生物技术通报 ›› 2021, Vol. 37 ›› Issue (11): 276-284.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1580
章妮1,2(), 暴涵1,2, 左弟召2,3, 陈克龙2,4()
收稿日期:
2020-12-30
出版日期:
2021-11-26
发布日期:
2021-12-03
作者简介:
章妮,女,硕士研究生,研究方向:湿地生态学;E-mail: 基金资助:
ZHANG Ni1,2(), BAO Han1,2, ZUO Di-zhao2,3, CHEN Ke-long2,4()
Received:
2020-12-30
Published:
2021-11-26
Online:
2021-12-03
摘要:
高寒湿地土壤微生物对全球气候变化十分敏感。为研究青藏高原高寒湿地土壤产甲烷菌群落对降水变化的响应,本研究设置了5种降水梯度,即自然降雨、减少自然降雨的25%和50%以及增加自然降雨的25%和50%。利用mcrA基因进行高通量测序分析土壤产甲烷菌的群落结构及多样性。高寒湿地产甲烷菌优势菌目为甲烷微菌目、八叠球菌目及甲烷杆菌目。增雨处理显著降低了产甲烷菌菌群的相对丰度以及多样性指数,减雨处理显著增加了产甲烷菌菌群的相对丰度以及多样性指数。产甲烷菌群落组成对增减雨50%处理的响应更显著,仅甲烷丝菌属和甲烷杆菌属分别对增雨25%处理及减雨25%处理较敏感;产甲烷菌群落的丰富度指数对增雨50%处理及减雨25%处理较为敏感,Shannon及Simpson多样性指数则与之相反。Lefse分析表明,不同降水梯度处理后,产生了16个差异菌群,以减雨50%处理下差异菌群最多,纲水平到属水平共有9个差异菌群。总之,降水变化显著影响对高寒湿地产甲烷菌的群落结构以及群落多样性。
章妮, 暴涵, 左弟召, 陈克龙. 降水变化驱动下的高寒湿地产甲烷菌群落特征变化[J]. 生物技术通报, 2021, 37(11): 276-284.
ZHANG Ni, BAO Han, ZUO Di-zhao, CHEN Ke-long. Community Characteristics of Methanogens in Alpine Wetland Driven by Precipitation Changes[J]. Biotechnology Bulletin, 2021, 37(11): 276-284.
ID | Clean_tags | Effective_tags | Singleton | Singleton/% | Chimeras | Chimeras/% | OTUs |
---|---|---|---|---|---|---|---|
WJa | 108 821 | 99 419 | 8 559 | 7.87 | 843 | 0.78 | 868 |
WJb | 100 981 | 91 721 | 8 425 | 8.29 | 835 | 0.81 | 859 |
WZa | 107 493 | 103 220 | 4 212 | 3.91 | 61 | 0.06 | 663 |
WZb | 99 147 | 94 911 | 4 180 | 4.22 | 57 | 0.06 | 615 |
Wck | 111 505 | 104 924 | 6 159 | 5.49 | 422 | 0.37 | 763 |
表1 样品数据和OTU统计
Table 1 Sample data and OTU statistics
ID | Clean_tags | Effective_tags | Singleton | Singleton/% | Chimeras | Chimeras/% | OTUs |
---|---|---|---|---|---|---|---|
WJa | 108 821 | 99 419 | 8 559 | 7.87 | 843 | 0.78 | 868 |
WJb | 100 981 | 91 721 | 8 425 | 8.29 | 835 | 0.81 | 859 |
WZa | 107 493 | 103 220 | 4 212 | 3.91 | 61 | 0.06 | 663 |
WZb | 99 147 | 94 911 | 4 180 | 4.22 | 57 | 0.06 | 615 |
Wck | 111 505 | 104 924 | 6 159 | 5.49 | 422 | 0.37 | 763 |
[1] | Zhou YK. Characterizing the spatio-temporal dynamics and variability in climate extremes over the Tibetan Plateau during 1960-2012[J]J Resour Ecol, 2019, 10(4): 397. |
[2] |
Yang YH, Fang JY, Pan YD, et al. Aboveground biomass in Tibetan grasslands[J]. J Arid Environ, 2009, 73(1): 91-95.
doi: 10.1016/j.jaridenv.2008.09.027 URL |
[3] |
Peng J, Liu ZH, Liu YH, et al. Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst Exponent[J]. Ecol Indic, 2012, 14(1): 28-39.
doi: 10.1016/j.ecolind.2011.08.011 URL |
[4] | 邢宇, 姜琦刚, 李文庆, 等. 青藏高原湿地景观空间格局的变化[J]. 生态环境学报, 2009, 18(3): 1010-1015. |
Xing Y, Jiang QG, Li WQ, et al. Landscape spatial patterns changes of the wetland in Qinghai-Tibet Plateau[J]. Ecol Environ Sci, 2009, 18(3): 1010-1015. | |
[5] | 闫立娟, 齐文. 青藏高原湖泊遥感信息提取及湖面动态变化趋势研究[J]. 地球学报, 2012, 33(1): 65-74. |
Yan LJ, Qi W. Lakes in Tibetan Plateau extraction from remote sensing and their dynamic changes[J]. Acta Geosci Sin, 2012, 33(1): 65-74. | |
[6] | IPCC, 2013. Climate change 2013:the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA |
[7] | IPCC, 2007. Climate change 2007:the physical science basis. In:Solomon S, Manning M, Chen Z, et al. (Eds. ), Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA |
[8] |
Malone SL, Starr G, Staudhammer CL, et al. Effects of simulated drought on the carbon balance of Everglades short-hydroperiod marsh[J]. Glob Chang Biol, 2013, 19(8): 2511-2523.
doi: 10.1111/gcb.12211 URL |
[9] |
Zedler JB, Kercher S. Wetland Resources:status, trends, ecosystem services, and restorability[J]. Annu Rev Environ Resour, 2005, 30(1): 39-74.
doi: 10.1146/energy.2005.30.issue-1 URL |
[10] | Bai JH, Lu QQ, Zhao QQ, et al. Effects of alpine wetland landscapes on regional climate on the zoige plateau of China[J]. Adv Meteorol, 2013, 2013: 1-7. |
[11] |
Zhang Y, et al. Changes in alpine wetland ecosystems of the Qinghai-Tibetan Plateau from 1967 to 2004[J]. Environ Monit Assess, 2011, 180(1/2/3/4): 189-199.
doi: 10.1007/s10661-010-1781-0 URL |
[12] |
Gao Q, Guo Y, Xu H, et al. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau[J]. Sci Total Environ, 2016, 554/555: 34-41.
doi: 10.1016/j.scitotenv.2016.02.131 URL |
[13] |
Niu T, Chen LX, Zhou ZJ. The characteristics of climate change over the Tibetan Plateau in the last 40 years and the detection of climatic jumps[J]. Adv Atmos Sci, 2004, 21(2): 193-203.
doi: 10.1007/BF02915705 URL |
[14] |
Blankinship JC, Brown JR, et al. Response of terrestrial CH4 uptake to interactive changes in precipitation and temperature along a climatic gradient[J]. Ecosystems, 2010, 13(8): 1157-1170.
doi: 10.1007/s10021-010-9391-9 URL |
[15] |
Aronson EL, Helliker BR. Methane flux in non-wetland soils in response to nitrogen addition:a meta-analysis[J]. Ecology, 2010, 91(11): 3242-3251.
pmid: 21141185 |
[16] | 谢青琰, 等. 单次降水对高寒草地温室气体通量昼夜变化的影响研究[J]. 环境科学与管理, 2017, 42(9): 43-47. |
Xie QY, Du CJ, Zhang MY, et al. Effects of single precipitation on diurnal variation of greenhouse gas fluxes from alpine grassland[J]. Environ Sci Manag, 2017, 42(9): 43-47. | |
[17] |
Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle:a review[J]. Glob Planet Chang, 2014, 112: 79-91.
doi: 10.1016/j.gloplacha.2013.12.001 URL |
[18] |
Wang Z, Luo TX, Li RC, et al. Causes for the unimodal pattern of biomass and productivity in alpine grasslands along a large altitudinal gradient in semi-arid regions[J]. J Veg Sci, 2013, 24(1): 189-201.
doi: 10.1111/jvs.2012.24.issue-1 URL |
[19] |
Gao QZ, et al. Adaptation strategies of climate variability impacts on alpine grassland ecosystems in Tibetan Plateau[J]. Mitig Adapt Strateg Glob Chang, 2014, 19(2): 199-209.
doi: 10.1007/s11027-012-9434-y URL |
[20] |
Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities[J]. PNAS, 2006, 103(3): 626-631.
pmid: 16407148 |
[21] |
Green JL, Bohannan BJ, et al. Microbial biogeography:from taxonomy to traits[J]. Science, 2008, 320(5879): 1039-1043.
doi: 10.1126/science.1153475 URL |
[22] |
Chauhan A, et al. Syntrophic-methanogenic associations along a nutrient gradient in the Florida Everglades[J]. Appl Environ Microbiol, 2004, 70(6): 3475-3484.
doi: 10.1128/AEM.70.6.3475-3484.2004 URL |
[23] |
Qian H, Ricklefs RE. Taxon richness and climate in angiosperms:is there a globally consistent relationship that precludes region effects?[J]. Am Nat, 2004, 163(5): 773-779.
doi: 10.1086/383097 URL |
[24] |
Zhang Y, Lu Z, Liu S, et al. Geochip-based analysis of microbial communities in alpine meadow soils in the Qinghai-Tibetan Plateau[J]. BMC Microbiol, 2013, 13: 72.
doi: 10.1186/1471-2180-13-72 URL |
[25] |
Zhou J, et al. Spatial scaling of functional gene diversity across various microbial taxa[J]. PNAS, 2008, 105(22): 7768-7773.
doi: 10.1073/pnas.0709016105 URL |
[26] |
Shi Y, Zhang KP, Li Q, et al. Interannual climate variability and altered precipitation influence the soil microbial community structure in a Tibetan Plateau grassland[J]. Sci Total Environ, 2020, 714: 136794.
doi: 10.1016/j.scitotenv.2020.136794 URL |
[27] |
Qin C, Zhu K, Chiariello NR, et al. Fire history and plant community composition outweigh decadal multi-factor global change as drivers of microbial composition in an annual grassland[J]. J Ecol, 2020, 108(2): 611-625.
doi: 10.1111/jec.v108.2 URL |
[28] |
Huang G, Li Y, Su YG. Divergent responses of soil microbial communities to water and nitrogen addition in a temperate desert[J]. Geoderma, 2015, 251/252: 55-64.
doi: 10.1016/j.geoderma.2015.03.018 URL |
[29] | Koyama A, Steinweg JM, Haddix ML, et al. Soil bacterial community responses to altered precipitation and temperature regimes in an old field grassland are mediated by plants[J]. FEMS Microbiol Ecol, 2018, 94(1): fix156. |
[30] |
Ren CJ, Zhao FZ, Shi Z, et al. Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation[J]. Soil Biol Biochem, 2017, 115: 1-10.
doi: 10.1016/j.soilbio.2017.08.002 URL |
[31] |
Barnard RL, Osborne CA, et al. Changing precipitation pattern alters soil microbial community response to wet-up under a Mediterranean-type climate[J]. ISME J, 2015, 9(4): 946-957.
doi: 10.1038/ismej.2014.192 pmid: 25314319 |
[32] |
Cruz-Martínez K, Blake Suttle K, Brodie EL, et al. Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland[J]. ISME J, 2009, 3(6): 738-744.
doi: 10.1038/ismej.2009.16 pmid: 19279669 |
[33] |
Liu XD, Chen BD. Climatic warming in the Tibetan Plateau during recent decades[J]. Int J Climatol, 2000, 20(14): 1729-1742.
doi: 10.1002/(ISSN)1097-0088 URL |
[34] |
Ettema C. Spatial soil ecology[J]. Trends Ecol Evol, 2002, 17(4): 177-183.
doi: 10.1016/S0169-5347(02)02496-5 URL |
[35] |
O’Brien SL, Gibbons SM, Owens SM, et al. Spatial scale drives patterns in soil bacterial diversity[J]. Environ Microbiol, 2016, 18(6): 2039-2051.
doi: 10.1111/1462-2920.13231 URL |
[36] |
Iqbal A, Shang Z, Rehman MLU, et al. Pattern of microbial community composition and functional gene repertoire associated with methane emission from Zoige wetlands, China-A review[J]. Sci Total Environ, 2019, 694: 133675.
doi: 10.1016/j.scitotenv.2019.133675 URL |
[37] |
Matthews E, Fung I. Methane emission from natural wetlands:Global distribution, area, and environmental characteristics of sources[J]. Global Biogeochem Cycles, 1987, 1(1): 61-86.
doi: 10.1029/GB001i001p00061 URL |
[38] |
Sun L, Song CC, et al. Wetland-atmosphere methane exchange in Northeast China:a comparison of permafrost peatland and freshwater wetlands[J]. Agric For Meteorol, 2018, 249: 239-249.
doi: 10.1016/j.agrformet.2017.11.009 URL |
[39] | Gautam A, Sekaran U, Guzman J, et al. Responses of soil microbial community structure and enzymatic activities to long-term application of mineral fertilizer and beef manure[J]. Environ Sustain Indic, 2020, 8: 100073. |
[40] |
Chen HB, Chang S. Dissecting methanogenesis for temperature-phased anaerobic digestion:Impact of temperature on community structure, correlation, and fate of methanogens[J]. Bioresour Technol, 2020, 306: 123104.
doi: 10.1016/j.biortech.2020.123104 URL |
[41] |
Magoč T, Salzberg SL. FLASH:fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963.
doi: 10.1093/bioinformatics/btr507 URL |
[42] |
Bolger AM, et al. Trimmomatic:a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120.
doi: 10.1093/bioinformatics/btu170 URL |
[43] |
Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200.
doi: 10.1093/bioinformatics/btr381 URL |
[44] |
Wang Y, Sheng HF, He Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags[J]. Appl Environ Microbiol, 2012, 78(23): 8264-8271.
doi: 10.1128/AEM.01821-12 URL |
[45] |
Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Appl Environ Microbiol, 2009, 75(23): 7537-7541.
doi: 10.1128/AEM.01541-09 URL |
[46] |
Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 2010, 7(5): 335-336.
doi: 10.1038/nmeth.f.303 pmid: 20383131 |
[47] |
Na XF, Yu HL, Wang P, et al. Vegetation biomass and soil moisture coregulate bacterial community succession under altered precipitation regimes in a desert steppe in northwestern China[J]. Soil Biol Biochem, 2019, 136: 107520.
doi: 10.1016/j.soilbio.2019.107520 URL |
[48] |
Bullock AL, Sutton-Grier AE, Megonigal JP. Anaerobic metabolism in tidal freshwater wetlands:III. temperature regulation of iron cycling[J]. Estuaries Coasts, 2013, 36(3): 482-490.
doi: 10.1007/s12237-012-9536-5 URL |
[49] |
Pazinato JM, Paulo EN, Mendes LW, et al. Molecular characterization of the archaeal community in an Amazonian wetland soil and culture-dependent isolation of methanogenic Archaea[J]. Diversity, 2010, 2(7): 1026-1047.
doi: 10.3390/d2071026 URL |
[50] |
Yavitt JB, Yashiro E, Cadillo-Quiroz H, et al. Methanogen diversity and community composition in peatlands of the central to northern Appalachian Mountain region, North America[J]. Biogeochemistry, 2012, 109(1/2/3): 117-131.
doi: 10.1007/s10533-011-9644-5 URL |
[51] |
Huser BA, Wuhrmann K, Zehnder AJB. Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium[J]. Arch Microbiol, 1982, 132(1): 1-9.
doi: 10.1007/BF00690808 URL |
[52] | Oren A. The family methanobacteriaceae[J]. The Prokaryotes, 2014, 165-193. |
[53] |
Zhang Y, Dong S, Gao Q, et al. Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau[J]. Sci Total Environ, 2016, 562: 353-363.
doi: 10.1016/j.scitotenv.2016.03.221 URL |
[54] |
Aanderud ZT, Schoolmaster DR, Lennon JT. Plants mediate the sensitivity of soil respiration to rainfall variability[J]. Ecosystems, 2011, 14(1): 156-167.
doi: 10.1007/s10021-010-9401-y URL |
[55] | 龙海飞, 苏维词, 夏春. 石漠化地区土壤有机质与微生物数量关系研究[J]. 环境科学与技术, 2013, 36(10): 57-62. |
Long HF, Su WC, Xia C. Relationship between soil organic matter and number of microorganisms of different cropping patterns in desertification region[J]. Environ Sci Technol, 2013, 36(10): 57-62. | |
[56] |
Sheik CS, Beasley WH, Elshahed MS, et al. Effect of warming and drought on grassland microbial communities[J]. ISME J, 2011, 5(10): 1692-1700.
doi: 10.1038/ismej.2011.32 pmid: 21451582 |
[1] | 李颖, 龙长梅, 蒋标, 韩丽珍. 两株PGPR菌株的花生定殖及对根际细菌群落结构的影响[J]. 生物技术通报, 2022, 38(9): 237-247. |
[2] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[3] | 王子寅, 刘秉儒, 李子豪, 赵晓玉. 荒漠草原柠条灌丛堆不同发育阶段土壤细菌群落结构特征[J]. 生物技术通报, 2022, 38(7): 205-214. |
[4] | 高惠惠, 贾晨波, 韩琴, 苏建宇, 徐春燕. 宁杞7号枸杞根腐病发生的微生物学机制[J]. 生物技术通报, 2022, 38(12): 244-251. |
[5] | 颜珲璘, 芦光新, 邓晔, 顾松松, 颜程良, 马坤, 赵阳安, 张海娟, 王英成, 周学丽, 窦声云. 高寒地区根瘤菌拌种对禾/豆混播土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(10): 204-215. |
[6] | 刘传和, 贺涵, 何秀古, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 不同连作年限菠萝园土壤差异代谢物和细菌群落结构分析[J]. 生物技术通报, 2021, 37(8): 162-175. |
[7] | 吕燕, 刘建利, 李靖宇, 候琳琳, 孙敏, 苟琪. 不同品种和产区宁夏枸杞根系AMF多样性[J]. 生物技术通报, 2021, 37(6): 36-48. |
[8] | 王宏杰, 刘绍东, 刘瑞华, 张思平, 杨君, 庞朝友. 轮作对棉花根际土壤细菌群落的影响[J]. 生物技术通报, 2020, 36(9): 117-124. |
[9] | 黄婷, 方源, 冯舟, 沈和, 聂勇, 郑鑫, 汪家权, 许子牧. 高通量测序技术解析中学校园细菌群落的特征组成[J]. 生物技术通报, 2020, 36(8): 96-103. |
[10] | 张永敏, 王天慧, 王萍. 沉积物中菲高效降解菌群的筛选鉴定及降解特性[J]. 生物技术通报, 2020, 36(6): 128-135. |
[11] | 王永妍, 赵炳赫, 梁广钰, 李云, 徐仰仓. 不同季节使用微生态制剂后养殖海水细菌群落特征[J]. 生物技术通报, 2020, 36(2): 126-133. |
[12] | 张盈, 吴小虎, 李晓刚, 段婷婷, 徐军, 董丰收, 刘新刚, 郑永权. 土壤微生物对异噁草酮连续施用的响应[J]. 生物技术通报, 2020, 36(12): 64-74. |
[13] | 康捷, 章淑艳, 韩韬, 孙志梅. 麻山药不同生长时期根际土壤微生物多样性及群落结构特征[J]. 生物技术通报, 2019, 35(9): 99-106. |
[14] | 洪洁, 康建依, 刘一倩, 高秀芝, 易欣欣. 生菜连作及生菜-菠菜轮作对土壤细菌群落结构的影响[J]. 生物技术通报, 2019, 35(8): 17-26. |
[15] | 田琳, 张珣. 雌酮胁迫农田土壤微生物群落结构变化研究[J]. 生物技术通报, 2017, 33(6): 230-236. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||