[1] |
李思迪, 侯信, 等. 外泌体:为高效药物投递策略提供天然的内源性纳米载体[J]. 化学进展, 2016, 28(Z2):353-362.
|
|
Li SD, Hou X, et al. Exosomes:provide naturally occurring endogenous nanocarriers for effective drug delivery strategies[J]. Prog Chem, 2016, 28(Z2):353-362.
|
[2] |
Turturici G, Tinnirello R, Sconzo G, et al. Extracellular membrane vesicles as a mechanism of cell-to-cell communication:advantages and disadvantages[J]. Am J Physiol Cell Physiol, 2014, 306(7):C621-C633.
doi: 10.1152/ajpcell.00228.2013
URL
|
[3] |
Mathivanan S, Simpson RJ. ExoCarta:a compendium of exosomal proteins and RNA[J]. Proteomics, 2009, 9(21):4997-5000.
doi: 10.1002/pmic.200900351
pmid: 19810033
|
[4] |
Keerthikumar S, Chisanga D, et al. ExoCarta:a web-based compendium of exosomal cargo[J]. J Mol Biol, 2016, 428(4):688-692.
doi: S0022-2836(15)00542-2
pmid: 26434508
|
[5] |
Antimisiaris S, Mourtas S, Marazioti A. Exosomes and exosome-inspired vesicles for targeted drug delivery[J]. Pharmaceutics, 2018, 10(4):218.
doi: 10.3390/pharmaceutics10040218
URL
|
[6] |
Luan X, Sansanaphongpricha K, Myers I, et al. Engineering exosomes as refined biological nanoplatforms for drug delivery[J]. Acta Pharmacol Sin, 2017, 38(6):754-763.
doi: 10.1038/aps.2017.12
pmid: 28392567
|
[7] |
He C, Zheng S, Luo Y, et al. Exosome theranostics:biology and translational medicine[J]. Theranostics, 2018, 8(1):237-255.
doi: 10.7150/thno.21945
URL
|
[8] |
Li SP, Lin ZX, Jiang XY, et al. Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools[J]. Acta Pharmacol Sin, 2018, 39(4):542-551.
doi: 10.1038/aps.2017.178
URL
|
[9] |
Zhang Y, Liu Y, Liu H, et al. Exosomes:biogenesis, biologic function and clinical potential[J]. Cell Biosci, 2019, 9:19.
doi: 10.1186/s13578-019-0282-2
pmid: 30815248
|
[10] |
Liao W, Du Y, Zhang CH, et al. Exosomes:The next generation of endogenous nanomaterials for advanced drug delivery and therapy[J]. Acta Biomater, 2019, 86:1-14.
doi: S1742-7061(18)30770-0
pmid: 30597259
|
[11] |
Armstrong JP, Holme MN, Stevens MM. Re-engineering extracellular vesicles as smart nanoscale therapeutics[J]. ACS Nano, 2017, 11(1):69-83.
doi: 10.1021/acsnano.6b07607
pmid: 28068069
|
[12] |
Li Z, Zhou X, Wei M, et al. In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9[J]. Nano Lett, 2019, 19(1):19-28.
doi: 10.1021/acs.nanolett.8b02689
URL
|
[13] |
Stubbs JD, Lekutis C, Singer KL, et al. cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences[J]. PNAS, 1990, 87(21):8417-8421.
pmid: 2122462
|
[14] |
Yi YS. Functional role of milk fat globule-epidermal growth factor VIII in macrophage-mediated inflammatory responses and inflammatory/autoimmune diseases[J]. Mediators Inflamm, 2016, 2016:5628486.
|
[15] |
Li BZ, Zhang HY, Pan HF, et al. Identification of MFG-E8 as a novel therapeutic target for diseases[J]. Expert Opin Ther Targets, 2013, 17(11):1275-1285.
doi: 10.1517/14728222.2013.829455
URL
|
[16] |
Théry C, Regnault A, Garin J, et al. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73[J]. J Cell Biol, 1999, 147(3):599-610.
doi: 10.1083/jcb.147.3.599
pmid: 10545503
|
[17] |
Matsuda A, Jacob A, Wu R, et al. Milk fat globule——EGF factor VIII ameliorates liver injury after hepatic ischemia-reperfusion[J]. J Surg Res, 2013, 180(1):e37-e46.
doi: 10.1016/j.jss.2012.03.021
URL
|
[18] |
Hanayama R, Tanaka M, Miyasaka K, et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice[J]. Science, 2004, 304(5674):1147-1150.
doi: 10.1126/science.1094359
URL
|
[19] |
Ait-Oufella H, Kinugawa K, Zoll J, et al. Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice[J]. Circulation, 2007, 115(16):2168-2177.
pmid: 17420351
|
[20] |
Hanayama R, Tanaka M, Miwa K, et al. Identification of a factor that links apoptotic cells to phagocytes[J]. Nature, 2002, 417(6885):182-187.
doi: 10.1038/417182a
URL
|
[21] |
Couto JR, Taylor MR, Godwin SG, et al. Cloning and sequence analysis of human breast epithelial antigen BA46 reveals an RGD cell adhesion sequence presented on an epidermal growth factor-like domain[J]. DNA Cell Biol, 1996, 15(4):281-286.
pmid: 8639264
|
[22] |
Andersen MH, Graversen H, Fedosov SN, et al. Functional analyses of two cellular binding domains of bovine lactadherin[J]. Biochemistry, 2000, 39(20):6200-6206.
doi: 10.1021/bi992221r
pmid: 10821695
|
[23] |
Hartman ZC, Wei J, et al. Increasing vaccine potency through exosome antigen targeting[J]. Vaccine, 2011, 29(50):9361-9367.
doi: 10.1016/j.vaccine.2011.09.133
URL
|
[24] |
Ye H, Li BH, Subramanian V, et al. NMR solution structure of C2 domain of MFG-E8 and insights into its molecular recognition with phosphatidylserine[J]. Biochim et Biophys Acta BBA Biomembr, 2013, 1828(3):1083-1093.
|
[25] |
Shi J, Heegaard CW, et al. Lactadherin binds selectively to membranes containing phosphatidyl-L-serine and increased curvature[J]. Biochim Biophys Acta, 2004, 1667(1):82-90.
|
[26] |
Kooijmans SAA, Gitz-Francois JJJM, Schiffelers RM, et al. Recombinant phosphatidylserine-binding nanobodies for targeting of extracellular vesicles to tumor cells:a plug-and-play approach[J]. Nanoscale, 2018, 10(5):2413-2426.
doi: 10.1039/c7nr06966a
pmid: 29334397
|
[27] |
Wakabayashi H, Griffiths AE, Fay PJ. Factor VIII lacking the C2 domain retains cofactor activity in vitro[J]. J Biol Chem, 2010, 285(33):25176-25184.
doi: 10.1074/jbc.M110.106906
pmid: 20529839
|
[28] |
Zeelenberg IS, Ostrowski M, et al. Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses[J]. Cancer Res, 2008, 68(4):1228-1235.
doi: 10.1158/0008-5472.CAN-07-3163
pmid: 18281500
|