生物技术通报 ›› 2022, Vol. 38 ›› Issue (9): 127-135.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1549
• 细菌耐药性专题(专题主编: 刘雅红 教授 孙坚 教授) • 上一篇 下一篇
文畅(), 刘晨, 卢诗韵, 许忠兵, 艾超凡, 廖汉鹏(), 周顺桂
收稿日期:
2021-12-14
出版日期:
2022-09-26
发布日期:
2022-10-11
作者简介:
文畅,女,硕士研究生,研究方向:环境病毒与抗生素耐药性;E-mail: 基金资助:
WEN Chang(), LIU Chen, LU Shi-yun, XU Zhong-bing, AI Chao-fan, LIAO Han-peng(), ZHOU Shun-gui
Received:
2021-12-14
Published:
2022-09-26
Online:
2022-10-11
摘要:
抗生素的大量使用和滥用造成细菌耐药性问题愈发严峻,噬菌体疗法作为一种精准治疗多重耐药病原菌的有效方法开始被人们日益重视。采用双层琼脂平板法从活性污泥中分离出多重耐药福氏志贺菌(Shigella flexneri)噬菌体P003,鉴定为肌尾噬菌体科(Myoviridae)。通过生物学特性测定表明P003的最佳感染复数为10,潜伏期约10 min;在4-70℃、pH 3.0-10.0的条件下保持活性。全基因组测序表明,噬菌体基因组长约68 721 bp,GC含量46.14%,预测编码99个开放阅读框(open reading frame,ORF),未发现已知耐药基因和毒力基因。全基因组多序列线性与进化树分析结果表明,P003与大肠杆菌噬菌体有较近的亲缘关系,但不能侵染大肠杆菌。从活性污泥原位分离到一株新的多重耐药福氏志贺菌噬菌体P003,为利用噬菌体疗法防治多重耐药病原菌S. flexneri感染提供了新的菌种资源。
文畅, 刘晨, 卢诗韵, 许忠兵, 艾超凡, 廖汉鹏, 周顺桂. 一株新的多重耐药福氏志贺菌噬菌体生物学特性及基因组分析[J]. 生物技术通报, 2022, 38(9): 127-135.
WEN Chang, LIU Chen, LU Shi-yun, XU Zhong-bing, AI Chao-fan, LIAO Han-peng, ZHOU Shun-gui. Biological Characteristics and Genome Analysis of a Novel Multidrug-resistant Shigella flexneri Phage[J]. Biotechnology Bulletin, 2022, 38(9): 127-135.
抗生素名称 Antibiotic name | 抗生素浓度Antibiotic concentration /(μg·mL-1) | 药敏性Sensitivity |
---|---|---|
四环素 Tetracycline | 2 | R |
氯霉素 Chloramphenicol | 16 | R |
氨苄青霉素 Ampicillin | 100 | R |
卡那霉素 Kanamycin | 100 | S |
阿莫西林 Amoxicillin | 64 | R |
硫酸链霉素 Streptomycin | 30 | R |
庆大霉素 Gentamicin | 10 | R |
红霉素 Erythromycin | 15 | R |
利福平 Rifampin | 100 | R |
表1 宿主菌耐药性
Table 1 Antibiotic sensitivity of host bacteria
抗生素名称 Antibiotic name | 抗生素浓度Antibiotic concentration /(μg·mL-1) | 药敏性Sensitivity |
---|---|---|
四环素 Tetracycline | 2 | R |
氯霉素 Chloramphenicol | 16 | R |
氨苄青霉素 Ampicillin | 100 | R |
卡那霉素 Kanamycin | 100 | S |
阿莫西林 Amoxicillin | 64 | R |
硫酸链霉素 Streptomycin | 30 | R |
庆大霉素 Gentamicin | 10 | R |
红霉素 Erythromycin | 15 | R |
利福平 Rifampin | 100 | R |
菌株 Bacterial strain | 敏感性 Sensitivity |
---|---|
Shigella flexneri B003 | + |
Shigella flexneri M001 | — |
Shigella flexneri M002 | — |
Shigella flexneri M003 | — |
Escherichia coli HB101 | — |
Escherichia coli DH5α | — |
Escherichia coli K12 | — |
Escherichia coli KN | — |
Escherichia coli OP50 | — |
Escherichia LFHY_s J001 | — |
Escherichia hermannii | — |
Enterobacter cloacae subsp | — |
Serratia nematodiphila | — |
Serratia marcescens | — |
Klebsiella africana | — |
Klebsiella pneumoniae subsp | — |
表2 噬菌体P003裂解谱
Table 2 Lytic range of phage P003
菌株 Bacterial strain | 敏感性 Sensitivity |
---|---|
Shigella flexneri B003 | + |
Shigella flexneri M001 | — |
Shigella flexneri M002 | — |
Shigella flexneri M003 | — |
Escherichia coli HB101 | — |
Escherichia coli DH5α | — |
Escherichia coli K12 | — |
Escherichia coli KN | — |
Escherichia coli OP50 | — |
Escherichia LFHY_s J001 | — |
Escherichia hermannii | — |
Enterobacter cloacae subsp | — |
Serratia nematodiphila | — |
Serratia marcescens | — |
Klebsiella africana | — |
Klebsiella pneumoniae subsp | — |
Accession No. | Escherichia phage | Coverage/% | Identity/% |
---|---|---|---|
NC_048194.1 | vB_EcoM_WFH | 96 | 99.18 |
MH051335.1 | vB_EcoM-Ro157lw | 94 | 97.22 |
JX128258.1 | ECML-117 | 92 | 97.04 |
MK903282.1 | Mansfield | 92 | 96.36 |
NC_048073.1 | FEC19 | 94 | 95.32 |
表3 噬菌体P003与数据库中病毒基因组比较分析
Table 3 Comparative analysis of phage P003 with virus database based on genome
Accession No. | Escherichia phage | Coverage/% | Identity/% |
---|---|---|---|
NC_048194.1 | vB_EcoM_WFH | 96 | 99.18 |
MH051335.1 | vB_EcoM-Ro157lw | 94 | 97.22 |
JX128258.1 | ECML-117 | 92 | 97.04 |
MK903282.1 | Mansfield | 92 | 96.36 |
NC_048073.1 | FEC19 | 94 | 95.32 |
[1] |
Mohr KI. History of antibiotics research[J]. Curr Top Microbiol Immunol, 2016, 398:237-272.
doi: 10.1007/82_2016_499 pmid: 27738915 |
[2] |
Jun JW, Kim JH, Shin SP, et al. Characterization and complete genome sequence of the Shigella bacteriophage pSf-1[J]. Res Microbiol, 2013, 164(10):979-986.
doi: 10.1016/j.resmic.2013.08.007 URL |
[3] |
Jennison AV, Verma NK. Shigella flexneri infection:pathogenesis and vaccine development[J]. FEMS Microbiol Rev, 2004, 28(1):43-58.
pmid: 14975529 |
[4] |
Yang CJ, Li P, Zhang XJ, et al. Molecular characterization and analysis of high-level multidrug-resistance of Shigella flexneri serotype 4s strains from China[J]. Sci Rep, 2016, 6:29124.
doi: 10.1038/srep29124 URL |
[5] |
Wittebole X, de Roock S, Opal SM. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens[J]. Virulence, 2014, 5(1):226-235.
doi: 10.4161/viru.25991 pmid: 23973944 |
[6] |
Sausset R, Petit MA, Gaboriau-Routhiau V, et al. New insights into intestinal phages[J]. Mucosal Immunol, 2020, 13(2):205-215.
doi: 10.1038/s41385-019-0250-5 pmid: 31907364 |
[7] |
Hobbs Z, Abedon ST. Diversity of phage infection types and associated terminology:the problem with ‘Lytic or lysogenic'[J]. FEMS Microbiol Lett, 2016, 363(7):fnw047.
doi: 10.1093/femsle/fnw047 URL |
[8] |
Koskella B, Meaden S. Understanding bacteriophage specificity in natural microbial communities[J]. Viruses, 2013, 5(3):806-823.
doi: 10.3390/v5030806 pmid: 23478639 |
[9] |
Dahlman S, Avellaneda-Franco L, Barr JJ. Phages to shape the gut microbiota?[J]. Curr Opin Biotechnol, 2021, 68:89-95.
doi: 10.1016/j.copbio.2020.09.016 URL |
[10] |
Chanishvili N. Phage therapy-history from Twort and d'Herelle through Soviet experience to current approaches[J]. Adv Virus Res, 2012, 83:3-40.
doi: 10.1016/B978-0-12-394438-2.00001-3 pmid: 22748807 |
[11] |
Law N, Logan C, Yung G, et al. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient[J]. Infection, 2019, 47(4):665-668.
doi: 10.1007/s15010-019-01319-0 URL |
[12] | Saussereau E, Vachier I, Chiron R, et al. Effectiveness of bacteriophages in the sputum of cystic fibrosis patients[J]. Clin Microbiol Infect, 2014, 20(12):O983-O990. |
[13] |
Wang XF, Wei Z, Yang KM, et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nat Biotechnol, 2019, 37(12):1513-1520.
doi: 10.1038/s41587-019-0328-3 pmid: 31792408 |
[14] |
Xu J, Zhang RY, Yu XY, et al. Molecular characteristics of novel phage vB_ShiP-A7 infecting multidrug-resistant Shigella flexneri and Escherichia coli, and its bactericidal effect in vitro and in vivo[J]. Front Microbiol, 2021, 12:698962.
doi: 10.3389/fmicb.2021.698962 URL |
[15] |
Shahin K, Bouzari M. Bacteriophage application for biocontrolling Shigella flexneri in contaminated foods[J]. J Food Sci Technol, 2018, 55(2):550-559.
doi: 10.1007/s13197-017-2964-2 URL |
[16] |
Rahimzadeh G, Saeedi M, Moosazadeh M, et al. Encapsulation of bacteriophage cocktail into chitosan for the treatment of bacterial diarrhea[J]. Sci Rep, 2021, 11(1):15603.
doi: 10.1038/s41598-021-95132-1 pmid: 34341399 |
[17] |
Liao HP, Li X, Yang QE, et al. Herbicide selection promotes antibiotic resistance in soil microbiomes[J]. Mol Biol Evol, 2021, 38(6):2337-2350.
doi: 10.1093/molbev/msab029 pmid: 33592098 |
[18] | Chen YX, Chen YS, Shi CM, et al. SOAPnuke:a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data[J]. GigaScience, 2018, 7(1):1-6. |
[19] |
Li RQ, Li YR, Kristiansen K, et al. SOAP:short oligonucleotide alignment program[J]. Bioinformatics, 2008, 24(5):713-714.
doi: 10.1093/bioinformatics/btn025 URL |
[20] |
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2010, 26(5):589-595.
doi: 10.1093/bioinformatics/btp698 pmid: 20080505 |
[21] |
Bankevich A, Nurk S, Antipov D, et al. SPAdes:a new genome assembly algorithm and its applications to single-cell sequencing[J]. J Comput Biol, 2012, 19(5):455-477.
doi: 10.1089/cmb.2012.0021 pmid: 22506599 |
[22] |
Zhu WH, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences[J]. Nucleic Acids Res, 2010, 38(12):e132.
doi: 10.1093/nar/gkq275 URL |
[23] | Hulo C, de Castro E, Masson P, et al. ViralZone:a knowledge resource to understand virus diversity[J]. Nucleic Acids Res, 2011, 39(Database issue):D576-D582. |
[24] | Grant JR, Stothard P. The CGView Server:a comparative genomics tool for circular genomes[J]. Nucleic Acids Res, 2008, 36(Web Server issue):W181-W184. |
[25] |
Darling ACE, Mau B, Blattner FR, et al. Mauve:multiple alignment of conserved genomic sequence with rearrangements[J]. Genome Res, 2004, 14(7):1394-1403.
pmid: 15231754 |
[26] |
Tamura K, Stecher G, Peterson D, et al. MEGA6:molecular evolutionary genetics analysis version 6. 0[J]. Mol Biol Evol, 2013, 30(12):2725-2729.
doi: 10.1093/molbev/mst197 URL |
[27] |
Jończyk-Matysiak E, Łodej N, Kula D, et al. Factors determining phage stability/activity:challenges in practical phage application[J]. Expert Rev Anti Infect Ther, 2019, 17(8):583-606.
doi: 10.1080/14787210.2019.1646126 pmid: 31322022 |
[28] |
McAllister TA, Wang YX, Diarra MS, et al. Challenges of a one-health approach to the development of alternatives to antibiotics[J]. Anim Front, 2018, 8(2):10-20.
doi: 10.1093/af/vfy002 pmid: 32002214 |
[29] | 程古月, 郝海红, 谢书宇, 等. 抗生素替代品的研究进展[J]. 中国农学通报, 2014, 30(35):97-106. |
Cheng GY, Hao HH, Xie SY, et al. Advances of antibiotic alternatives[J]. Chin Agric Sci Bull, 2014, 30(35):97-106. | |
[30] | Tao MH, Ao TR, Mao XY, et al. Sterilization and disinfection methods for decellularized matrix materials:Review, consideration and proposal[J]. Bioact Mater, 2021, 6(9):2927-2945. |
[31] |
Clokie MRJ, Millard AD, Letarov AV, et al. Phages in nature[J]. Bacteriophage, 2011, 1(1):31-45.
doi: 10.4161/bact.1.1.14942 pmid: 21687533 |
[32] |
Rehman S, Ali Z, Khan M, et al. The dawn of phage therapy[J]. Rev Med Virol, 2019, 29(4):e2041.
doi: 10.1002/rmv.2041 pmid: 31050070 |
[33] |
Fabijan AP, Lin RCY, Ho J, et al. Safety of bacteriophage therapy in severe Staphylococcus aureus infection[J]. Nat Microbiol, 2020, 5(3):465-472.
doi: 10.1038/s41564-019-0634-z URL |
[34] | Melo LDR, Veiga P, Cerca N, et al. Development of a phage cocktail to control Proteus mirabilis catheter-associated urinary tract infections[J]. Front Microbiol, 2016, 7:1024. |
[35] |
Hajialibeigi A, Amani J, Gargari SLM. Identification and evaluation of novel vaccine candidates against Shigella flexneri through reverse vaccinology approach[J]. Appl Microbiol Biotechnol, 2021, 105(3):1159-1173.
doi: 10.1007/s00253-020-11054-4 pmid: 33452891 |
[36] | 何秀, 邓征宇, 王峰, 等. 一株福氏志贺氏菌噬菌体的分离鉴定及其生物学特性[J]. 微生物学通报, 2021, 48(9):3165-3175. |
He X, Deng ZY, Wang F, et al. Isolation and biological characterization of a bacteriophage infecting Shigella flexneri[J]. Microbiol China, 2021, 48(9):3165-3175. | |
[37] |
Sharma M, Patel JR, Conway WS, et al. Effectiveness of bacteriophages in reducing Escherichia coli O157:H7 on fresh-cut cantaloupes and lettucet[J]. J Food Prot, 2009, 72(7):1481-1485.
doi: 10.4315/0362-028X-72.7.1481 URL |
[38] | Hyman P. Phages for phage therapy:isolation, characterization, and host range breadth[J]. Pharmaceuticals(Basel), 2019, 12(1):35. |
[39] |
Zhang JX, He XL, Shen SQ, et al. Effects of the newly isolated T4-like phage on transmission of plasmid-borne antibiotic resistance genes via generalized transduction[J]. Viruses, 2021, 13(10):2070.
doi: 10.3390/v13102070 URL |
[1] | 李托, 李陇平, 屈雷. 有尾噬菌体的结构及其受体研究进展[J]. 生物技术通报, 2023, 39(6): 88-101. |
[2] | 胡雪莹, 张越, 郭雅杰, 仇天雷, 高敏, 孙兴滨, 王旭明. 不同施肥处理农田土壤中噬菌体与细菌携带抗生素抗性基因的比较[J]. 生物技术通报, 2022, 38(9): 116-126. |
[3] | 李霁虹, 荆玉玲, 马桂珍, 郭荣君, 李世东. 无色杆菌77的基因组构成及其趋化和耐药特性[J]. 生物技术通报, 2022, 38(9): 136-146. |
[4] | 刘警鞠, 张雨森, 陈娟, 孙炳达, 赵国柱. 曲霉属的现代分类命名研究进展[J]. 生物技术通报, 2022, 38(7): 109-118. |
[5] | 徐重新, 张霄, 刘媛, 仲建锋, 谢雅晶, 卢莉娜, 高美静, 刘贤金. 靶向模拟Bt Cry1C蛋白抗虫功能的人源化基因工程抗体筛选及鉴定[J]. 生物技术通报, 2022, 38(5): 191-200. |
[6] | 王加利, 和似琦, 康子茜, 王建勋. 噬菌体抗体展示技术及其在抗新冠病毒抗体发现中的应用[J]. 生物技术通报, 2022, 38(5): 248-256. |
[7] | 张俊锋, 李孟珂, 吴志浩, 崔晓龙, 肖炜, 张仕颖. 噬菌体DCEAV-31和DCEIV-9对溶藻菌溶藻特性的影响[J]. 生物技术通报, 2022, 38(11): 250-257. |
[8] | 黄景晓, 尚俊康, 陈慧敏, 沈嘉旻, 黎圆圆, 喻玉立, 倪进东, 林伯坤. 一株烈性沙门氏菌噬菌体的生物学特性及基因组分析[J]. 生物技术通报, 2021, 37(6): 136-146. |
[9] | 王孝芳, 侯玉刚, 杨可铭, 王佳宁, 韦中, 徐阳春, 沈其荣. 一株青枯菌专性噬菌体的分离及应用效果研究[J]. 生物技术通报, 2020, 36(9): 194-201. |
[10] | 王亚利, 康春晓, 杨传臻, 魏艺璇, 王瑞飞, 李明军, 杨清香. 一株地黄根腐病病原菌的分离鉴定及生物学特性研究[J]. 生物技术通报, 2020, 36(1): 37-44. |
[11] | 罗冬章, 罗惠娜, 詹小舒, 李心怡, 黄曼晴, 林洁微, 黄绮亮, 洪纯, 林好美, 陈胜锋, 王丙云. 猫4种不同来源间充质干细胞的生物学特性比较[J]. 生物技术通报, 2019, 35(7): 39-45. |
[12] | 戚家明, 杨娜, 孙杉杉, 明艳超, 郭亮, 张东旭, 徐志文. 一株具有噬菌体抗性的芽孢杆菌BS-2的鉴定及葡萄糖流加工艺优化[J]. 生物技术通报, 2019, 35(3): 210-216. |
[13] | 耿慧君, 邹伟, 崔惠敬, 李晓宇, 王丽丽, 徐永平. 基于转录组学的金黄色葡萄球菌噬菌体安全性评估[J]. 生物技术通报, 2019, 35(12): 64-75. |
[14] | 关桂静, 赵恒燕, 王洪苏, 刘金香. 病毒-植物互作对介体昆虫生物学特性的影响[J]. 生物技术通报, 2017, 33(4): 44-50. |
[15] | 刘秀侠, 徐海燕, 辛国芹, 穆熙军, 孙学森, 谷巍. 一株枯草芽孢杆菌噬菌体的生物学特性分析及抗性菌株的诱变筛选[J]. 生物技术通报, 2017, 33(2): 143-148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||