生物技术通报 ›› 2022, Vol. 38 ›› Issue (9): 258-263.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1177
收稿日期:
2021-07-28
出版日期:
2022-09-26
发布日期:
2022-10-11
作者简介:
杨小峰,男,博士研究生,研究方向:动物生殖生理和繁殖生物技术;E-mail: 基金资助:
YANG Xiao-feng1,2(), QIN Xiao-wei1, GUO Ze-yuan1, LV Li-hua1()
Received:
2021-07-28
Published:
2022-09-26
Online:
2022-10-11
摘要:
旨在研究原花青素对体外培养绵羊卵泡颗粒细胞增殖的影响。不同浓度梯度(20、30、40、50、60、70和80 μg/mL)原花青素的完全培养基中培养绵羊卵泡颗粒细胞,培养时间分别为24、48和72 h,通过MTT法测定颗粒细胞的增殖率;通过RT-qPCR法检测细胞周期相关基因p21、p27和细胞凋亡相关基因caspase-8的表达。结果表明,培养48 h,在原花青素浓度为50 μg/mL时,颗粒细胞的增殖率最高,细胞周期相关基因p21、p27和细胞凋亡相关基因caspase-8这3个基因的表达量均显著降低(P<0.01)。综上所述,原花青素对体外培养绵羊卵泡颗粒细胞有一定的促进增殖效应,并且在相关基因mRNA水平上得到验证。
杨小峰, 秦小伟, 郭泽媛, 吕丽华. 原花青素对体外培养绵羊卵泡颗粒细胞增殖的影响[J]. 生物技术通报, 2022, 38(9): 258-263.
YANG Xiao-feng, QIN Xiao-wei, GUO Ze-yuan, LV Li-hua. Effects of Proanthocyanidin on the Proliferation of Sheep Follicular Granulosa Cells in vitro[J]. Biotechnology Bulletin, 2022, 38(9): 258-263.
基因名称Gene name | 引物序列 Primer sequence(5'-3') |
---|---|
p21 | F:ACGTCTCAGGAGGACCACTT, R:TGGTAGAAATCTGTCATGCTGGT |
p27 | F:TACTTGGGTCTCAGGCAAAC, R:GCTCTTTTGTTTTGAGGAGAGG |
caspase-8 | F:ACTGTGTGGAGCAGGTAACA, R:CCGGCTTAGGAACTTGAGGG |
18S | F:GTAACCCGTTGAACCCCATT, R:CCATCCAATCGGTAGTAGCG |
表1 RT-qPCR引物序列
Table 1 Primer sequences of RT-qPCR
基因名称Gene name | 引物序列 Primer sequence(5'-3') |
---|---|
p21 | F:ACGTCTCAGGAGGACCACTT, R:TGGTAGAAATCTGTCATGCTGGT |
p27 | F:TACTTGGGTCTCAGGCAAAC, R:GCTCTTTTGTTTTGAGGAGAGG |
caspase-8 | F:ACTGTGTGGAGCAGGTAACA, R:CCGGCTTAGGAACTTGAGGG |
18S | F:GTAACCCGTTGAACCCCATT, R:CCATCCAATCGGTAGTAGCG |
图1 不同浓度PC处理体外培养绵羊卵泡颗粒细胞不同时间后的生长状况 (100×)
Fig. 1 Growth status of sheep follicular granulosa cells in vitro cultured with different concentrations of PC for different time(100×) A1:48 h,0 μg/mL;B1:48 h,20 μg/mL;B2:48 h,50 μg/mL;B3:48 h,70 μg/mL;A2:24 h, 0 μg/mL;A3:72 h, 0 μg/mL;C:24 h, 50 μg/mL;D:72 h, 50 μg/mL
图2 不同浓度PC处理体外培养颗粒细胞24、48、72 h后的OD值 上标小写字母表示在0.05显著水平上的比较结果
Fig. 2 OD values of granulosa cells cultured in vitro after 24,48 and 72 h treatment with different concentration of PC Superscript lowercase letters indicate comparison results at 0.05 significance level
图3 绵羊颗粒细胞中增殖相关基因mRNA的表达 上标大写字母表示在0.01显著水平上的比较结果
Fig. 3 mRNA expression of proliferation-related genes in sheep granulosa cells Superscript capital letters indicate comparison results at 0.01 significance level
[1] |
Payne MJ, Hurst WJ, Stuart DA, et al. Determination of total procyanidins in selected chocolate and confectionery products using DMAC[J]. J AOAC Int, 2010, 93(1):89-96.
pmid: 20334169 |
[2] |
Qi Y, Chen SL, Lu YK, et al. Grape seed proanthocyanidin extract ameliorates ionizing radiation-induced hematopoietic stem progenitor cell injury by regulating Foxo1 in mice[J]. Free Radic Biol Med, 2021, 174:144-156.
doi: 10.1016/j.freeradbiomed.2021.08.010 URL |
[3] | 张霞, 姜力, 李娜, 等. 白花木瓜多聚原花青素降解条件优化[J]. 西南林业大学学报:自然科学, 2017, 37(2):209-215. |
Zhang X, Jiang L, Li N, et al. Optimization for degradative process of polymeric proanthocyanidins from Chaenomeles cathayensis[J]. J Southwest For Univ Nat Sci, 2017, 37(2):209-215. | |
[4] | 王馨悦. 几种富含花青素果蔬的HPLC特征图谱构建及其生物活性研究[D]. 贵阳: 贵州师范大学, 2018. |
Wang XY. Study on the construction of HPLC characteristic chromatogram and bioactivity of several anthocyanin-rich fruits and vegetables[D]. Guiyang: Guizhou Normal University, 2018. | |
[5] | 梁祖培, 张燕, 熊波, 等. 天然植物中原花青素提取和纯化方法研究进展[J]. 食品安全质量检测学报, 2017, 8(8):3029-3036. |
Liang ZP, Zhang Y, Xiong B, et al. Advances in extraction and purification methods of procyanidine from natural plants[J]. J Food Saf Qual, 2017, 8(8):3029-3036. | |
[6] | 付歆欣. 原花青素在雌性生殖干细胞增殖和卵巢衰老中的作用研究[D]. 南昌: 南昌大学, 2019. |
Fu XX. The role of proanthocyanidin in the proliferation of female germline stem cells and ovarian aging[D]. Nanchang: Nanchang University, 2019. | |
[7] | 汪美容. P21、P27在宫颈病变中的表达及其临床意义[D]. 南昌: 南昌大学, 2018. |
Wang MR. Expression of P21 and P27 in cervical lesions and their clinical significance[D]. Nanchang: Nanchang University, 2018. | |
[8] | 焦燕, 邱倩, 杨再兴, 等. 淋巴细胞微粒刺激AKT/Foxo1阻滞气道上皮细胞周期的研究[J]. 第三军医大学学报, 2012, 34(24):2498-2502. |
Jiao Y, Qiu Q, Yang ZX, et al. Lymphocyte particles stimulates AKT/Foxo1 blocking airway epithelial cell cycle in vitro[J]. J Third Mil Med Univ, 2012, 34(24):2498-2502. | |
[9] | 曾嘉豪. 芍药苷对APP/PS1小鼠的神经细胞保护作用及机制研究[D]. 广州: 暨南大学, 2018. |
Zeng JH. The Effects of paeoniflorin on protection of nerve cells in APP/PS1 mice and its mechanism[D]. Guangzhou: Jinan University, 2018. | |
[10] |
Orning P, Lien E. Multiple roles of caspase-8 in cell death, inflammation, and innate immunity[J]. J Leukoc Biol, 2021, 109(1):121-141.
doi: 10.1002/JLB.3MR0420-305R URL |
[11] |
van Meerloo J, Kaspers GJL, Cloos J. Cell sensitivity assays:the MTT assay[J]. Methods Mol Biol, 2011, 731:237-245.
doi: 10.1007/978-1-61779-080-5_20 pmid: 21516412 |
[12] | Rio DC, Ares M Jr, Hannon GJ, et al. Purification of RNA using TRIzol(TRI reagent)[J]. Cold Spring Harb Protoc, 2010, 2010( 6): pdb. prot5439. |
[13] | Lv JM, Gouda M, Zhu YY, et al. Ultrasound-assisted extraction optimization of proanthocyanidins from kiwi(Actinidia chinensis)leaves and evaluation of its antioxidant activity[J]. Antioxidants(Basel), 2021, 10(8):1317. |
[14] |
Chen L, Yan FF, Chen WB, et al. Procyanidin from peanut skin induces antiproliferative effect in human prostate carcinoma cells DU145[J]. Chem Biol Interact, 2018, 288:12-23.
doi: 10.1016/j.cbi.2018.04.008 URL |
[15] |
Ottaviani JI, Heiss C, Spencer JPE, et al. Recommending flavanols and procyanidins for cardiovascular health:revisited[J]. Mol Aspects Med, 2018, 61:63-75.
doi: S0098-2997(18)30018-9 pmid: 29427606 |
[16] |
Xiao Y, Dong JL, Yin ZT, et al. Procyanidin B2 protects against d-galactose-induced mimetic aging in mice:Metabolites and microbiome analysis[J]. Food Chem Toxicol, 2018, 119:141-149.
doi: 10.1016/j.fct.2018.05.017 URL |
[17] |
Andersen-Civil AIS, Arora P, Williams AR. Regulation of enteric infection and immunity by dietary proanthocyanidins[J]. Front Immunol, 2021, 12:637603.
doi: 10.3389/fimmu.2021.637603 URL |
[18] |
Katiyar SK, Pal HC, Prasad R. Dietary proanthocyanidins prevent ultraviolet radiation-induced non-melanoma skin cancer through enhanced repair of damaged DNA-dependent activation of immune sensitivity[J]. Semin Cancer Biol, 2017, 46:138-145.
doi: S1044-579X(17)30094-9 pmid: 28412456 |
[19] |
Izumi T, Terauchi M. The diverse efficacy of food-derived proanthocyanidins for middle-aged and elderly women[J]. Nutrients, 2020, 12(12):3833.
doi: 10.3390/nu12123833 URL |
[20] |
Ong ALC, Ramasamy TS. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming[J]. Ageing Res Rev, 2018, 43:64-80.
doi: S1568-1637(17)30271-4 pmid: 29476819 |
[21] | Hsu YC, Wu YT, Tsai CL, et al. Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells[J]. Exp Biol Med(Maywood), 2018, 243(6):563-575. |
[22] |
Tummers B, Green DR. Caspase-8:regulating life and death[J]. Immunol Rev, 2017, 277(1):76-89.
doi: 10.1111/imr.12541 pmid: 28462525 |
[23] | 陈会丛, 翟建英, 张广平, 等. 葡萄籽原花青素的毒理学研究[J]. 食品工业科技, 2014, 35(2):317-323. |
Chen HC, Zhai JY, Zhang GP, et al. Experimental studies on the toxic effect of grape seed proanthocyanidin extract[J]. Sci Technol Food Ind, 2014, 35(2):317-323. | |
[24] |
Huang LL, Pan C, Wang L, et al. Protective effects of grape seed proanthocyanidins on cardiovascular remodeling in DOCA-salt hypertension rats[J]. J Nutr Biochem, 2015, 26(8):841-849.
doi: 10.1016/j.jnutbio.2015.03.007 URL |
[25] |
Rodríguez-Pérez C, García-Villanova B, Guerra-Hernández E, et al. Grape seeds proanthocyanidins:an overview of in vivo bioactivity in animal models[J]. Nutrients, 2019, 11(10):2435.
doi: 10.3390/nu11102435 URL |
[26] |
Xiong F, Hu LQ, Zhang Y, et al. miR-22 inhibits mouse ovarian granulosa cell apoptosis by targeting SIRT1[J]. Biol Open, 2016, 5(3):367-371.
doi: 10.1242/bio.016907 pmid: 26912776 |
[27] |
Liu MY, Yin Y, Ye XY, et al. Resveratrol protects against age-associated infertility in mice[J]. Hum Reprod, 2013, 28(3):707-717.
doi: 10.1093/humrep/des437 URL |
[28] | 朱楠, 黄小圆, 李金晶, 等. 晚期糖基化终末产物对卵巢原始卵泡的影响[J]. 生殖医学杂志, 2018, 27(6):560-565. |
Zhu N, Huang XY, Li JJ, et al. Effect of advanced glycation end products on ovarian primordial follicles[J]. J Reproductive Med, 2018, 27(6):560-565. |
[1] | 马钰静, 段春辉, 贺名扬, 张英杰, 杨若晨, 王泳, 刘月琴. 敲除G0S2基因对绵羊卵巢颗粒细胞增殖、类固醇激素及相关基因表达的影响[J]. 生物技术通报, 2023, 39(6): 325-334. |
[2] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[3] | 杨昕冉, 王建芳, 马鑫浩, 昝林森. m6A甲基化修饰相关酶基因在牛脂肪生成中的表达分析[J]. 生物技术通报, 2022, 38(7): 70-79. |
[4] | 盛雪晴, 赵楠, 林亚秋, 陈定双, 王瑞龙, 李傲, 王永, 李艳艳. 山羊ZNF32的克隆及表达分析[J]. 生物技术通报, 2022, 38(12): 300-311. |
[5] | 王树萱, 向钢, 马小京, 于晶. Galectin-1的4T1乳腺癌过表达细胞的构建及其对增殖和转移的影响[J]. 生物技术通报, 2022, 38(11): 97-103. |
[6] | 金秋霞, 王思宏, 金丽华. 果蝇肠道干细胞及肠道菌群的研究进展[J]. 生物技术通报, 2021, 37(4): 245-250. |
[7] | 郑芳芳, 林俊生. 增殖诱导配体蛋白的核酸适配体筛选与特异性研究[J]. 生物技术通报, 2021, 37(10): 196-202. |
[8] | 邹坤, 路丽丽, Collins Asiamah Amponsah, 薛缘, 张少伟, 苏瑛, 赵志辉. 家禽卵泡闭锁机制的研究进展[J]. 生物技术通报, 2020, 36(4): 185-191. |
[9] | 宋绍征, 陆睿, 张婷, 何正义, 吴赵曼秋, 成勇, 周鸣鸣. CRISPR /Cas9基因编辑技术在山羊和绵羊中的应用研究进展[J]. 生物技术通报, 2020, 36(3): 62-68. |
[10] | 杨雷, 叶洲杰, 李兆龙, 沈阳坤, 傅雅娟. 利用电转的方法对T细胞TET2基因敲除并探讨TET2对T细胞增殖的影响[J]. 生物技术通报, 2020, 36(1): 229-237. |
[11] | 鲍晶晶, 浦亚斌, 马月辉, 赵倩君. 绵羊不同发育阶段背最长肌组织中可变剪接的鉴定与分析[J]. 生物技术通报, 2019, 35(7): 33-38. |
[12] | 贾建磊, 陈倩, 靳继鹏, 袁赞, 张利平. 绵羊BMPR1B基因真核表达及产物互作蛋白的鉴定[J]. 生物技术通报, 2019, 35(12): 94-104. |
[13] | 陈子涵, 刘金娟. 六种食用菌体外抗氧化及抗细胞增殖活性研究[J]. 生物技术通报, 2019, 35(11): 104-108. |
[14] | 王燕新, 廖圆圆, 阿依木古丽, 齐骜穹, 李海健, 徐红伟, 杨具田, 蔡勇. 三个绵羊品种LHX3基因多态性与生长性状的关联 分析[J]. 生物技术通报, 2019, 35(10): 162-168. |
[15] | 李平, 张桂萍 ,胡建燃. 连翘总黄酮对胃癌细胞MGC80-3增殖的影响[J]. 生物技术通报, 2018, 34(6): 199-203. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||