生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 215-223.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1287
赵林艳1(), 官会林1, 王克书1, 卢燕磊1, 向萍2, 魏富刚3, 杨绍周3, 徐武美1()
收稿日期:
2021-10-11
出版日期:
2022-07-26
发布日期:
2022-08-09
作者简介:
赵林艳,女,博士研究生,研究方向:土壤微生物学;E-mail: 基金资助:
ZHAO Lin-yan1(), GUAN Hui-lin1, WANG Ke-shu1, LU Yan-lei1, XIANG Ping2, WEI Fu-gang3, YANG Shao-zhou3, XU Wu-mei1()
Received:
2021-10-11
Published:
2022-07-26
Online:
2022-08-09
摘要:
本研究以8年三七连作土壤为对象,通过室内土培实验与高通量测序分析,探索了不同土壤含水量(10%、20%、30%与40%)对土壤理化性质与微生物群落的影响。结果表明,土壤含水量维持在10%与20%时,关键致病菌群镰刀菌属的相对丰度最高;土壤含水量为30%时,其相对丰度大幅降低,且有益菌群木霉属相对丰度显著升高(P<0.05),有利于防控三七土传病害。当土壤含水量达40%时,镰刀菌属相对丰度升高,而木霉属相对丰度降低(P<0.05)。与细菌群落相比较,不同土壤含水量处理下真菌群落变化更为明显。此外,当土壤含水量维持在40%时,铵态氮含量显著增加,而硝态氮含量降低(P<0.05)。本研究为从田间水分管理的角度消减三七连作障碍提供了科学依据。
赵林艳, 官会林, 王克书, 卢燕磊, 向萍, 魏富刚, 杨绍周, 徐武美. 土壤含水量对三七连作土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(7): 215-223.
ZHAO Lin-yan, GUAN Hui-lin, WANG Ke-shu, LU Yan-lei, XIANG Ping, WEI Fu-gang, YANG Shao-zhou, XU Wu-mei. Effects of Soil Moisture on the Microbial Community Under Continuous Cropping of Panax notoginseng[J]. Biotechnology Bulletin, 2022, 38(7): 215-223.
图1 不同含水量处理下土壤微生物门分类水平的相对丰度 A:真菌群落;B:细菌群落。W1、W2、W3与W4分别表示土壤含水量为10%、20%、30%与40%,下同
Fig. 1 Relative abundances of microorganisms at the phyl-um level under different soil moisture treatments A:Fungal community;B:bacterial community,W1,W2,W3,and W4 indicate the soil moisture content at 10%,20%,30%,and 40% respectively,the same below
图2 不同含水量处理下土壤代表性微生物属的相对丰度不同字母表示具有显著差异(P<0.05)
Fig. 2 Relative abundances of soil representative microbial genera under different soil moisture treatments Different letters indicate significant difference at P<0.05
图3 不同土壤含水量处理下共有和特有的OTU数量 A:真菌群落;B:细菌群落
Fig. 3 Number of shared and unique OTUs under different soil moisture treatments A:Fungal community;B:bacterial community
图4 不同含水量处理下土壤真菌与细菌OTU丰富度的稀疏曲线 A:真菌群落;B:细菌群落
Fig. 4 Rarefaction curves for fungal and bacterial OTU richness under different soil moisture treatments A:Fungal community;B:bacterial community
图6 基于Bray-Curtis距离指数的不同处理间微生物群落NMDS分析和ANOSIM分析结果 A和C:真菌群落NMDS分析和ANOSIM分析结果;B和D:细菌群落NMDS分析和ANOSIM分析结果
Fig. 6 NMDS and ANOSIM results of microbial communities under different treatments based on Bray-Curtis distance A and C:The results of NMDS and ANOSIM of fungal community;B and D:the results of NMDS and ANOSIM of bacterial community
土壤理化性质 Soil property | SS | df | s2 | F | P |
---|---|---|---|---|---|
pH | 0.03 | 3 | 0.01 | 1.76 | 0.23 |
EC | 22 856.33 | 3 | 7 618.78 | 1.53 | 0.28 |
NH4+-N | 11.42 | 3 | 3.81 | 17.30 | <0.01 |
NO3--N | 1 099.20 | 3 | 366.40 | 32.27 | <0.01 |
AP | 0.31 | 3 | 0.10 | 0.86 | 0.50 |
AK | 789.12 | 3 | 263.04 | 1.09 | 0.41 |
表1 不同土壤含水量处理影响三七连作土壤理化性质的单因素方差分析结果
Table 1 Results of one-way ANOVA for the soil physico-chemical properties under continuous cropping of P. notoginseng with different moisture treatments
土壤理化性质 Soil property | SS | df | s2 | F | P |
---|---|---|---|---|---|
pH | 0.03 | 3 | 0.01 | 1.76 | 0.23 |
EC | 22 856.33 | 3 | 7 618.78 | 1.53 | 0.28 |
NH4+-N | 11.42 | 3 | 3.81 | 17.30 | <0.01 |
NO3--N | 1 099.20 | 3 | 366.40 | 32.27 | <0.01 |
AP | 0.31 | 3 | 0.10 | 0.86 | 0.50 |
AK | 789.12 | 3 | 263.04 | 1.09 | 0.41 |
[1] | 孙雪婷, 李磊, 龙光强, 等. 三七连作障碍研究进展[J]. 生态学杂志, 2015, 34(3):885-893. |
Sun XT, Li L, Long GQ, et al. The progress and prospect on consecutive monoculture problems of Panax notoginseng[J]. Chin J Ecol, 2015, 34(3):885-893. | |
[2] |
朱义族, 李雅颖, 韩继刚, 等. 水分条件变化对土壤微生物的影响及其响应机制研究进展[J]. 应用生态学报, 2019, 30(12):4323-4332.
doi: 10.13287/j.1001-9332.201912.031 |
Zhu YZ, Li YY, Han JG, et al. Effects of changes in water status on soil microbes and their response mechanism:a review[J]. Chin J Appl Ecol, 2019, 30(12):4323-4332. | |
[3] |
Manzoni S, Schimel JP, Porporato A. Responses of soil microbial communities to water stress:results from a meta-analysis[J]. Ecology, 2012, 93(4):930-938.
doi: 10.1890/11-0026.1 URL |
[4] |
Evans SE, Wallenstein MD. Soil microbial community response to drying and rewetting stress:does historical precipitation regime matter?[J]. Biogeochemistry, 2012, 109:101-116.
doi: 10.1007/s10533-011-9638-3 URL |
[5] |
de Vries FT, Liiri ME, Bjørnlund L, et al. Land use alters the resistance and resilience of soil food webs to drought[J]. Nat Clim Change, 2012, 2(4):276-280.
doi: 10.1038/nclimate1368 URL |
[6] |
Kaisermann A, Maron PA, Beaumelle L, et al. Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities[J]. Appl Soil Ecol, 2015, 86:158-164.
doi: 10.1016/j.apsoil.2014.10.009 URL |
[7] | 刘汉军, 陈强, 杨玉国, 等. 犍为县姜瘟病发生与土壤养分及环境因子关系研究[J]. 四川农业大学学报, 2015, 33(1):39-44. |
Liu HJ, Chen Q, Yang YG, et al. Correlation between ginger wilt and soil nutrients and environmental factors in Qianwei County[J]. J Sichuan Agric Univ, 2015, 33(1):39-44. | |
[8] | Thomas S. C. Li. 土壤水分对西洋参生长的影响[J]. 特产研究, 2000, 22(4):60-62. |
Thomas S. C. Li. Effect of soil moisture on the growth of American ginseng[J]. Special Wild Econ Animal Plant Res, 2000, 22(4):60-62. | |
[9] | 刘芳洁. 土壤水分对不同番茄品种筋腐病发生的影响[J]. 农业工程, 2017, 7(6):149-150. |
Liu FJ. Effects of soil water on gluten rot occurrence of different tomato varieties[J]. Agric Eng, 2017, 7(6):149-150. | |
[10] | 王豪吉, 王昆艳, 李双丽, 等. 影响连作地三七存活率的相关土壤因子研究[J]. 时珍国医国药, 2019, 30(12):2982-2984. |
Wang HJ, Wang KY, Li SL, et al. Effects of different soil factors on the survival rate of Panax notoginseng in continuous cropping land[J]. Lishizhen Med Mater Med Res, 2019, 30(12):2982-2984. | |
[11] |
Xia PG, Guo HB, Zhao HG, et al. Optimal fertilizer application for Panax notoginseng and effect of soil water on root rot disease and saponin contents[J]. J Ginseng Res, 2016, 40(1):38-46.
doi: 10.1016/j.jgr.2015.04.003 URL |
[12] | 官会林, 陈昱君, 朱海春, 等. 三七病株根际土壤微生物特征研究[J]. 农业与技术, 2005, 25(6):56-58. |
Guan HL, Chen YJ, Zhu HC, et al. Characteristic study of rhizome-microorganism in soil of diseased Panax notoginseng[J]. Agric Technol, 2005, 25(6):56-58. | |
[13] | 刘莉, 赵安洁, 杨雁, 等. 三七不同间隔年限种植土壤的理化性状比较分析[J]. 西南农业学报, 2013, 26(5):1946-1952. |
Liu L, Zhao AJ, Yang Y, et al. Comparative analysis of physical and chemical properties of Panax notoginseng replant soils in different intervals[J]. Southwest China J Agric Sci, 2013, 26(5):1946-1952. | |
[14] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999:146-195. |
Lu RK. Methods in analyzing agricultural soil chemistry[M]. Beijing: China Agricultural Science and Technology Press, 1999:146-195. | |
[15] |
Magoč T, Salzberg SL. FLASH:fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21):2957-2963.
doi: 10.1093/bioinformatics/btr507 URL |
[16] |
Bolger AM, Lohse M, Usadel B. Trimmomatic:a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-2120.
doi: 10.1093/bioinformatics/btu170 URL |
[17] |
Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16):2194-2200.
doi: 10.1093/bioinformatics/btr381 URL |
[18] |
Edgar RC. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10):996-998.
doi: 10.1038/nmeth.2604 URL |
[19] |
Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Appl Environ Microbiol, 2009, 75(23):7537-7541.
doi: 10.1128/AEM.01541-09 URL |
[20] | Oksanen J, Blanchet FG, Friendly M, et al. vegan:Community Ecology Package[CP]. R package version 2. 5-3, 2018. https://CRAN.R-project.org/package=vegan |
[21] | R Core Team. R:A language and environment for statistical computing[CP]. R foundation for statistical computing, Vienna, Austria 2017.URL https://www.R-project.org/ |
[22] |
Kaiser M, Kleber M, Berhe AA. How air-drying and rewetting modify soil organic matter characteristics:an assessment to improve data interpretation and inference[J]. Soil Biol Biochem, 2015, 80:324-340.
doi: 10.1016/j.soilbio.2014.10.018 URL |
[23] |
Norton J, Ouyang Y. Controls and adaptive management of nitrification in agricultural soils[J]. Front Microbiol, 2019, 10:1931.
doi: 10.3389/fmicb.2019.01931 URL |
[24] |
Chen ZM, Ding WX, Xu YH, et al. Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil:Evidences from a 15N tracing study to literature synthesis[J]. Soil Biol Biochem, 2015, 91:65-75.
doi: 10.1016/j.soilbio.2015.08.026 URL |
[25] |
Ou XH, Cui XM, Zhu DW, et al. Cultivation mode of Panax notoginseng causes NH4+ accumulation in planting soil[J]. Arch Agron Soil Sci, 2021, 67(7):960-973.
doi: 10.1080/03650340.2020.1771314 URL |
[26] |
Xie CH, Yokota A. Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa[J]. Int J Syst Evol Microbiol, 2006, 56(4):889-893.
doi: 10.1099/ijs.0.64056-0 URL |
[27] |
Singh P, Yadav V, Deshmukh Y, et al. Decoding the link between bacterial diversity and enzymatic activities of soil from Cymbopogon flexuosus growing dryland[J]. Appl Soil Ecol, 2021, 168:104150.
doi: 10.1016/j.apsoil.2021.104150 URL |
[28] |
Leung HT, Maas KR, Wilhelm RC, et al. Long-term effects of timber harvesting on hemicellulolytic microbial populations in coniferous forest soils[J]. Isme J, 2016, 10(2):363-375.
doi: 10.1038/ismej.2015.118 URL |
[29] | Baron NC, de Souza Pollo A, Rigobelo EC. Purpureocillium lilacinum and Metarhizium marquandii as plant growth-promoting fungi[J]. PeerJ, 2020, 8:e9005. |
[30] |
Khan SA, Hamayun M, Yoon H, et al. Plant growth promotion and Penicillium citrinum[J]. BMC Microbiol, 2008, 8:231.
doi: 10.1186/1471-2180-8-231 URL |
[31] | Lan XJ, Zhang J, Zong ZF, et al. Evaluation of the biocontrol potential of Purpureocillium lilacinum QLP12 against Verticillium dahliae in eggplant[J]. Biomed Res Int, 2017, 2017:4101357. |
[32] |
Larena I, Sabuquillo P, Melgarejo P, et al. Biocontrol of Fusarium and Verticillium wilt of tomato by Penicillium oxalicum under greenhouse and field conditions[J]. J Phytopathol, 2003, 151(9):507-512.
doi: 10.1046/j.1439-0434.2003.00762.x URL |
[33] |
Oritsejafor JJ. Influence of moisture and pH on growth and survival of Fusarium oxysporum f. sp. elaeidis in soil[J]. Trans Br Mycol Soc, 1986, 87(4):511-517.
doi: 10.1016/S0007-1536(86)80091-2 URL |
[34] |
Stover RH. The effect of soil moisture on Fusarium species[J]. Can J Bot, 1953, 31(5):693-697.
doi: 10.1139/b53-050 URL |
[35] |
Miao CP, Mi QL, Qiao XG, et al. Rhizospheric fungi of Panax notoginseng:diversity and antagonism to host phytopathogens[J]. J Ginseng Res, 2016, 40(2):127-134.
doi: 10.1016/j.jgr.2015.06.004 URL |
[36] |
Tan Y, Cui YS, Li HY, et al. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices[J]. Microbiol Res, 2017, 194:10-19.
doi: 10.1016/j.micres.2016.09.009 URL |
[37] | Miao CP, Qiao XG, Zheng YK, et al. First report of Fusarium flocciferum causing root rot of Sanqi(Panax notoginseng)in Yunnan, China[J]. Plant Dis, 2015, 99(11):1650. |
[38] | Kredics L, Antal Z, Manczinger L, et al. Influence of environmental parameters on Trichoderma strains with biocontrol potential[J]. Food Technol Biotechnol, 2003, 41(1):37-42. |
[39] |
Chen JL, Liu K, Miao CP, et al. Salt tolerance of endophytic Trichoderma koningiopsis YIM PH30002 and its volatile organic compounds(VOCs)allelopathic activity against phytopathogens associated with Panax notoginseng[J]. Ann Microbiol, 2016, 66(3):981-990.
doi: 10.1007/s13213-015-1171-5 URL |
[40] |
Kredics L, Antal Z, Manczinger L. Influence of water potential on growth, enzyme secretion and in vitro enzyme activities of Trichoderma harzianum at different temperatures[J]. Curr Microbiol, 2000, 40(5):310-314.
pmid: 10706661 |
[41] |
Paula Júnior TJ, Rotter C, Hau B. Effects of soil moisture and sowing depth on the development of bean plants grown in sterile soil infested by Rhizoctonia solani and Trichoderma harzianum[J]. Eur J Plant Pathol, 2007, 119(2):193-202.
doi: 10.1007/s10658-007-9161-5 URL |
[42] | 王勇, 范昌, 陈昱君, 等. 三七的主要病害及防治现状[J]. 人参研究, 2003, 15(1):43-45. |
Wang Y, Fan C, Chen YJ, et al. Main diseases and control status of Panax notoginseng[J]. Renshen Yanjiu, 2003, 15(1):43-45. | |
[43] | 文增叶, 李定华, 代梦瑶, 等. 三七根腐病病原菌尖孢镰刀菌的生物学特性分析[J]. 中药材, 2019, 42(9):1978-1984. |
Wen ZY, Li DH, Dai MY, et al. Biological characteristics of Fusarium oxysporum, A pathogen of Panax notoginseng root rot[J]. J Chin Med Mater, 2019, 42(9):1978-1984. | |
[44] | 王朝梁, 崔秀明, 李忠义, 等. 三七根腐病发生与环境条件关系的研究[J]. 中国中药杂志, 1998, 23(12):714-716. |
Wang CL, Cui XM, Li ZY, et al. Studies on relationship between root rot on Panax notoginseng Burk. F. H. Chen and its environmental conditions[J]. China J Chin Mater Med, 1998, 23(12):714-716. |
[1] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[2] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[3] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
[4] | 赵忠娟, 杨凯, 扈进冬, 魏艳丽, 李玲, 徐维生, 李纪顺. 盐胁迫条件下哈茨木霉ST02对椒样薄荷生长及根区土壤理化性质的影响[J]. 生物技术通报, 2022, 38(7): 224-235. |
[5] | 雷君, 陈勤, 邓兵, 张金渝, 刘迪秋, 崔秀明, 葛锋. R2R3-MYB转录因子PnMYB1调控三七皂苷生物合成[J]. 生物技术通报, 2022, 38(5): 74-83. |
[6] | 杨延, 于龙凤, 王绍梅, 李卫娜, 葛锋. 三七细胞中共超表达FPS、SS对皂苷合成的影响[J]. 生物技术通报, 2022, 38(3): 50-58. |
[7] | 赵林艳, 官会林, 向萍, 李泽诚, 柏雨龙, 宋洪川, 孙世中, 徐武美. 白及根腐病植株根际土壤微生物群落组成特征分析[J]. 生物技术通报, 2022, 38(2): 67-74. |
[8] | 张业猛, 朱丽丽, 陈志国. 藜麦NHX基因家族鉴定及盐胁迫下表达分析[J]. 生物技术通报, 2022, 38(12): 184-193. |
[9] | 高惠惠, 贾晨波, 韩琴, 苏建宇, 徐春燕. 宁杞7号枸杞根腐病发生的微生物学机制[J]. 生物技术通报, 2022, 38(12): 244-251. |
[10] | 刘天海, 羊淑琴, 刘付彭, 苗人云, 余洋, 吴翔, 唐杰, 王勇, 彭卫红, 谭昊. 麦秸鸡粪发酵有机肥对六妹羊肚菌连作的影响[J]. 生物技术通报, 2022, 38(12): 263-273. |
[11] | 严聪文, 苏代发, 代庆忠, 张振荣, 田云霞, 董琼娥, 周文星, 陈杉艳, 童江云, 崔晓龙. 草莓病害的生物防治研究进展[J]. 生物技术通报, 2022, 38(12): 73-87. |
[12] | 颜珲璘, 芦光新, 邓晔, 顾松松, 颜程良, 马坤, 赵阳安, 张海娟, 王英成, 周学丽, 窦声云. 高寒地区根瘤菌拌种对禾/豆混播土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(10): 204-215. |
[13] | 陈梦言, 白洁, 柯文灿, 许冬梅, 艾琳, 郭旭生. 青贮饲料微生物群落组成与功能研究进展[J]. 生物技术通报, 2021, 37(9): 11-23. |
[14] | 毛婷, 牛永艳, 郑群, 杨涛, 穆永松, 祝英, 季彬, 王治业. 菌剂对苜蓿青贮发酵品质及微生物群落的影响[J]. 生物技术通报, 2021, 37(9): 86-94. |
[15] | 袁源, 黄海辰, 李琳, 刘国辉, 傅俊生, 吴小平. 石灰对灵芝覆土连作障碍的防控作用及其微生物群落分析[J]. 生物技术通报, 2021, 37(4): 70-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||