生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 80-89.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1289
收稿日期:
2021-10-11
出版日期:
2022-07-26
发布日期:
2022-08-09
作者简介:
陈宏艳,女,硕士研究生,研究方向:植物逆境生物学;E-mail: 基金资助:
CHEN Hong-yan(), LI Xiao-er, LI Zhong-guang()
Received:
2021-10-11
Published:
2022-07-26
Online:
2022-08-09
摘要:
糖不仅是植物细胞的碳源、能源和结构物质,也是一种信号分子,在植物生长发育及响应逆境胁迫中起重要作用。非生物逆境如高温、低温、干旱、盐渍和重金属胁迫是限制作物产量的主要胁迫因子,糖作为信号分子在植物响应这些胁迫因子中的确切机理,尚未清楚。基于植物中糖信号转导途径及其在植物耐逆性形成中作用的最新研究进展,归纳了植物中分别依赖己糖激酶(HXK)、G蛋白信号1调节子(RGS1)、糖酵解(EMP)和磷酸戊糖途径(PPP)的糖信号转导途径,讨论了糖信号在植物耐逆性包括耐热性、耐冷性、耐旱性、耐盐性和重金属胁迫耐性形成中的作用,最后展望了糖信号在植物生物学领域的研究方向。
陈宏艳, 李小二, 李忠光. 糖信号及其在植物响应逆境胁迫中的作用[J]. 生物技术通报, 2022, 38(7): 80-89.
CHEN Hong-yan, LI Xiao-er, LI Zhong-guang. Sugar Signaling and Its Role in Plant Response to Environmental Stress[J]. Biotechnology Bulletin, 2022, 38(7): 80-89.
图1 植物糖信号转导途径 植物可分别通过依赖己糖激酶(HXK)、G蛋白信号1调节子(RGS1)、糖酵解(EMP)和磷酸戊糖途径(PPP)的信号途径转导糖信号,继而上调叶绿素a/b结合蛋白1(CAB1)、质体蓝素(PC)和核酮糖1, 5-二磷酸羧化/加氧酶(Rubisco)、查尔酮合酶(CHS)、苯丙氨酸裂解酶(PAL)、腺苷二磷酸-葡萄糖焦磷酸化酶(AGPase)、天冬酰氨合成酶1(AS1)、蛋白S6激酶(S6K)、自噬相关蛋白(ATG)、NO3-转运蛋白(NTR)、SO42-转运蛋白(SULTR)等的基因表达,最终整合生长发育及逆境响应。依赖HXK、RGS1、EMP和PPP的信号途径可分别被2-脱氧甘露糖(Man)、2-脱氧葡萄糖(2-DG)、3-O-甲基葡萄糖(3-OMG)和6-脱氧葡萄糖(6-DG)所促进,被甘露庚酮糖(MHP)、葡萄糖胺(GCN)、苏拉明(SUR)、AZD-8055、葡萄糖-6-磷酸(G6P)和6-氨基烟酰胺(6-AN)所抑制。(+)表示促进,(├)表示抑制
Fig. 1 Sugar signaling pathways in plants Plants can transduce sugar signaling by hexokinase(HXK)-,regulator of G protein signaling1(RGS1)-,glycolysis(EMP)-,and pentose phosphate pathway(PPP)-dependent signaling pathways,which in turn up-regulate gene expression of chlorophyll a/b-binding protein1(CAB1)、plastocyanin(PC),ribulose-1, 5-bisphosphate carboxylase/oxygenase(Rubisco),chalcone synthase(CHS),phenylalanine amonia-lyase(PAL),adenosine diphosphate-glucose pyrophosphorylase(AGPase),asparagine synthetase1(AS1),protein S6 kinase(S6K),autophagy-related protein(ATG),nitrate transporter(NTR),and sulfate transporter(SULTR),and then integrate plant growth,development,and response to environmental stress. The HXK-,RGS1-,EMP- and PPP-dependent sugar signaling pathways can be activated by 2-deoxymannose(Man),2-deoxyglucose(2-DG),3-O-methyl-D-glucose(3-OMG)and 6-deoxyglucose(6-DG),respectively,while inactivated by mannoheptulose(MHP),glucosamine(GCN),suramin(SUR),AZD-8055,glucose-6-phosphate(G6P)and 6-aminonicotinamide(6-AN),respectively.(+)represents promotion,while(├)represents inhibiton
图2 糖信号在植物响应耐逆胁迫中的作用 高温、低温、干旱、盐渍、重金属胁迫及外源提供可溶性糖,均可增加植物体内可溶性糖内源水平,继而通过引发糖信号途径和/或直接作用,增强植物激素、热激蛋白、渗透调节系统、抗氧化系统、甲基乙二醛脱毒系统等活力,植物以此响应逆境胁迫
Fig. 2 Role of sugar signaling in the response of plants to environmental stress Heat,cold,drought,salt,and heavy metal stress as well as exogenous application of sugar increase the level of endogenous sugar,and which triggers sugar signaling pathways and/or exerts direct action,followed by enhancement in the activity of plant hormone,heat shock proteins,osmoregulation system,antioxidant system,and methylglyoxal(MG)detoxification system,thus plants respond to environmental stress
图3 植物细胞中糖的运输 植物细胞可通过定位于质膜上的蔗糖运输蛋白(SUT)、糖运输蛋白(STP)、糖输出蛋白(SWEET)、蔗糖输入蛋白(U1)和己糖输入蛋白(U2),以及定位于液泡膜上的蔗糖运输蛋白(SUT)、液泡葡萄糖运输蛋白(VGT)、SWEET、蔗糖输入蛋白(V1)和己糖输入蛋白(V2)、早期响应脱水蛋白类似蛋白(ERDL)、液泡膜蔗糖运输蛋白(TST)、液泡膜单糖运输蛋白(TMT)等转运蛋白运输糖,以响应生长发育及逆境胁迫
Fig.3 Sugar transport in plant cells Plant cells can transport sugar by sucrose transporter(SUT),sugar transport protein(STP),sugar will eventually be exported transporter(SWEET),sucrose import protein(U1),and hexose import protein(U2)locating in plasma membrane,as well as sucrose transporter(SUT),vacuole glucose transporter(VGT),SWEET,sucrose import protein(V1),hexose import protein(V2),early response dehydration protein-like(ERDL),tonoplast sucrose transporter(TST),and tonoplast monosaccharide transporter(TMT)locating in tonoplast,to response to growth,development environmental stress
[1] |
Yoon J, Cho LH, Tun W, et al. Sucrose signaling in higher plants[J]. Plant Sci, 2021, 302:110703.
doi: 10.1016/j.plantsci.2020.110703 URL |
[2] | Shah D, Sajjad N, Ali R, et al. Sugar regulates plant growth and development under in vitro conditions[M]// Plant signal molecules: role and regulation under stressful environments. Cambridge:Elsevier, 2019:257-267. |
[3] |
Sakr S, Wang M, Dédaldéchamp F, et al. The sugar-signaling hub:overview of regulators and interaction with the hormonal and metabolic network[J]. Int J Mol Sci, 2018, 19(9):2506.
doi: 10.3390/ijms19092506 URL |
[4] | Ahmad IZ. Role of sugars in abiotic stress signaling in plants[M]// Plant signal molecules: role and regulation under stressful environments. Cambridge:Elsevier, 2019:207-217. |
[5] |
Liu W, Gendron JM. Same concept different outcomes:sugars determine circadian clock protein fate in animals and plants[J]. Mol Plant, 2020, 13(3):360-362.
doi: 10.1016/j.molp.2020.02.013 URL |
[6] | Banerjee A, Roychoudhury A. Role of sugars in mediating abiotic stress tolerance in legumes[M]//Abiotic stress and legumes. Amsterdam:Elsevier, 2021:93-103. |
[7] | Sharma P, Arora P, Kapoor D, et al. The role of sugars in improving plant abiotic stress tolerance[M]// Improving abiotic stress tolerance in plants. Boca Raton: CRC Press, 2020:31-48. |
[8] |
Zhao Y, Wang XQ. The hot issue:TOR signalling network in plants[J]. Funct Plant Biol, 2020, 48(1):1-7.
doi: 10.1071/FP20071 URL |
[9] | Ahmad F, Singh A, Kamal A. Osmoprotective role of sugar in mitigating abiotic stress in plants[M]// Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives. Hoboken:Wiley, 2020:53-70. |
[10] | Gangola MP, Ramadoss BR. Sugars play a critical role in abiotic stress tolerance in plants[M]//Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. Amsterdam:Elsevier, 2018:17-38. |
[11] |
Li L, Sheen J. Dynamic and diverse sugar signaling[J]. Curr Opin Plant Biol, 2016, 33:116-125.
doi: 10.1016/j.pbi.2016.06.018 URL |
[12] | 陈清帅. 拟南芥糖信号快速响应的机理研究[D]. 泰安: 山东农业大学, 2019. |
Chen QS. Studies on mechanism of the rapid response to sugar signal in Arabidopsis thaliana[D]. Tai’an: Shandong Agricultural University, 2019. | |
[13] | Martínez-Noël GMA, Tognetti JA. Sugar signaling under abiotic stress in plants[M]//Plant metabolites and regulation under environmental stress. Amsterdam:Elsevier, 2018:397-406. |
[14] |
Rodriguez M, Parola R, Andreola S, et al. TOR and SnRK1 signaling pathways in plant response to abiotic stresses:do they always act according to the “Yin-Yang” model?[J]. Plant Sci, 2019, 288:110220.
doi: 10.1016/j.plantsci.2019.110220 URL |
[15] |
Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants:conserved and novel mechanisms[J]. Annu Rev Plant Biol, 2006, 57:675-709.
pmid: 16669778 |
[16] | Morgutti S, Negrini N, Pucciariello C, et al. Role of trehalose and regulation of its levels as a signal molecule to abiotic stresses in plants[M]//Plant signaling molecules. Amsterdam:Elsevier, 2019:235-255. |
[17] | Poonam, Bhardwaj R, Handa N, et al. Sugar signalling in plants:a novel mechanism for drought stress management[M]// Water stress and crop plants: a sustainable approach. Chichester:Wiley, 2016:287-302. |
[18] | Bhattacharya S, Kundu A. Sugars and sugar polyols in overcoming environmental stresses[M]// Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives. Hoboken:Wiley, 2020:71-101. |
[19] | Amist N, Singh NB. The role of sugars in the regulation of environmental stress[M]//Plant life under changing environment. Amsterdam:Elsevier, 2020:497-512. |
[20] |
Dong YH, Silbermann M, Speiser A, et al. Sulfur availability regulates plant growth via glucose-TOR signaling[J]. Nat Commun, 2017, 8(1):1174.
doi: 10.1038/s41467-017-01224-w URL |
[21] |
Sharma M, Banday ZZ, Shukla BN, et al. Glucose-regulated HLP1 acts as a key molecule in governing thermomemory[J]. Plant Physiol, 2019, 180(2):1081-1100.
doi: 10.1104/pp.18.01371 pmid: 30890662 |
[22] |
Saksena HB, Sharma M, Singh D, et al. The versatile role of glucose signalling in regulating growth, development and stress responses in plants[J]. J Plant Biochem Biotechnol, 2020, 29(4):687-699.
doi: 10.1007/s13562-020-00614-4 URL |
[23] | Cisse A. 蔗糖影响水稻耐热性的作用机理研究[D]. 北京: 中国农业科学院, 2019. |
Cisse A. Role of sucrose in heat response in rice plants[D]. Beijing: Chinese Academy of Agricultural Sciences. 2019. | |
[24] |
Li ZG, Luo LJ, Zhu LP. Involvement of trehalose in hydrogen sulfide donor sodium hydrosulfide-induced the acquisition of heat tolerance in maize(Zea mays L.)seedlings[J]. Bot Stud, 2014, 55(1):20.
doi: 10.1186/1999-3110-55-20 URL |
[25] |
Suzuki N, Bajad S, Shuman J, et al. The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana[J]. J Biol Chem, 2008, 283(14):9269-9275.
doi: 10.1074/jbc.M709187200 URL |
[26] |
Kaur H, Manna M, Thakur T, et al. Imperative role of sugar signaling and transport during drought stress responses in plants[J]. Physiol Plant, 2021, 171(4):833-848.
doi: 10.1111/ppl.13364 URL |
[27] | 李忠光, 龙维彪, 杨仕忠, 等. 硫化氢:从有毒气体到植物信号分子[J]. 云南师范大学学报:自然科学版, 2022, 42(1):1-10. |
Li ZG, Long WB, Yang SZ, et al. Hydrogen sulfide:From toxic gas to plant signaling molecule. Journal of Yunnan Normal University:Natural Sciences Edition, 2022, 42(1):1-10. | |
[28] |
Melvin P, Bankapalli K, D’Silva P, et al. Methylglyoxal detoxification by a DJ-1 family protein provides dual abiotic and biotic stress tolerance in transgenic plants[J]. Plant Mol Biol, 2017, 94(4/5):381-397.
doi: 10.1007/s11103-017-0613-9 URL |
[29] | Yuanyuan M, Yali Z, Jiang L, et al. Roles of plant soluble sugars and their responses to plant cold stress[J]. Afr J Biotechnol, 2009, 8(10):2004-2010. |
[30] |
Garg AK, Kim JK, Owens TG, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses[J]. Proc Natl Acad Sci USA, 2002, 99(25):15898-15903.
doi: 10.1073/pnas.252637799 URL |
[31] |
Livingston DP, Hincha DK, Heyer AG. Fructan and its relationship to abiotic stress tolerance in plants[J]. Cell Mol Life Sci, 2009, 66(13):2007-2023.
doi: 10.1007/s00018-009-0002-x pmid: 19290476 |
[32] |
Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks[J]. J Exp Bot, 2012, 63(4):1593-1608.
doi: 10.1093/jxb/err460 pmid: 22291134 |
[33] |
Fernandez O, Béthencourt L, Quero A, et al. Trehalose and plant stress responses:friend or foe?[J]. Trends Plant Sci, 2010, 15(7):409-417.
doi: 10.1016/j.tplants.2010.04.004 pmid: 20494608 |
[34] |
Li YH, Lee KK, Walsh S, et al. Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a relevance vector machine[J]. Genome Res, 2006, 16(3):414-427.
doi: 10.1101/gr.4237406 URL |
[35] |
Eastmond PJ, Graham IA. Trehalose metabolism:a regulatory role for trehalose-6-phosphate?[J]. Curr Opin Plant Biol, 2003, 6(3):231-235.
doi: 10.1016/s1369-5266(03)00037-2 pmid: 12753972 |
[36] |
Anchordoguy TJ, Rudolph AS, Carpenter JF, et al. Modes of interaction of cryoprotectants with membrane phospholipids during freezing[J]. Cryobiology, 1987, 24(4):324-331.
pmid: 3621976 |
[37] |
Crowe JH, Crowe LM, Carpenter JF, et al. Interactions of sugars with membranes[J]. Biochim Biophys Acta, 1988, 947(2):367-384.
pmid: 3285894 |
[38] |
Schrier AA, Hoffmann-Thoma G, van Bel AJE. Temperature effects on symplasmic and apoplasmic phloem loading and loading-associated carbohydrate processing[J]. Funct Plant Biol, 2000, 27(9):769.
doi: 10.1071/PP99166 URL |
[39] |
Patzke K, Prananingrum P, Klemens PAW, et al. The plastidic sugar transporter pSuT influences flowering and affects cold responses[J]. Plant Physiol, 2019, 179(2):569-587.
doi: 10.1104/pp.18.01036 URL |
[40] |
Klemens PAW, Patzke K, Trentmann O, et al. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination[J]. New Phytol, 2014, 202(1):188-197.
doi: 10.1111/nph.12642 URL |
[41] |
Saddhe AA, Manuka R, Penna S. Plant sugars:Homeostasis and transport under abiotic stress in plants[J]. Physiol Plant, 2021, 171(4):739-755.
doi: 10.1111/ppl.13283 URL |
[42] |
Eom JS, Chen LQ, Sosso D, et al. SWEETs, transporters for intracellular and intercellular sugar translocation[J]. Curr Opin Plant Biol, 2015, 25:53-62.
doi: 10.1016/j.pbi.2015.04.005 URL |
[43] |
Breia R, Conde A, Badim H, et al. Plant SWEETs:from sugar transport to plant-pathogen interaction and more unexpected physiological roles[J]. Plant Physiol, 2021, 186(2):836-852.
doi: 10.1093/plphys/kiab127 URL |
[44] |
Pelleschi S, Rocher JP, Prioul JL. Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves[J]. Plant Cell Environ, 1997, 20(4):493-503.
doi: 10.1046/j.1365-3040.1997.d01-89.x URL |
[45] |
Li NN, Qian WJ, Wang L, et al. Isolation and expression features of hexose kinase genes under various abiotic stresses in the tea plant(Camellia sinensis)[J]. J Plant Physiol, 2017, 209:95-104.
doi: 10.1016/j.jplph.2016.11.007 URL |
[46] |
Yang YT, Fu ZW, Su YC, et al. A cytosolic glucose-6-phosphate dehydrogenase gene, ScG6PDH, plays a positive role in response to various abiotic stresses in sugarcane[J]. Sci Rep, 2014, 4:7090.
doi: 10.1038/srep07090 URL |
[47] |
Trouverie J, Chateau-Joubert S, Thévenot C, et al. Regulation of vacuolar invertase by abscisic acid or glucose in leaves and roots from maize plantlets[J]. Planta, 2004, 219(5):894-905.
pmid: 15179513 |
[48] |
Dai N, Schaffer A, Petreikov M, et al. Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence[J]. Plant Cell, 1999, 11(7):1253-1266.
pmid: 10402427 |
[49] |
Suwa R, Fujimaki S, Suzui N, et al. Use of positron-emitting tracer imaging system for measuring the effect of salinity on temporal and spatial distribution of 11C tracer and coupling between source and sink organs[J]. Plant Sci, 2008, 175(3):210-216.
doi: 10.1016/j.plantsci.2008.03.022 URL |
[50] |
Rosa M, Prado C, Podazza G, et al. Soluble sugars[J]. Plant Signal Behav, 2009, 4(5):388-393.
doi: 10.4161/psb.4.5.8294 URL |
[51] |
Hu MY, Shi ZG, Zhang ZB, et al. Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress[J]. Plant Growth Regul, 2012, 68(2):177-188.
doi: 10.1007/s10725-012-9705-3 URL |
[52] | Nemati I, Moradi F, Gholizadeh S, et al. The effect of salinity stress on ions and soluble sugars distribution in leaves, leaf sheaths and roots of rice(Oryza sativa L.)seedlings[J]. Plant Soil Environ, 2011, 57 (No. 1):26-33. |
[53] |
Pattanagul W, Thitisaksakul M. Effect of salinity stress on growth and carbohydrate metabolism in three rice(Oryza sativa L.)cultivars differing in salinity tolerance[J]. Indian J Exp Biol, 2008, 46(10):736-742.
pmid: 19024173 |
[54] |
Couée I, Sulmon C, Gouesbet G, et al. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants[J]. J Exp Bot, 2006, 57(3):449-459.
pmid: 16397003 |
[55] |
Yamada K, Kanai M, Osakabe Y, et al. Monosaccharide absorption activity of Arabidopsis roots depends on expression profiles of transporter genes under high salinity conditions[J]. J Biol Chem, 2011, 286(50):43577-43586.
doi: 10.1074/jbc.M111.269712 pmid: 22041897 |
[56] |
Hackenberg D, McKain MR, Lee SG, et al. Gα and regulator of G-protein signaling(RGS)protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants[J]. New Phytol, 2017, 216(2):562-575.
doi: 10.1111/nph.14180 pmid: 27634188 |
[57] |
Liu CY, Fan W, Zhu PP, et al. Mulberry RGS negatively regulates salt stress response and tolerance[J]. Plant Signal Behav, 2019, 14(12):1672512.
doi: 10.1080/15592324.2019.1672512 URL |
[58] |
Martins LL, Mourato MP, Baptista S, et al. Response to oxidative stress induced by cadmium and copper in tobacco plants(Nicotiana tabacum)engineered with the trehalose-6-phosphate synthase gene(AtTPS1)[J]. Acta Physiol Plant, 2014, 36(3):755-765.
doi: 10.1007/s11738-013-1453-0 URL |
[59] |
Jalmi SK, Bhagat PK, Verma D, et al. Traversing the links between heavy metal stress and plant signaling[J]. Front Plant Sci, 2018, 9:12.
doi: 10.3389/fpls.2018.00012 URL |
[60] |
Mostofa MG, Hossain MA, Fujita M, et al. Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice[J]. Sci Rep, 2015, 5:11433.
doi: 10.1038/srep11433 URL |
[61] |
Duman F, Aksoy A, Aydin Z, et al. Effects of exogenous glycinebetaine and trehalose on cadmium accumulation and biological responses of an aquatic plant(Lemna gibba L.)[J]. Water Air Soil Pollut, 2011, 217(1/2/3/4):545-556.
doi: 10.1007/s11270-010-0608-5 URL |
[62] |
Richards KD, Schott EJ, Sharma YK, et al. Aluminum induces oxidative stress genes in Arabidopsis thaliana[J]. Plant Physiol, 1998, 116(1):409-418.
pmid: 9449849 |
[63] |
Tan JK, Kong FX, Cao HS, et al. Effects of acid precipitation and aluminum on carbohydrate metabolism in mycorrhizae of Pinus massioniana[J]. Bull Environ Contam Toxicol, 2005, 74(3):614-622.
doi: 10.1007/s00128-005-0628-9 URL |
[1] | 韩志阳, 贾子苗, 梁秋菊, 王轲, 唐华丽, 叶兴国, 张双喜. 二套小麦-簇毛麦染色体附加系苗期耐盐性及籽粒硒和叶酸的含量[J]. 生物技术通报, 2023, 39(8): 185-193. |
[2] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[3] | 刘奎, 李兴芬, 杨沛欣, 仲昭晨, 曹一博, 张凌云. 青杄转录共激活因子PwMBF1c的功能研究与验证[J]. 生物技术通报, 2023, 39(5): 205-216. |
[4] | 陈奕博, 杨万明, 岳爱琴, 王利祥, 杜维俊, 王敏. 基于SLAF标记的大豆遗传图谱构建及苗期耐盐性QTL定位[J]. 生物技术通报, 2023, 39(2): 70-79. |
[5] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[6] | 朱业胜, 伍国强, 魏明. 质膜Na+/H+逆向转运蛋白SOS1在植物离子稳态平衡中的作用[J]. 生物技术通报, 2023, 39(12): 16-32. |
[7] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[8] | 石广成, 杨万明, 杜维俊, 王敏. 大豆耐盐种质的筛选及其耐盐生理特性分析[J]. 生物技术通报, 2022, 38(4): 174-183. |
[9] | 张晓佳, 卢亚军, 张文晋, 张瑜, 崔高畅, 郎多勇, 张新慧. 抗旱耐盐菌剂的制备及其对甘草种子萌发的影响[J]. 生物技术通报, 2020, 36(9): 180-193. |
[10] | 刘敏, 房玉林. 葡萄ERECTA基因过表达提高拟南芥生长量和耐热性[J]. 生物技术通报, 2020, 36(6): 46-53. |
[11] | 鲁琳, 赵希胜, 刘维东, 王艳婷, 吴玲莉, 鲁黎明. 花烟草NáNHX1基因的克隆及其在非生物胁迫下的表达模式[J]. 生物技术通报, 2020, 36(4): 70-77. |
[12] | 石晶静, 郭依萍, 于颖, 周美琪, 王超. 转BpLTP4烟草耐盐性分析[J]. 生物技术通报, 2020, 36(12): 34-41. |
[13] | 李卫娜, 申冬玲, 张煜星, 刘学通, 伊日布斯. Mangrovibacterium sp. SH-52耐热内切型海藻酸裂解酶基因的克隆及酶学鉴定[J]. 生物技术通报, 2020, 36(12): 82-90. |
[14] | 汤佳乐, 徐海, 苑平, 何科佳, 王仁才, 卜范文. 植物Hsp90s与耐热性关系的研究进展[J]. 生物技术通报, 2020, 36(10): 173-179. |
[15] | 宋玉双, 隋娜. 甜高粱FAD7基因的功能分析[J]. 生物技术通报, 2019, 35(5): 35-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||