu YP, Zang RC, Chen WL, et al. Promoting plant growth and IAA analysis of Enterobacter cloacae B8 fermentation liquid[J]. J Zhejiang Agric Univ:Agric& Life Sci, 2001, 27(3):282-284. | |
[32] |
Wilkinson KG, Sivasithamparam K, Dixon KW, et al. Identification and characterisation of bacteria associated with Western Australian orchids[J]. Soil Biol Biochem, 1994, 26(1):137-142.
doi: 10.1016/0038-0717(94)90205-4 URL |
[33] |
Ye DH, Li TX, Liu JB, et al. Characteristics of endophytic bacteria from Polygonum hydropiper and their use in enhancing P-phytoextraction[J]. Plant Soil, 2020, 448(1/2):647-663.
doi: 10.1007/s11104-020-04456-w URL |
[34] | 孙磊, 邵红, 刘琳, 等. 可产生铁载体的春兰根内生细菌多样性[J]. 微生物学报, 2011, 51(2):189-195. |
Sun L, Shao H, Liu L, et al. Diversity of siderophore-producing endophytic bacteria of Cymbidium goeringii roots[J]. Acta Microbiol Sin, 2011, 51(2):189-195. | |
[35] | 顾小平, 吴晓丽. 毛竹根际分离的地衣芽孢杆菌固氮特性研究[J]. 竹子研究汇刊, 1998, 17(4):59-63. |
Gu XP, Wu XL. Studies on nitrogen fixation characters of several Bacillus licheniformis strains from Phyllostachys pubescens roots[J]. J Bamboo Res, 1998, 17(4):59-63. | |
[36] | 王逸群, 郑金贵, 陈文列, 等. 水稻内生固氮细菌的分离及鹑鸡肠球菌在水稻根中的分布[J]. 热带亚热带植物学报, 2005, 13(4):296-302. |
Wang YQ, Zheng JG, Chen WL, et al. Isolation of an endophytic diazotroph from rice and the distribution of Enterococcus gallinarum in rice roots[J]. J Trop Subtrop Bot, 2005, 13(4):296-302. | |
[37] | 林红梅, 施建飞, 李岳桦, 等. 西洋参病原菌拮抗细菌的分离筛选与鉴定[J]. 吉林农业科学, 2013, 38(6):62-65, 75. |
Lin HM, Shi JF, Li YH, et al. Isolation and identification of antagonistic bacteria of Panax quinquefolium L. pathogeny fungus[J]. J Jilin Agric Sci, 2013, 38(6):62-65, 75. | |
[38] | 杨成德, 李振东, 陈秀蓉, 等. 高寒草地珠芽蓼内生拮抗固氮菌Z19的鉴定及其固氮功能[J]. 微生物学通报, 2014, 41(2):267-273. |
Yang CD, Li ZD, Chen XR, et al. Identification, pathogen inhibiting and nitrogen fixation of endophytic bacterium Z19 of Polygonum viviparum[J]. Microbiol China, 2014, 41(2):267-273. | |
[39] |
邓超, 杜秀娟, 黄涛, 等. 碳氮比对固氮菌株WN-F合成胞外多糖的影响[J]. 生物技术通报, 2018, 34(3):194-199.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0583 |
Deng C, Du XJ, Huang T, et al. The promotion of proper carbon nitrogen ratio in the synjournal of extracellular polysaccharide by nitrogen-fixing strains WN-F[J]. Biotechnol Bull, 2018, 34(3):194-199. | |
[40] | 丁延芹, 王建平, 刘元, 等. 几株固氮芽孢杆菌的分离与鉴定[J]. 农业生物技术学报, 2004, 12(6):690-697. |
Ding YQ, Wang JP, Liu Y, et al. Isolation and identification of nitrogen-fixing bacilli[J]. J Agric Biotechnol, 2004, 12(6):690-697. | |
[41] |
刘晔, 刘晓丹, 张林利, 等. 花生根际多功能高效促生菌的筛选鉴定及其效应研究[J]. 生物技术通报, 2017, 33(10):125-134.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0233 |
Liu Y, Liu XD, Zhang LL, et al. Screening, identification of multifunctional peanut root-promoting rhizobacteria and its promoting effects on peanuts(Arachis hypogaea L.)[J]. Biotechnol Bull, 2017, 33(10):125-134. | |
[42] | 李晴晴, 徐松, 赵维, 等. 根际微生物组介导的解淀粉芽孢杆菌FH-1对水稻的促生机制[J]. 微生物学报, 2019, 59(12):2410-2426. |
Li QQ, Xu S, Zhao W, et al. Rhizosphere microbiome mediated growth-promoting mechanisms of Bacillus amyloliquefaciens FH-1 on rice[J]. Acta Microbiol Sin, 2019, 59(12):2410-2426. | |
[43] | 郜晨. 尼瓦拉野生稻内生菌多样性及促生作用[D]. 广州:华南农业大学, 2018. |
Gao C. Diversity and plant growth promotion of endophytic bacteria isolated from Oryza nivara. Guangzhou:South China Agricultural University, 2018. | |
[44] | 钟宇舟, 余秀梅, 陈强, 等. 四川盆地大豆根瘤内生细菌的分离鉴定及促生效果[J]. 应用与环境生物学报, 2017, 23(1):46-53. |
Zhong YZ, Yu XM, Chen Q, et al. Isolation, identification and plant growth promotion ability evaluation of the endophytic bacteria isolated from soybean root nodule in Sichuan Basin[J]. Chin J Appl Environ Biol, 2017, 23(1):46-53. |
[1] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[2] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[3] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[4] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[5] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[6] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[7] | 徐红云, 吕俊, 于存. 根际溶磷伯克霍尔德菌Paraburkholderia spp.对马尾松苗的促生作用[J]. 生物技术通报, 2023, 39(6): 274-285. |
[8] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[9] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[10] | 李善家, 雷雨昕, 孙梦格, 刘海锋, 王兴敏. 种子内生细菌多样性与植物互馈作用研究进展[J]. 生物技术通报, 2023, 39(4): 166-175. |
[11] | 李怡君, 吴晨晨, 李睿, 王喆, 何山文, 韦善君, 张晓霞. 水稻内生细菌新资源分离培养方案探究[J]. 生物技术通报, 2023, 39(4): 201-211. |
[12] | 李琦, 杨晓蕾, 李晓林, 申友磊, 李建宏, 姚拓. 高寒草地燕麦根际解植酸磷促生菌鉴定及其优势菌假单胞菌属菌株功能特性[J]. 生物技术通报, 2023, 39(3): 243-253. |
[13] | 王凤婷, 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210. |
[14] | 杨东亚, 祁瑞雪, 李昭轩, 林薇, 马慧, 张雪艳. 黄瓜茄病镰刀菌拮抗芽孢杆菌的筛选、鉴定及促生效果[J]. 生物技术通报, 2023, 39(2): 211-220. |
[15] | 车永梅, 刘广超, 郭艳苹, 叶青, 赵方贵, 刘新. 一种耐盐复合菌剂的制备和促生作用研究[J]. 生物技术通报, 2023, 39(11): 217-225. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||