生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 205-214.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0248
王子寅1,2,3(), 刘秉儒1,2,3(), 李子豪1,2,3, 赵晓玉1,2,3
收稿日期:
2022-03-01
出版日期:
2022-07-26
发布日期:
2022-08-09
作者简介:
王子寅,男,硕士研究生,研究方向:植物与微生物生态学;E-mail: 基金资助:
WANG Zi-yin1,2,3(), LIU Bing-ru1,2,3(), LI Zi-hao1,2,3, ZHAO Xiao-yu1,2,3
Received:
2022-03-01
Published:
2022-07-26
Online:
2022-08-09
摘要:
为了解干旱半干旱地区荒漠草原不同发育阶段柠条灌丛堆土壤细菌群落结构与多样性特征及影响因素,选取宁夏荒漠草原生长期、成熟期和衰退期3种不同发育阶段柠条灌丛堆,通过高通量测序技术分析其土壤细菌的群落结构及多样性特征,探究发育阶段和土壤理化因子演变对土壤细菌群落结构和功能的影响因素,最后利用PICRUSt方法预测不同发育阶段柠条灌丛堆土壤细菌的功能。结果表明,获得的15 383个细菌操作分类单元(operational taxonomic unit,OTU)属于50门146纲364目590科1 111属,其中生长期细菌数量最多,优势菌门为放线菌门(Actinobacteriota)、变形菌门(Proteobacteria)、酸杆菌门(Acidobacteriota)、绿弯菌门(Chloroflexi)等9个菌门,占微生物总数90%以上,优势菌门门类与大多数研究相似。柠条灌丛堆不同发育阶段土壤AP、EC存在显著差异,表现为成熟期>生长期>衰退期,其他土壤养分差异不显著,但数值同样表现为成熟期>生长期>衰退期。细菌群落的多样性和丰富度没有显著性差异,但数值上表现为成熟期最高。AP、SOC是柠条灌丛堆土壤细菌群落多样性的主要影响因子,EC、pH等其他环境因子也显著影响多个菌群丰富度。基于柠条灌丛堆不同发育阶段土壤细菌基因组的16S rRNA序列对其功能的预测发现,土壤细菌的主要功能表现为代谢方面。以上结果丰富了半干旱荒漠草原地区土壤微生物多样性的相关理论知识,为柠条植被的恢复提供一定的依据。
王子寅, 刘秉儒, 李子豪, 赵晓玉. 荒漠草原柠条灌丛堆不同发育阶段土壤细菌群落结构特征[J]. 生物技术通报, 2022, 38(7): 205-214.
WANG Zi-yin, LIU Bing-ru, LI Zi-hao, ZHAO Xiao-yu. Characteristics of Soil Bacterial Community Structure in the Different Developmental Stages of Desert Grassland Caragana korshinskii Kom. Nebkhas[J]. Biotechnology Bulletin, 2022, 38(7): 205-214.
发育阶段 Developmental stage | 有机碳SOC/(g·kg-1) | 总磷TP/(g·kg-1) | 速效磷AP/(mg·kg-1) | 总氮TN/(g·kg-1) | 电导率EC/(ms·cm-1) | pH |
---|---|---|---|---|---|---|
生长期Growing | 3.080±0.534a | 0.238±0.020a | 3.124±0.240b | 0.156±0.005a | 74.832±7.615ab | 7.638±0.029a |
成熟期Mature | 3.244±0.623a | 0.245±0.016a | 3.508±0.221a | 0.168±0.019a | 81.134±6.779a | 7.636±0.062a |
衰退期Recession | 2.646±0.370a | 0.232±0.012a | 2.924±0.228b | 0.148±0.023a | 69.434±9.328b | 7.656±0.030a |
表1 不同发育阶段柠条灌丛堆土壤理化性质
Table 1 Soil physical and chemical properties of Caragana korshinskii Kom. Nebkhas at different developmental stages
发育阶段 Developmental stage | 有机碳SOC/(g·kg-1) | 总磷TP/(g·kg-1) | 速效磷AP/(mg·kg-1) | 总氮TN/(g·kg-1) | 电导率EC/(ms·cm-1) | pH |
---|---|---|---|---|---|---|
生长期Growing | 3.080±0.534a | 0.238±0.020a | 3.124±0.240b | 0.156±0.005a | 74.832±7.615ab | 7.638±0.029a |
成熟期Mature | 3.244±0.623a | 0.245±0.016a | 3.508±0.221a | 0.168±0.019a | 81.134±6.779a | 7.636±0.062a |
衰退期Recession | 2.646±0.370a | 0.232±0.012a | 2.924±0.228b | 0.148±0.023a | 69.434±9.328b | 7.656±0.030a |
发育阶段 Developmental stage | 序列数 Sequence number | Shannon指数 Shannon index | ACE指数 ACE index | Chao 1指数 Chao 1 index | 覆盖度 Coverage/% |
---|---|---|---|---|---|
生长期Growing | 69731±1774a | 6.828±0.024a | 5746.43±318.25a | 5413.55±168.93a | 95.66±0.17a |
成熟期Mature | 62230±4634b | 6.853±0.066a | 5810.29±472.11a | 5572.59±297.17a | 95.52±0.27a |
衰退期Recession | 56050±3653c | 6.852±0.030a | 5736.14±296.62a | 5435.89±163.83a | 95.65±0.14a |
表2 不同发育阶段柠条灌丛堆土壤细菌群落多样性
Table 2 Soil community diversity of C. korshinskii Kom. nebkhas at different developmental stages
发育阶段 Developmental stage | 序列数 Sequence number | Shannon指数 Shannon index | ACE指数 ACE index | Chao 1指数 Chao 1 index | 覆盖度 Coverage/% |
---|---|---|---|---|---|
生长期Growing | 69731±1774a | 6.828±0.024a | 5746.43±318.25a | 5413.55±168.93a | 95.66±0.17a |
成熟期Mature | 62230±4634b | 6.853±0.066a | 5810.29±472.11a | 5572.59±297.17a | 95.52±0.27a |
衰退期Recession | 56050±3653c | 6.852±0.030a | 5736.14±296.62a | 5435.89±163.83a | 95.65±0.14a |
图3 门水平物种相对丰度差异分析 * 0.01<P≤0.05,** 0.001<P≤0.01,*** P ≤ 0.001,下同
Fig. 3 Analysis on the relative abundance differences of dominant fungi at the phylum level
图4 门水平的土壤细菌优势类群与环境因子相关性热图
Fig. 4 Heat map of the correlation between dominant ant groups of soil bacterial and environmental factors based on phylum level
一级通路 Pathway level 1 | 二级通路Pathway level 2 | 生长期 Growing | 占比 Percentage/% | 成熟期 Mature | 占比 Percentage/% | 衰退期Recession | 占比 Percentage/% |
---|---|---|---|---|---|---|---|
代谢Metabolism | 全局概况图Global and overview maps | 35234604 | 40.64 | 35808222 | 40.61 | 35369151 | 40.70 |
碳水化合物代谢Carbohydrate metabolism | 7961526.76 | 9.18 | 8095202.2 | 9.18 | 8011233 | 9.22 | |
氨基酸代谢Amino acid metabolism | 7180071.5 | 8.28 | 7313111.6 | 8.29 | 7204390 | 8.29 | |
能量代谢Energy metabolism | 3897443.61 | 4.50 | 3946546.9 | 4.48 | 3902439 | 4.49 | |
辅酶和维生素代谢Metabolism of cofactors and vitamins | 3698076.74 | 4.27 | 3754449.3 | 4.26 | 3702735 | 4.26 | |
核苷酸代谢Nucleotide metabolism | 2042528.25 | 2.36 | 2069459.1 | 2.35 | 2045558 | 2.35 | |
脂质代谢Lipid metabolism | 1881022.7 | 2.17 | 1931092.1 | 2.19 | 1894049 | 2.18 | |
外源生物降解与代谢Xenobiotics biodegradation and metabolism | 1731831.36 | 2.00 | 1800961.4 | 2.04 | 1737606 | 2.00 | |
其他次生代谢产物的生物合成Biosynthesis of other secondary metabolites | 1366994.13 | 1.58 | 1385902.6 | 1.57 | 1372414 | 1.58 | |
其他氨基酸代谢Metabolism of other amino acids | 1312324.37 | 1.51 | 1349247.2 | 1.53 | 1317989 | 1.52 | |
萜类化合物和聚酮类化合物代谢Metabolism of terpenoids and polyketides | 987922.99 | 1.14 | 1005755.7 | 1.14 | 993177 | 1.14 | |
聚糖生物合成和代谢Glycan biosynthesis and metabolism | 982742.63 | 1.13 | 991037.36 | 1.12 | 989105.5 | 1.14 | |
遗传信息处理 Genetic information processing | 转译Translation | 2612652.11 | 3.01 | 2617872.7 | 2.97 | 2614704 | 3.01 |
复制和修复Replication and repair | 2079265.69 | 2.40 | 2099073.8 | 2.38 | 2079876 | 2.39 | |
折叠、排序和退化Folding,sorting and degradation | 1218889.45 | 1.41 | 1231163.4 | 1.40 | 1218668 | 1.40 | |
环境信息处理Environmental information processing | 膜运输Membrane transport | 2349219.64 | 2.71 | 2396698.2 | 2.72 | 2336902 | 2.69 |
信号转导Signal transduction | 1968830.46 | 2.27 | 2004003.8 | 2.27 | 1961715 | 2.26 | |
细胞过程Cellular processes | 细胞群落-原核生物Cellular community - prokaryotes | 1954704.28 | 2.25 | 1986461.1 | 2.25 | 1955751 | 2.25 |
表3 土壤细菌群落中相对丰度>1%的二级功能丰度表
Table 3 Secondary functional abundance table with relative abundance > 1% in the soil bacterial community
一级通路 Pathway level 1 | 二级通路Pathway level 2 | 生长期 Growing | 占比 Percentage/% | 成熟期 Mature | 占比 Percentage/% | 衰退期Recession | 占比 Percentage/% |
---|---|---|---|---|---|---|---|
代谢Metabolism | 全局概况图Global and overview maps | 35234604 | 40.64 | 35808222 | 40.61 | 35369151 | 40.70 |
碳水化合物代谢Carbohydrate metabolism | 7961526.76 | 9.18 | 8095202.2 | 9.18 | 8011233 | 9.22 | |
氨基酸代谢Amino acid metabolism | 7180071.5 | 8.28 | 7313111.6 | 8.29 | 7204390 | 8.29 | |
能量代谢Energy metabolism | 3897443.61 | 4.50 | 3946546.9 | 4.48 | 3902439 | 4.49 | |
辅酶和维生素代谢Metabolism of cofactors and vitamins | 3698076.74 | 4.27 | 3754449.3 | 4.26 | 3702735 | 4.26 | |
核苷酸代谢Nucleotide metabolism | 2042528.25 | 2.36 | 2069459.1 | 2.35 | 2045558 | 2.35 | |
脂质代谢Lipid metabolism | 1881022.7 | 2.17 | 1931092.1 | 2.19 | 1894049 | 2.18 | |
外源生物降解与代谢Xenobiotics biodegradation and metabolism | 1731831.36 | 2.00 | 1800961.4 | 2.04 | 1737606 | 2.00 | |
其他次生代谢产物的生物合成Biosynthesis of other secondary metabolites | 1366994.13 | 1.58 | 1385902.6 | 1.57 | 1372414 | 1.58 | |
其他氨基酸代谢Metabolism of other amino acids | 1312324.37 | 1.51 | 1349247.2 | 1.53 | 1317989 | 1.52 | |
萜类化合物和聚酮类化合物代谢Metabolism of terpenoids and polyketides | 987922.99 | 1.14 | 1005755.7 | 1.14 | 993177 | 1.14 | |
聚糖生物合成和代谢Glycan biosynthesis and metabolism | 982742.63 | 1.13 | 991037.36 | 1.12 | 989105.5 | 1.14 | |
遗传信息处理 Genetic information processing | 转译Translation | 2612652.11 | 3.01 | 2617872.7 | 2.97 | 2614704 | 3.01 |
复制和修复Replication and repair | 2079265.69 | 2.40 | 2099073.8 | 2.38 | 2079876 | 2.39 | |
折叠、排序和退化Folding,sorting and degradation | 1218889.45 | 1.41 | 1231163.4 | 1.40 | 1218668 | 1.40 | |
环境信息处理Environmental information processing | 膜运输Membrane transport | 2349219.64 | 2.71 | 2396698.2 | 2.72 | 2336902 | 2.69 |
信号转导Signal transduction | 1968830.46 | 2.27 | 2004003.8 | 2.27 | 1961715 | 2.26 | |
细胞过程Cellular processes | 细胞群落-原核生物Cellular community - prokaryotes | 1954704.28 | 2.25 | 1986461.1 | 2.25 | 1955751 | 2.25 |
[1] |
Zou YJ, Du F, Zhang HJ, et al. Evaluation of korshinsk peashrub(Caragana korshinskii kom. )as a substrate for the cultivation of Pleurotus eryngii[J]. Waste Biomass Valorization, 2019, 10(10):2879-2885.
doi: 10.1007/s12649-018-0301-2 URL |
[2] |
Zhang ZY, Yang Q, Zhang CL, et al. A CkDREB1 gene isolated from Caragana korshinskii Kom. enhances Arabidopsis drought and cold tolerance[J]. Braz J Bot, 2019, 42(1):97-105.
doi: 10.1007/s40415-018-0509-1 URL |
[3] | 王子寅, 刘秉儒, 牟红霞, 等. 荒漠草原不同发育阶段柠条灌丛堆土壤真菌群落多样性特征研究[J]. 干旱地区农业研究, 2022(3):218-227. |
Wang ZY, Liu BR, Mou HX, et al. Diversity characteristics at different development stages of Caragana korshinskii Kom. Nebkhas in desert steppe[J]. Agric Res Arid Areas, 2022(3):218-227. | |
[4] |
Alfaro FD, Manzano M, Almiray C, et al. Soil bacterial community structure of fog-dependent Tillandsia landbeckii dunes in the Atacama Desert[J]. Plant Syst Evol, 2021, 307(5):1-11.
doi: 10.1007/s00606-020-01732-1 URL |
[5] |
Legay N, Baxendale C, Grigulis K, et al. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities[J]. Ann Bot, 2014, 114(5):1011-1021.
doi: 10.1093/aob/mcu169 URL |
[6] | 杨阳, 章妮, 蒋莉莉, 等. 青海湖高寒草地土壤理化性质及微生物群落特征对模拟降水的响应[J]. 草地学报, 2021, 29(5):1043-1052. |
Yang Y, Zhang N, Jiang LL, et al. Effects of simulated precipitation on soil edaphic physicochemical factors and microbial community characteristics in bird island of Qinghai Lake on the Tibetan Plateau[J]. Acta Agrestia Sin, 2021, 29(5):1043-1052. | |
[7] | 卞莹莹, 张志敏, 付镇, 等. 荒漠草原区不同植被恢复模式土壤微生物菌落分布特征及其与土壤理化性质的相关性[J]. 草地学报, 2021, 29(4):655-663. |
Bian YY, Zhang ZM, Fu Z, et al. Distribution characteristics of soil microbial communities of different vegetation restoration models and their correlation with soil physical and chemical properties in desert steppe[J]. Acta Agrestia Sin, 2021, 29(4):655-663. | |
[8] | Nacke H, Thürmer A, Wollherr A, et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils[J]. PLoS One, 2011, 6(2):e17000. |
[9] | 于瑞鑫, 王磊, 杨新国, 等. 平茬柠条的土壤水分动态及生理特征[J]. 生态学报, 2019, 39(19):7249-7257. |
Yu RX, Wang L, Yang XG, et al. Soil moisture dynamics and physiological characteristics of moving of Caragana intermedia[J]. Acta Ecol Sin, 2019, 39(19):7249-7257. | |
[10] | 梁香寒, 张克斌, 乔厦. 半干旱黄土区柠条林土壤水分和养分与群落多样性关系[J]. 生态环境学报, 2019, 28(9):1748-1756. |
Liang XH, Zhang KB, Qiao X. Relationship between soil moisture and nutrients and plant diversity of Caragana microphylla community in semi-arid loess region[J]. Ecol Environ Sci, 2019, 28(9):1748-1756. | |
[11] | 邱述金, 崔清亮, 武志明, 等. 不同龄期柠条茎秆的拉剪强度试验与分析[J]. 山西农业大学学报:自然科学版, 2019, 39(6):107-112. |
Qiu SJ, Cui QL, Wu ZM, et al. Shear strength of stalks of Caraganakorshinskii at different ages[J]. J Shanxi Agric Univ Nat Sci Ed, 2019, 39(6):107-112. | |
[12] | 许伟, 贺学礼, 孙茜, 等. 塞北荒漠草原柠条锦鸡儿AM真菌的空间分布[J]. 生态学报, 2015, 35(4):1124-1133. |
Xu W, He XL, Sun Q, et al. The spatial distribution of arbuscular mycorrhizal fungi in the rhizosphere of Caragana korshinskii in Saibei desert steppe[J]. Acta Ecol Sin, 2015, 35(4):1124-1133. | |
[13] | 刘秉儒, 牛宋芳, 张文文. 荒漠草原区土壤粒径组成对柠条根际土壤微生物数量及酶活性的影响[J]. 生态学报, 2019, 39(24):9171-9178. |
Liu BR, Niu SF, Zhang WW. Effects of soil particle size on enzyme activities and the amount of soil microorganism in rhizosphere of Caragana korshinskii in desert steppe[J]. Acta Ecol Sin, 2019, 39(24):9171-9178. | |
[14] | 沈聪, 刘爽, 苏建宇, 等. 半干旱荒漠区柠条根际细菌群落结构与功能[J]. 基因组学与应用生物学, 2021, 40(Z4):3508-3517. |
Shen C, Liu S, Su JY, et al. Rhizosphere bacterial community structure and function of Caragana korshinskii in semiarid desert area[J]. Genom Appl Biol, 2021, 40(Z4):3508-3517. | |
[15] | 吴旭东, 蒋齐, 任小玢, 等. 降水水平对荒漠草原生物土壤结皮碳、氮和微生物的影响[J]. 草业学报, 2021, 30(7):34-43. |
Wu XD, Jiang Q, Ren XF, et al. Effects of precipitation on carbon, nitrogen and microbial characteristics of biological soil crusts in a desert steppe of Northern China[J]. Acta Prataculturae Sin, 2021, 30(7):34-43. | |
[16] | 熊小刚, 韩兴国. 内蒙古半干旱草原灌丛化过程中小叶锦鸡儿引起的土壤碳、氮资源空间异质性分布[J]. 生态学报, 2005, 25(7):1678-1683. |
Xiong XG, Han XG. Spatial heterogeneity in soil carbon and nitrogen resources, caused by Caragana microphylla, in the thicketization of semiarid grassland, Inner Mongolia[J]. Acta Ecol Sin, 2005, 25(7):1678-1683. | |
[17] | 刘秉儒. 生态数据分析与建模[M]. 银川: 宁夏人民教育出版社, 2019. |
Liu BR. Ecological data analysis and modeling[M]. Yinchuan: Ningxia People’s Education Press, 2019. | |
[18] | 刘晓华, 魏天兴. 高通量测序分析黄土高原退耕还林区土壤细菌群落特征[J]. 环境科学, 2021, 42(9):4489-4499. |
Liu XH, Wei TX. High-throughput sequencing analysis of soil bacterial community in the grain for green project areas of the loess plateau[J]. Environ Sci, 2021, 42(9):4489-4499. | |
[19] | 杨阳, 刘秉儒, 宋乃平, 等. 人工柠条灌丛密度对荒漠草原土壤养分空间分布的影响[J]. 草业学报, 2014, 23(5):107-115. |
Yang Y, Liu BR, Song NP, et al. The effect of planted Caragana density on the spatial distribution of soil nutrients in desert steppe[J]. Acta Prataculturae Sin, 2014, 23(5):107-115. | |
[20] | 张飞, 陈云明, 王耀凤, 等. 黄土丘陵半干旱区柠条林对土壤物理性质及有机质的影响[J]. 水土保持研究, 2010, 17(3):105-109. |
Zhang F, Chen YM, Wang YF, et al. Effects of Caragana korshinskii plantation on soil physical properties and organic matter in semi-arid loess hilly region[J]. Res Soil Water Conserv, 2010, 17(3):105-109. | |
[21] |
Li DF, Shao MA. Soil organic carbon and influencing factors in different landscapes in an arid region of northwestern China[J]. CATENA, 2014, 116:95-104.
doi: 10.1016/j.catena.2013.12.014 URL |
[22] | 刘佳楠, 刘任涛, 赵娟, 等. 沙地柠条灌丛枯落叶输入特征及对土壤理化性质的影响[J]. 干旱区资源与环境, 2018, 32(11):169-175. |
Liu JN, Liu RT, Zhao J, et al. Leaflitter input of Caragana kornshinskii and its effect on soil properties in desertified grassland[J]. J Arid Land Resour Environ, 2018, 32(11):169-175. | |
[23] | 陈鸿洋, 尚振艳, 傅华, 等. 荒漠区不同大小灌丛周围土壤微生物生物量及活性特征[J]. 草业学报, 2015, 24(2):70-76. |
Chen HY, Shang ZY, Fu H, et al. Soil microbial biomass and activity under desert shrub canopies[J]. Acta Prataculturae Sin, 2015, 24(2):70-76. | |
[24] | 裴世芳, 傅华, 陈亚明, 等. 放牧和围封下霸王灌丛对土壤肥力的影响[J]. 中国沙漠, 2004, 24(6):103-107. |
Pei SF, Fu H, Chen YM, et al. Influence of Z. xanthoxylum shrubs on soil fertility in enclosure and grazing conditions[J]. J Desert Res, 2004, 24(6):103-107. | |
[25] |
Barness G, Rodriguez Zaragoza S, Shmueli I, et al. Vertical distribution of a soil microbial community as affected by plant ecophysiological adaptation in a desert system[J]. Microb Ecol, 2009, 57(1):36-49.
doi: 10.1007/s00248-008-9396-5 pmid: 18521656 |
[26] |
Leloup J, Baude M, Nunan N, et al. Unravelling the effects of plant species diversity and aboveground litter input on soil bacterial communities[J]. Geoderma, 2018, 317:1-7.
doi: 10.1016/j.geoderma.2017.12.018 URL |
[27] |
Zeng QC, An SS, Liu Y, et al. Biogeography and the driving factors affecting forest soil bacteria in an arid area[J]. Sci Total Environ, 2019, 680:124-131.
doi: 10.1016/j.scitotenv.2019.04.184 URL |
[28] |
Kim M, Lim HS, Hyun CU, et al. Local-scale variation of soil bacterial communities in ice-free regions of maritime Antarctica[J]. Soil Biol Biochem, 2019, 133:165-173.
doi: 10.1016/j.soilbio.2019.03.011 URL |
[29] | 关健飞, 曹阳. 黑龙江省表层冻土细菌群落结构组成和功能特征[J]. 生态学报, 2020, 40(14):4929-4941. |
Guan JF, Cao Y. Bacterial community structure analysis of surface frozen soil in Heilongjiang Province[J]. Acta Ecol Sin, 2020, 40(14):4929-4941. | |
[30] |
Xu SQ, Wang YD, Guo CC, et al. Comparison of microbial community composition and diversity in native coastal wetlands and wetlands that have undergone long-term agricultural reclamation[J]. Wetlands, 2017, 37(1):99-108.
doi: 10.1007/s13157-016-0843-7 URL |
[31] | 戴雅婷, 闫志坚, 解继红, 等. 基于高通量测序的两种植被恢复类型根际土壤细菌多样性研究[J]. 土壤学报, 2017, 54(3):735-748. |
Dai YT, Yan ZJ, Xie JH, et al. Soil bacteria diversity in rhizosphere under two types of vegetation restoration based on high throughput sequencing[J]. Acta Pedol Sin, 2017, 54(3):735-748. | |
[32] | 魏鹏, 安沙舟, 董乙强, 等. 基于高通量测序的准噶尔盆地荒漠土壤细菌多样性及群落结构特征[J]. 草业学报, 2020, 29(5):182-190. |
Wei P, An SZ, Dong YQ, et al. A high-throughput sequencing evaluation of bacterial diversity and community structure of the desert soil in the Junggar Basin[J]. Acta Prataculturae Sin, 2020, 29(5):182-190. | |
[33] | 纳小凡, 郑国琦, 彭励, 等. 不同种植年限宁夏枸杞根际微生物多样性变化[J]. 土壤学报, 2016, 53(1):241-252. |
Na XF, Zheng GQ, Peng L, et al. Microbial biodiversity in rhizosphere of Lycium bararum L. relative to cultivation history[J]. Acta Pedol Sin, 2016, 53(1):241-252. | |
[34] |
Kim MJ, Do H, Cho G, et al. Comparison of microbial community of rhizosphere and endosphere in kiwifruit[J]. Plant Pathol J, 2019, 35(6):705-711.
doi: 10.5423/PPJ.NT.08.2019.0216 URL |
[1] | 陈楚雯, 李洁, 赵瑞鹏, 刘媛, 吴锦波, 李志雄. 藏鸡GPX3基因的克隆、组织表达谱研究及功能预测[J]. 生物技术通报, 2023, 39(3): 311-320. |
[2] | 李颖, 龙长梅, 蒋标, 韩丽珍. 两株PGPR菌株的花生定殖及对根际细菌群落结构的影响[J]. 生物技术通报, 2022, 38(9): 237-247. |
[3] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[4] | 高惠惠, 贾晨波, 韩琴, 苏建宇, 徐春燕. 宁杞7号枸杞根腐病发生的微生物学机制[J]. 生物技术通报, 2022, 38(12): 244-251. |
[5] | 刘爽, 姚佳妮, 沈聪, 代金霞. 荒漠植物柠条根际土壤nifH基因荧光定量及固氮菌多样性分析[J]. 生物技术通报, 2022, 38(12): 252-262. |
[6] | 颜珲璘, 芦光新, 邓晔, 顾松松, 颜程良, 马坤, 赵阳安, 张海娟, 王英成, 周学丽, 窦声云. 高寒地区根瘤菌拌种对禾/豆混播土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(10): 204-215. |
[7] | 刘传和, 贺涵, 何秀古, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 不同连作年限菠萝园土壤差异代谢物和细菌群落结构分析[J]. 生物技术通报, 2021, 37(8): 162-175. |
[8] | 吕燕, 刘建利, 李靖宇, 候琳琳, 孙敏, 苟琪. 不同品种和产区宁夏枸杞根系AMF多样性[J]. 生物技术通报, 2021, 37(6): 36-48. |
[9] | 章妮, 暴涵, 左弟召, 陈克龙. 降水变化驱动下的高寒湿地产甲烷菌群落特征变化[J]. 生物技术通报, 2021, 37(11): 276-284. |
[10] | 王宏杰, 刘绍东, 刘瑞华, 张思平, 杨君, 庞朝友. 轮作对棉花根际土壤细菌群落的影响[J]. 生物技术通报, 2020, 36(9): 117-124. |
[11] | 黄婷, 方源, 冯舟, 沈和, 聂勇, 郑鑫, 汪家权, 许子牧. 高通量测序技术解析中学校园细菌群落的特征组成[J]. 生物技术通报, 2020, 36(8): 96-103. |
[12] | 张永敏, 王天慧, 王萍. 沉积物中菲高效降解菌群的筛选鉴定及降解特性[J]. 生物技术通报, 2020, 36(6): 128-135. |
[13] | 王永妍, 赵炳赫, 梁广钰, 李云, 徐仰仓. 不同季节使用微生态制剂后养殖海水细菌群落特征[J]. 生物技术通报, 2020, 36(2): 126-133. |
[14] | 张盈, 吴小虎, 李晓刚, 段婷婷, 徐军, 董丰收, 刘新刚, 郑永权. 土壤微生物对异噁草酮连续施用的响应[J]. 生物技术通报, 2020, 36(12): 64-74. |
[15] | 康捷, 章淑艳, 韩韬, 孙志梅. 麻山药不同生长时期根际土壤微生物多样性及群落结构特征[J]. 生物技术通报, 2019, 35(9): 99-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||