生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 258-268.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1271
收稿日期:
2021-10-09
出版日期:
2022-07-26
发布日期:
2022-08-09
作者简介:
王亚军,男,博士,教授,研究方向:污水生物强化技术;E-mail:基金资助:
Received:
2021-10-09
Published:
2022-07-26
Online:
2022-08-09
摘要:
为实现生活污水中磷的生物降解和有效处理,从兰州市某生活污水处理厂分离出一株除磷菌开展强化生物除磷的研究。(1)结合生理生化特性鉴定、16S rDNA测序分析和系统发育树构建,结果显示该菌株与产酸克雷伯氏菌株(Klebsiella oxytoca strain)具有很高的同源性。(2)按5%(V/V)的接种量将该菌接种到复筛培养基中,在30℃,150 r/min 的恒温振荡培养箱中进行培养,每隔12 h测定TP浓度,对其降解特性进行初步研究发现该菌在72 h内对TP的降解率为58.52%。(3)考察碳源、氮源和C/N最优条件,得出此菌株最适碳源为葡萄糖、最适氮源为硫酸铵、最佳C/N为5∶1。(4)考察接种量、pH、温度、初始NaCl浓度和初始磷酸盐浓度等因素适应性,得出当接种量8%(V/V)、pH 9、温度30℃、初始NaCl浓度2.5 g/L、初始磷酸盐浓度70 mg/L时该菌株对TP的降解率最佳,分别为75.94%、90.19%、65.48%、57.02%、52.26%;同时,当接种量2%-14%(V/V)、pH 4.0-9.0、温度15-40℃、初始NaCl 浓度0-15 g/L、初始磷酸盐浓度45-90 mg/L时该菌株对TP均具有不同程度降解能力,且相关性分析显示,菌株TP降解率与接种量、pH、初始NaCl浓度和初始磷酸盐浓度相关性显著。(5)考察该菌株与其他菌株相互作用,将该菌株与一株铜绿假单胞菌进行复配,发现两者能协同增强除磷,两者比例4∶1时,TP降解率能达到99.43%。本实验为除磷菌株下一阶段的实际应用奠定了基础,并为生物强化除磷技术提供了更多的菌种选择。
王亚军, 司运美. 除磷菌CP-7的筛选及其降解特性研究[J]. 生物技术通报, 2022, 38(7): 258-268.
WANG Ya-jun, SI Yun-mei. Screening and Degradation Characteristics of a CP-7 Strain of Dephosphorization Bacteria[J]. Biotechnology Bulletin, 2022, 38(7): 258-268.
图1 CP-7菌株菌落特征 A:革兰氏染色电镜形态图;B:固体培养基形态特征(划线接种);C:固体培养基形态特征(两点接种)
Fig.1 Colony characteristics of CP-7 strain A:Gram staining electron microscope morphology. B:Morphological characteristics of solid medium(streaked inoculation). C:Morphological characteristics of solid medium(two-point inoculation)
形态特征 Morphological characteristics | CP-7 |
---|---|
形状Shape | 卵圆形Oval |
菌落大小Size of the colony/mm | 2-8 |
颜色Color | 乳白色Ivory |
边缘Edge | 波状Undulating |
光泽Luster | 有Exist |
质地Texture | 蜡状;黏稠;湿润;易挑起Waxy,sticky,moist,easy to lift |
高度Height | 隆起Upheaval |
透明度Pellucidity | 不透明Opacity |
表1 CP-7菌株的形态特征
Table 1 Morphological characteristics of CP-7 strain
形态特征 Morphological characteristics | CP-7 |
---|---|
形状Shape | 卵圆形Oval |
菌落大小Size of the colony/mm | 2-8 |
颜色Color | 乳白色Ivory |
边缘Edge | 波状Undulating |
光泽Luster | 有Exist |
质地Texture | 蜡状;黏稠;湿润;易挑起Waxy,sticky,moist,easy to lift |
高度Height | 隆起Upheaval |
透明度Pellucidity | 不透明Opacity |
特征Characteristics | CP-7 |
---|---|
利用葡萄糖Use of glucose | + |
利用柠檬酸盐Use of citrate | + |
产硫化氢Hydrogen sulfide | - |
明胶液化Gelatin liquefaction | + |
甲基红Methyl red | - |
精氨酸双水解酶Arginine double hydrolase | - |
赖氨酸脱羧酶Lysine double hydrolase | + |
鸟氨酸脱羧酶Ornithine decarboxylase | - |
脲酶Urease | + |
V-P | + |
表2 CP-7菌株的生理生化特征
Table 2 Physiological and biochemical characteristics of CP-7 strain
特征Characteristics | CP-7 |
---|---|
利用葡萄糖Use of glucose | + |
利用柠檬酸盐Use of citrate | + |
产硫化氢Hydrogen sulfide | - |
明胶液化Gelatin liquefaction | + |
甲基红Methyl red | - |
精氨酸双水解酶Arginine double hydrolase | - |
赖氨酸脱羧酶Lysine double hydrolase | + |
鸟氨酸脱羧酶Ornithine decarboxylase | - |
脲酶Urease | + |
V-P | + |
菌株 Strain | 物种 Species | NCBI 登录号 NCBI accession No. | 相似度 Percent similarity |
---|---|---|---|
Klebsiella oxytoca strain JCM 1665 | NR_112010.1 | 99.785% | |
CP-7 | Klebsiella grimontiistrain SB73 | NR_159317.1 | 99.427% |
Klebsiella oxytoca strain ATCC 13182 | NR_118853.1 | 99.213% |
表3 通过16S rDNA基因序列分析鉴定CP-7菌株
Table 3 Identification of CP-7 strain by 16S rDNA gene sequence analysis
菌株 Strain | 物种 Species | NCBI 登录号 NCBI accession No. | 相似度 Percent similarity |
---|---|---|---|
Klebsiella oxytoca strain JCM 1665 | NR_112010.1 | 99.785% | |
CP-7 | Klebsiella grimontiistrain SB73 | NR_159317.1 | 99.427% |
Klebsiella oxytoca strain ATCC 13182 | NR_118853.1 | 99.213% |
图4 碳源对CP-7菌株总磷降解效果的影响 1:乙酸钠;2:葡萄糖;3:蔗糖;4:草酸钠;5:淀粉
Fig. 4 Effect of carbon source on the TP degradation of CP-7 strain 1:Sodium acetate. 2:Glucose. 3:Sucrose. 4:Sodium oxalate. 5:Starch
图5 氮源对CP-7菌株总磷降解效果的影响 1:亚硝酸钠;2:硫酸铵;3:氯化铵;4:硝酸钠;5:硝酸钾
Fig. 5 Effect of nitrogen source on TP degradation of CP-7 strain 1:Sodium nitrite. 2:Ammonium sulfate. 3:Ammonium chloride. 4:Sodium nitrate. 5:Potassium nitrate
[1] |
Conley DJ, Paerl HW, Howarth RW, et al. Controlling eutrophication:nitrogen and phosphorus[J]. Science, 2009, 323(5917):1014-1015.
doi: 10.1126/science.1167755 URL |
[2] |
Pan B, Wu J, Pan B, et al. Development of polymer-based nanosized hydrated ferric oxides(HFOs)for enhanced phosphate removal from waste effluents[J]. Water Res, 2009, 43(17):4421-4429.
doi: 10.1016/j.watres.2009.06.055 URL |
[3] |
Zhang MY, Pan LQ, Huang F, et al. Metagenomic analysis of composition, function and cycling processes of microbial community in water, sediment and effluent of Litopenaeus vannameifarming environments under different culture modes[J]. Aquaculture, 2019, 506:280-293.
doi: 10.1016/j.aquaculture.2019.03.038 URL |
[4] |
Yang L, Wang XH, Cui S, et al. Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putidastrain NP5[J]. Bioresour Technol, 2019, 285:121360.
doi: 10.1016/j.biortech.2019.121360 URL |
[5] |
Xia L, Li X, Fan W, et al. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge[J]. Bioresour Technol, 2020, 301:122749.
doi: 10.1016/j.biortech.2020.122749 URL |
[6] |
Zhang M, Yang Q, Zhang JH, et al. Enhancement of denitrifying phosphorus removal and microbial community of long-term operation in an anaerobic anoxic oxic-biological contact oxidation system[J]. J Biosci Bioeng, 2016, 122(4):456-466.
doi: 10.1016/j.jbiosc.2016.03.019 pmid: 27133708 |
[7] | 毛世丽, 代群威, 郭军, 等. 1株高效聚磷菌的分离鉴定及固定化应用[J]. 水处理技术, 2021, 47(1):59-63. |
Mao SL, Dai QW, Guo J, et al. Isolation, identification and immobilization of a high-efficiency phosphorus accumulating bacteria[J]. Technol Water Treat, 2021, 47(1):59-63. | |
[8] | Tarayre C, Nguyen HT, Brognaux A, et al. Characterisation of phosphate accumulating organisms and techniques for polyphosphate detection:a review[J]. Sensors(Basel), 2016, 16(6):E797. |
[9] |
Seviour RJ, Mino T, Onuki M. The microbiology of biological phosphorus removal in activated sludge systems[J]. FEMS Microbiol Rev, 2003, 27(1):99-127.
pmid: 12697344 |
[10] |
Li HF, Li BZ, Wang ET, et al. Removal of low concentration of phosphorus from solution by free and immobilized cells of Pseudomonas stutzeri YG-24[J]. Desalination, 2012, 286:242-247.
doi: 10.1016/j.desal.2011.11.029 URL |
[11] |
Liu H, Wang Q, Sun YF, et al. Isolation of a non-fermentative bacterium, Pseudomonas aeruginosa, using intracellular carbon for denitrification and phosphorus-accumulation and relevant metabolic mechanisms[J]. Bioresour Technol, 2016, 211:6-15.
doi: 10.1016/j.biortech.2016.03.051 URL |
[12] | 亢涵, 藏春月, 焦洋, 等. 高效除磷菌P7的生长特征及除磷性能研究[J]. 沈阳建筑大学学报:自然科学版, 2017, 33(5):945-952. |
Kang H, Zang CY, Jiao Y, et al. The growth characteristics and the phosphorus removal performance of efficient phosphorus removal bacteria P7[J]. J Shenyang Jianzhu Univ:Nat Sci, 2017, 33(5):945-952. | |
[13] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Manual for systematic identification of common bacteria[M]. Beijing: Science Press, 2001. | |
[14] | 王亚军, 蔡文娟, 耿冲冲, 等. 一株油脂降解菌的筛选及其降解条件优化[J]. 生态环境学报, 2020, 29(5):1031-1038. |
Wang YJ, Cai WJ, Geng CC, et al. Screening of a oil-degrading strain and optimization of its degradation conditions[J]. Ecol Environ Sci, 2020, 29(5):1031-1038. | |
[15] | 蔡曼莎, 吴苇杰, 莫少庆, 等. 两种碳源对聚磷菌种群结构及除磷脱氮性能的影响[J]. 环境监测管理与技术, 2021, 33(4):65-67, 71. |
Cai MS, Wu WJ, Mo SQ, et al. Impact of two carbon sources on PAOs population structure and phosphorus and nitrogen removal performance[J]. Adm Tech Environ Monit, 2021, 33(4):65-67, 71. | |
[16] | 庄志刚, 韩永和, 章文贤, 等. 高效聚磷菌Alcaligenes sp. -12菌株的分离鉴定及其除磷特性[J]. 环境科学学报, 2014, 34(3):678-687. |
Zhuang ZG, Han YH, Zhang WX, et al. Isolation, identification and phosphorus-removal characterization of bacteria Alcaligenes sp. strain ED-12 for phosphorus-accumulation[J]. Acta Sci Circumstantiae, 2014, 34(3):678-687. | |
[17] | 周德庆. 微生物学教程[M]. 北京: 高等教育出版社, 1993. |
Zhou DQ. Microbiology Course[M]. Beijing: Higher Education Press, 1993. | |
[18] | 秦华明. 高效油脂降解菌的筛选及其对油脂废水的强化处理研究[D]. 广州: 华南理工大学, 2003. |
Qin HM. Screening high effective oil degradation strain and its bioaugmentation of oil wastewater treatment[D]. Guangzhou: South China University of Technology, 2003. | |
[19] | 崔玉波, 朱宝英. 低温下ABR酸化反应器的运行效果及微生物活性研究[J]. 环境工程学报, 2007, 1(2):49-53. |
Cui YB, Zhu BY. The performance of anaerobic baffled reactor and microorganism activity at low temperatures[J]. Chin J Environ Eng, 2007, 1(2):49-53. | |
[20] | 杨智博, 李晓红, 张丹丹, 等. 高效油脂降解混合菌株筛选及降解条件的优化[J]. 水处理技术, 2021, 47(7):36-41. |
Yang ZB, Li XH, Zhang DD, et al. Screening of high-efficiency oil-degrading mixed strains and optimization of degradation conditions[J]. Technol Water Treat, 2021, 47(7):36-41. | |
[21] | 吴晓娜, 王助贫, 谢恩, 等. 一株反硝化聚磷菌筛选及其接种量对脱氮除磷效应的影响[J]. 环境工程学报, 2018, 12(2):544-551. |
Wu XN, Wang ZP, Xie E, et al. Screening of one strain of denitrifying phosphorus accumulation bacteria(DPAB)and inhibitions effects of nitrogen-phosphorus removal[J]. Chin J Environ Eng, 2018, 12(2):544-551. | |
[22] |
马瑞, 赵永鹏, 王智慧, 等. pH对水稻土全程氨氧化细菌丰度和群落结构组成影响[J]. 环境科学, 2021. DOI: https://doi.org/10.13227/j.hjkx.202107109.
doi: https://doi.org/10.13227/j.hjkx.202107109 |
Ma R, Zhao YP, Wang ZH, et al. Effect of pH on the abundance and community structure of comammox nitrospira in paddy soils[J]. Acta Scientiae Circumstantiae, 2021. DOI: https://doi.org/10.13227/j.hjkx.202107109.
doi: https://doi.org/10.13227/j.hjkx.202107109 |
|
[23] |
Coats ER, Brinkman CK, Lee S. Characterizing and contrasting the microbial ecology of laboratory and full-scale EBPR systems cultured on synthetic and real wastewaters[J]. Water Res, 2017, 108:124-136.
doi: S0043-1354(16)30822-3 pmid: 27814897 |
[24] |
Zhang T, Liu Y, Fang HHP. Effect of pH change on the performance and microbial community of enhanced biological phosphate removal process[J]. Biotechnol Bioeng, 2005, 92(2):173-182.
pmid: 15962340 |
[25] | 刘有华, 魏慧, 王倩楠, 等. 一株高效聚磷解淀粉芽孢杆菌的分离鉴定及其除磷条件优化[J]. 微生物学通报, 2021, 48(5):1473-1485. |
Liu YH, Wei H, Wang QN, et al. Isolation, identification and phosphorus removal optimization of a phosphorus-accumulating Bacillus amyloliquefaciens[J]. Microbiol China, 2021, 48(5):1473-1485. | |
[26] |
Duan J, Fang H, Su B, et al. Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater[J]. Bioresour Technol, 2015, 179:421-428.
doi: 10.1016/j.biortech.2014.12.057 URL |
[27] |
Akgül R, Akgül F, Kızılkaya IT. Effects of different phosphorus concentrations on growth and biochemical composition of Desmodesmus communis(E. Hegewald)E. Hegewald[J]. Prep Biochem Biotechnol, 2021, 51(7):705-713.
doi: 10.1080/10826068.2020.1853156 URL |
[28] | 徐瑞瑞. 环境因素对群体微生物中铜绿假单胞菌与其他微生物相互作用的影响及机理探究[D]. 广州: 华南理工大学, 2020. |
Xu RR. The influence of environmental factors on the interaction between Pseudomonas aeruginosa and other microorganisms and its mechanism[D]. Guangzhou: South China University of Technology, 2020. | |
[29] |
Abdel-Mawgoud AM, Lépine F, Déziel E. Rhamnolipids:diversity of structures, microbial origins and roles[J]. Appl Microbiol Biotechnol, 2010, 86(5):1323-1336.
doi: 10.1007/s00253-010-2498-2 pmid: 20336292 |
[1] | 张宇红, 董先博, 刘香宇, 许家琪, 徐子祾. 新型异养硝化-好氧反硝化菌Paracoccus sp. QD-19的分离及脱氮特性研究[J]. 生物技术通报, 2023, 39(3): 301-310. |
[2] | 牛鸿宇, 舒倩, 杨海君, 颜智勇, 谭菊. 一株十二烷基硫酸钠高效降解菌的分离鉴定、降解特性及代谢途径研究[J]. 生物技术通报, 2022, 38(12): 287-299. |
[3] | 汪颖, 陈永静, 孙庆业, 杨梦瑶, 吴盾. Inquilinus sp. P6-4菌株的生理生化特征及萘降解特性[J]. 生物技术通报, 2021, 37(6): 117-126. |
[4] | 沈聪, 刘爽, 王春霞, 严雪梅, 代金霞. 盐池采油区污染土壤石油降解菌的筛选鉴定及其降解特性[J]. 生物技术通报, 2021, 37(6): 127-135. |
[5] | 卫晓博, 侯颖, 程豪杰, 秦翠丽, 牛明福, 徐建强. 一种苯酚降解菌Pseudoxanthomonas sp. BF-6的分离鉴定及其降解特性及途径研究[J]. 生物技术通报, 2021, 37(10): 72-80. |
[6] | 刘宇程, 邱恋, 梁晶晶, 李玲丽, 马丽丽. 一株聚丙烯酰胺降解菌的筛选及降解特性研究[J]. 生物技术通报, 2019, 35(9): 178-183. |
[7] | 吴学玲,吴晓燕,李交昆,申丽,余润兰,曾伟民. 一株四环素高效降解菌的分离及降解特性[J]. 生物技术通报, 2018, 34(5): 172-178. |
[8] | 陈亮, 王莉. 一株新的染料甲基红降解菌株 Paracoccus sp.L-4的分离、鉴定及其脱色特性研究[J]. 生物技术通报, 2016, 32(2): 146-151. |
[9] | 王硕, 时文歆, 王燕, 于水利, 李激. 低温污水生物处理技术研究现状与展望[J]. 生物技术通报, 2015, 31(5): 48-53. |
[10] | 赵翠娟, 宋文军, 朱高雄, 魏纪平, 李博志, 张军. 除氨氮菌在污水处理中的研究进展[J]. 生物技术通报, 2013, 0(2): 31-34. |
[11] | 郭殿瑞;. 重组细菌可能使生物量甲烷经济生产[J]. , 1985, 0(02): 125-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||