生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 90-98.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1181
李萍(), 郭发平, 田敏, 税阳, 徐娜娜, 白大嵩, 余德金, 张杰, 胡运高(), 彭友林()
收稿日期:
2021-09-14
出版日期:
2022-07-26
发布日期:
2022-08-09
作者简介:
李萍,女,博士研究生,研究方向:水稻功能基因;E-mail: 基金资助:
LI Ping(), GUO Fa-ping, TIAN Min, SHUI Yang, XU Na-na, BAI Da-song, YU De-jin, ZHANG Jie, HU Yun-gao(), PENG You-lin()
Received:
2021-09-14
Published:
2022-07-26
Online:
2022-08-09
摘要:
甾醇是一种异戊二烯类化合物,在生物的生长发育中起着重要作用。甾醇不仅是真核细胞膜的结构成分,而且也是甾醇激素生物合成的前体,在植物细胞分裂、胚胎发生和发育、参与逆境胁迫中起着关键作用。在植物中,甾醇衍生的油菜素内酯(brassinosteroids,BRs)在生长发育中的多种功能已被广泛研究,BRs作为一类植物激素,协同其他激素在植物生长发育中发挥多种功能,从细胞分裂、细胞扩张、气孔导度和根系发育,BRs在植物生命周期的各个方面都发挥着重要的作用。除了这些功能外,BRs作为植物甾醇合成途径的重要产物,作为一种重要的信号分子响应逆境胁迫及调控植物的形态建成。本文对BRs合成途径中的相关基因的研究进展进行了概述,并且综述了油菜素内酯的生物合成及其在调节植物生长发育中的研究进展,最后对油菜素内酯的研究前景进行了讨论和展望。
李萍, 郭发平, 田敏, 税阳, 徐娜娜, 白大嵩, 余德金, 张杰, 胡运高, 彭友林. 甾醇在调节植物生长发育中的研究进展[J]. 生物技术通报, 2022, 38(7): 90-98.
LI Ping, GUO Fa-ping, TIAN Min, SHUI Yang, XU Na-na, BAI Da-song, YU De-jin, ZHANG Jie, HU Yun-gao, PENG You-lin. Research Progress of Sterol in Regulating Plant Growth and Development[J]. Biotechnology Bulletin, 2022, 38(7): 90-98.
图1 拟南芥甾醇生物合成途径 该途径的一个分支来自一个或两个甲基化步骤,产生两个主要的终产物,豆甾醇和菜油甾醇。菜油甾醇是类油菜素甾醇的前体,最终合成油菜素内酯。催化这些步骤的酶或基因用红色表示[16⇓-18]
Fig.1 Arabidopsis sterol biosynthesis pathway One branch of this pathway comes from one or two methylation steps that produce two major end products,stigmasterol and rapesosterol. Brassinosterol is a precursor of brassinosterol,which is eventually synthesized into brassinolide. The enzymes or genes that catalyze these steps are shown in red[16⇓-18]
[1] |
Simon-Plas F, Perraki A, Bayer E, et al. An update on plant membrane rafts[J]. Curr Opin Plant Biol, 2011, 14(6):642-649.
doi: 10.1016/j.pbi.2011.08.003 pmid: 21903451 |
[2] |
Gilbert LI, Rybczynski R, Warren JT. Control and biochemical nature of the ecdysteroidogenic pathway[J]. Annu Rev Entomol, 2002, 47:883-916.
doi: 10.1146/annurev.ento.47.091201.145302 URL |
[3] |
Attard G, Cooper CS, de Bono JS. Steroid hormone receptors in prostate cancer:a hard habit to break?[J]. Cancer Cell, 2009, 16(6):458-462.
doi: 10.1016/j.ccr.2009.11.006 URL |
[4] |
Clouse SD. Plant development:a role for sterols in embryogenesis[J]. Curr Biol, 2000, 10(16):R601-R604.
doi: 10.1016/s0960-9822(00)00639-4 pmid: 10985378 |
[5] |
Lindsey K, Pullen ML, Topping JF. Importance of plant sterols in pattern formation and hormone signalling[J]. Trends Plant Sci, 2003, 8(11):521-525.
pmid: 14607096 |
[6] |
Boutté Y, Grebe M. Cellular processes relying on sterol function in plants[J]. Curr Opin Plant Biol, 2009, 12(6):705-713.
doi: 10.1016/j.pbi.2009.09.013 URL |
[7] |
Acharya BR, Assmann SM. Hormone interactions in stomatal function[J]. Plant Mol Biol, 2009, 69(4):451-462.
doi: 10.1007/s11103-008-9427-0 pmid: 19031047 |
[8] |
Divi UK, Krishna P. Brassinosteroid:a biotechnological target for enhancing crop yield and stress tolerance[J]. N Biotechnol, 2009, 26(3/4):131-136.
doi: 10.1016/j.nbt.2009.07.006 URL |
[9] |
Qian P, Han B, Forestier E, et al. Sterols are required for cell-fate commitment and maintenance of the stomatal lineage in Arabidopsis[J]. Plant J, 2013, 74(6):1029-1044.
doi: 10.1111/tpj.12190 URL |
[10] |
Fujioka S, Yokota T. Biosynthesis and metabolism of brassinosteroids[J]. Annu Rev Plant Biol, 2003, 54:137-164.
pmid: 14502988 |
[11] |
Choe S, Noguchi T, Fujioka S, et al. The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis[J]. Plant Cell, 1999, 11(2):207-221.
pmid: 9927639 |
[12] |
He JX, Fujioka S, Li TC, et al. Sterols regulate development and gene expression in Arabidopsis[J]. Plant Physiol, 2003, 131(3):1258-1269.
doi: 10.1104/pp.014605 URL |
[13] |
Carland FM, Fujioka S, Takatsuto S, et al. The identification of CVP1 reveals a role for sterols in vascular patterning[J]. Plant Cell, 2002, 14(9):2045-2058.
doi: 10.1105/tpc.003939 URL |
[14] |
Carland F, Fujioka S, Nelson T. The sterol methyltransferases SMT1, SMT2, and SMT3 influence Arabidopsis development through nonbrassinosteroid products[J]. Plant Physiol, 2010, 153(2):741-756.
doi: 10.1104/pp.109.152587 URL |
[15] |
Souter M, Topping J, Pullen M, et al. hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling[J]. Plant Cell, 2002, 14(5):1017-1031.
doi: 10.1105/tpc.001248 URL |
[16] |
Men S, Boutté Y, Ikeda Y, et al. Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity[J]. Nat Cell Biol, 2008, 10(2):237-244.
doi: 10.1038/ncb1686 URL |
[17] |
Schrick K, Mayer U, Horrichs A, et al. FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis[J]. Genes Dev, 2000, 14(12):1471-1484.
doi: 10.1101/gad.14.12.1471 URL |
[18] |
Pillitteri LJ, Torii KU. Mechanisms of stomatal development[J]. Annu Rev Plant Biol, 2012, 63:591-614.
doi: 10.1146/annurev-arplant-042811-105451 pmid: 22404473 |
[19] |
Kehr J, Buhtz A. Long distance transport and movement of RNA through the phloem[J]. J Exp Bot, 2008, 59(1):85-92.
doi: 10.1093/jxb/erm176 URL |
[20] |
Jang JC, Fujioka S, Tasaka M, et al. A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana[J]. Genes Dev, 2000, 14(12):1485-1497.
doi: 10.1101/gad.14.12.1485 URL |
[21] |
Schrick K, Fujioka S, Takatsuto S, et al. A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis[J]. Plant J, 2004, 38(2):227-243.
doi: 10.1111/j.1365-313X.2004.02039.x URL |
[22] |
Schrick K, Mayer U, Martin G, et al. Interactions between sterol biosynthesis genes in embryonic development of Arabidopsis[J]. Plant J, 2002, 31(1):61-73.
doi: 10.1046/j.1365-313X.2002.01333.x URL |
[23] | Pullen M, Clark N, Zarinkamar F, et al. Analysis of vascular development in the hydra sterol biosynthetic mutants of Arabidopsis[J]. PLoS One, 2010, 5(8):e12227. |
[24] |
Caño-Delgado A, Yin YH, Yu C, et al. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis[J]. Development, 2004, 131(21):5341-5351.
pmid: 15486337 |
[25] | Souter MA, Pullen ML, Topping JF, et al. Rescue of defective auxin-mediated gene expression and root meristem function by inhibition of ethylene signalling in sterol biosynthesis mutants of Arabidopsis[J]. Planta, 2004, 219(5):773-783. |
[26] |
Willemsen V, Friml J, Grebe M, et al. Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function[J]. Plant Cell, 2003, 15(3):612-625.
pmid: 12615936 |
[27] |
Grebe M, Xu J, Möbius W, et al. Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes[J]. Curr Biol, 2003, 13(16):1378-1387.
doi: 10.1016/S0960-9822(03)00538-4 URL |
[28] |
Pan J, Fujioka S, Peng J, et al. The E3 ubiquitin ligase SCFTIR1/AFB and membrane sterols play key roles in auxin regulation of endocytosis, recycling, and plasma membrane accumulation of the auxin efflux transporter PIN2 in Arabidopsis thaliana[J]. Plant Cell, 2009, 21(2):568-580.
doi: 10.1105/tpc.108.061465 URL |
[29] |
Aida M, Beis D, Heidstra R, et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche[J]. Cell, 2004, 119(1):109-120.
doi: 10.1016/j.cell.2004.09.018 URL |
[30] |
Tanaka K, Asami T, Yoshida S, et al. Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism[J]. Plant Physiol, 2005, 138(2):1117-1125.
doi: 10.1104/pp.104.058040 URL |
[31] |
Trevisan S, Forestan C, Brojanigo S, et al. Brassinosteroid application affects the growth and gravitropic response of maize by regulating gene expression in the roots, shoots and leaves[J]. Plant Growth Regul, 2020, 92(1):117-130.
doi: 10.1007/s10725-020-00626-z URL |
[32] |
Belkhadir Y, Jaillais Y. The molecular circuitry of brassinosteroid signaling[J]. New Phytol, 2015, 206(2):522-540.
doi: 10.1111/nph.13269 pmid: 25615890 |
[33] |
Li SM, Zheng HX, Lin L, et al. Roles of brassinosteroids in plant growth and abiotic stress response[J]. Plant Growth Regul, 2021, 93(1):29-38.
doi: 10.1007/s10725-020-00672-7 URL |
[34] |
Hansen M, Chae HS, Kieber JJ. Regulation of ACS protein stability by cytokinin and brassinosteroid[J]. Plant J, 2009, 57(4):606-614.
doi: 10.1111/j.1365-313X.2008.03711.x URL |
[35] |
Peres A, Soares J, Tavares R, et al. Brassinosteroids, the sixth class of phytohormones:a molecular view from the discovery to hormonal interactions in plant development and stress adaptation[J]. Int J Mol Sci, 2019, 20(2):331.
doi: 10.3390/ijms20020331 URL |
[36] |
Zhang SS, Cai ZY, Wang XL. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling[J]. PNAS, 2009, 106(11):4543-4548.
doi: 10.1073/pnas.0900349106 URL |
[37] |
Nishiyama R, Watanabe Y, Fujita Y, et al. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis[J]. Plant Cell, 2011, 23(6):2169-2183.
doi: 10.1105/tpc.111.087395 URL |
[38] |
Sahni S, Prasad BD, Liu Q, et al. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance[J]. Sci Rep, 2016, 6:28298.
doi: 10.1038/srep28298 URL |
[39] |
Li QF, Yu JW, Lu J, et al. Seed-specific expression of OsDWF4, a rate-limiting gene involved in brassinosteroids biosynthesis, improves both grain yield and quality in rice[J]. J Agric Food Chem, 2018, 66(15):3759-3772.
doi: 10.1021/acs.jafc.8b00077 URL |
[40] |
Goda H, Sawa S, Asami T, et al. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis[J]. Plant Physiol, 2004, 134(4):1555-1573.
doi: 10.1104/pp.103.034736 URL |
[41] |
Mao JP, Zhang D, Li K, et al. Effect of exogenous Brassinolide(BR)application on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis[J]. Plant Growth Regul, 2017, 82(3):391-401.
doi: 10.1007/s10725-017-0264-5 URL |
[42] |
Li H, Jiang L, Youn JH, et al. A comprehensive genetic study reveals a crucial role of CYP90D2/D2 in regulating plant architecture in rice(Oryza sativa)[J]. New Phytol, 2013, 200(4):1076-1088.
doi: 10.1111/nph.12427 URL |
[43] |
Schaeffer A, Bronner R, Benveniste P, et al. The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1[J]. Plant J, 2001, 25(6):605-615.
pmid: 11319028 |
[44] |
Zhang S, Li C, Ren HH, et al. BAK1 mediates light intensity to phosphorylate and activate catalases to regulate plant growth and development[J]. Int J Mol Sci, 2020, 21(4):1437.
doi: 10.3390/ijms21041437 URL |
[45] |
Wang LY, Tian YC, Shi W, et al. The miR396-GRFs module mediates the prevention of photo-oxidative damage by brassinosteroids during seedling de-etiolation in Arabidopsis[J]. Plant Cell, 2020, 32(8):2525-2542.
doi: 10.1105/tpc.20.00057 URL |
[46] |
Li JG, Fan M, Hua WB, et al. Brassinosteroid and hydrogen peroxide interdependently induce stomatal opening by promoting guard cell starch degradation[J]. Plant Cell, 2020, 32(4):984-999.
doi: 10.1105/tpc.19.00587 URL |
[47] | Lee ZH, Hirakawa T, Yamaguchi N, et al. The roles of plant hormones and their interactions with regulatory genes in determining meristem activity[J]. Int J Mol Sci, 2019, 20(16):E4065. |
[48] |
Wang HS, Yu C, Tang XF, et al. Antisense-mediated depletion of tomato endoplasmic Reticulum omega-3 fatty acid desaturase enhances thermal tolerance[J]. J Integr Plant Biol, 2010, 52(6):568-577.
doi: 10.1111/j.1744-7909.2010.00957.x URL |
[49] |
Surjus A, Durand M. Lipid changes in soybean root membranes in response to salt treatment[J]. J Exp Bot, 1996, 47(1):17-23.
doi: 10.1093/jxb/47.1.17 URL |
[50] |
Soares TFSN, Dias DCFDS, Oliveira AMS, et al. Exogenous brassinosteroids increase lead stress tolerance in seed germination and seedling growth of Brassica juncea L[J]. Ecotoxicol Environ Saf, 2020, 193:110296.
doi: 10.1016/j.ecoenv.2020.110296 URL |
[51] |
Bajguz A, Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses[J]. Plant Physiol Biochem, 2009, 47(1):1-8.
doi: 10.1016/j.plaphy.2008.10.002 URL |
[52] |
Zhang A, Zhang J, Ye N, et al. ZmMPK5 is required for the NADPH oxidase-mediated self-propagation of apoplastic H2O2 in brassinosteroid-induced antioxidant defence in leaves of maize[J]. J Exp Bot, 2010, 61(15):4399-4411.
doi: 10.1093/jxb/erq243 URL |
[53] | 江月玲, 刘顺枝, 胡位荣. “光形态建成”一章的教学方法探讨[C]// 中国植物生理学会第十次会员代表大会暨全国学术年会论文集. 开封, 2009:249-250. |
Jiang YL, Liu SZ, Hu WR. Discussion on teaching method of chapter “Photophysical Construction”[C]// Proceeding of the 10th Member Congress of Chinese Plant Physiology Society and the Annual Academic Conference. Kaifeng, 2009:249-250. | |
[54] | 商建秀, 张胜伟, 孙颖. 油菜素内酯、赤霉素与光共同调控拟南芥的细胞伸长和光形态建成[J]. 生物化学与生物物理进展, 2013, 40(3):228-230. |
Shang JX, Zhang SW, Sun Y. Brassinolactone, gibberellin and light regulate cell elongation and photomorphogenesis in Arabidopsis thaliana[J]. Prog Biochem Biophys, 2013, 40(3):228-230. | |
[55] | 顾南南, 杨洪全. 拟南芥phyB与CRY1结构与功能关系的研究[C]// 2007中国植物生理学会全国学术会议论文集. 石家庄, 2007:61. |
Gu NN, Yang HQ. Studies on the structure and function of phyB and CRY1 in Arabidopsis thaliana[C]// Proceedings of the International Conference on Plant Physiology. Shijiazhuang, 2007:61. | |
[56] | 胥峰, 王文秀, 赫圣博, 等. 拟南芥蓝光受体CRY1介导的光信号与生长素和油菜素内酯信号互作调控光形态建成的分子机理[C]// 2018全国植物生物学大会论文集. 泰安, 2018:226. |
Xu F, Wang WX, He SB, et al. Molecular mechanism of Arabidopsis thaliana blue light receptor Cry1 mediated photomorphogenesis and its interaction with auxin and brassinosteroid signals[C]// Proceedings of the International Conference on Plant Biology. Tai’an, 2018:226. |
[1] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[2] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[3] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[4] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[5] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[6] | 桑田, 王鹏程. 植物SUMO化修饰研究进展[J]. 生物技术通报, 2023, 39(3): 1-12. |
[7] | 尚怡彤, 闫欢欢, 王丽红, 田学琴, 薛萍红, 罗涛, 胡志宏. 米曲霉磷酸甲羟戊酸激酶功能研究[J]. 生物技术通报, 2023, 39(12): 311-319. |
[8] | 韩芳英, 胡昕, 王楠楠, 谢裕红, 王晓艳, 朱强. DREBs响应植物非生物逆境胁迫研究进展[J]. 生物技术通报, 2023, 39(11): 86-98. |
[9] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[10] | 葛雯冬, 王腾辉, 马天意, 范震宇, 王玉书. 结球甘蓝PRX基因家族全基因组鉴定与逆境条件下的表达分析[J]. 生物技术通报, 2023, 39(11): 252-260. |
[11] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[12] | 汤茜茜, 林楚宇, 陶增. 植物组蛋白去甲基化酶研究进展[J]. 生物技术通报, 2022, 38(7): 13-22. |
[13] | 古盼, 齐学影, 李莉, 张曦, 单晓昳. AtRGS1胞吞动态调控G蛋白参与拟南芥生长发育和抗性反应[J]. 生物技术通报, 2022, 38(6): 34-42. |
[14] | 林科运, 段钰晶, 王高升, 孙念礼, 方玉洁, 王幼平. 甘蓝型油菜BnNF-YA1的克隆和功能鉴定[J]. 生物技术通报, 2022, 38(4): 106-116. |
[15] | 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2022, 38(12): 11-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||