生物技术通报 ›› 2022, Vol. 38 ›› Issue (11): 227-237.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0280

• 研究报告 • 上一篇    下一篇

代谢工程改造黑曲霉生产葡萄糖二酸

郭宇飞(), 闫荣媚, 张小茹, 曹威, 刘浩()   

  1. 天津科技大学生物工程学院 天津市工业微生物重点实验室 工业发酵微生物教育部重点实验室,天津 300457
  • 收稿日期:2022-03-06 出版日期:2022-11-26 发布日期:2022-12-01
  • 作者简介:郭宇飞,男,硕士研究生,研究方向:工业微生物;E-mail:guoyufeis@163.com
  • 基金资助:
    国家重点研发计划(2021YFC2100700)

Metabolic Engineering Modification of Aspergillus niger for the Production of D-glucaric Acid

GUO Yu-fei(), YAN Rong-mei, ZHANG Xiao-ru, CAO Wei, LIU Hao()   

  1. Key Laboratory of Industrial Fermentation Microbiology,Ministry of Education,Tianjin Key Laboratory of Industrial Microbiology,College of Biotechnology,Tianjin University of Science & Technology,Tianjin 300457
  • Received:2022-03-06 Published:2022-11-26 Online:2022-12-01

摘要:

葡萄糖二酸是葡萄糖的一种二元羧酸衍生物,是重要的平台化合物,被应用于医药、化工等领域。本研究以黑曲霉为底盘细胞,通过表达来自恶臭假单胞菌Pseudomonas putida KT2440的糖醛酸脱氢酶基因ppudh,成功在黑曲霉中实现了葡萄糖二酸的合成,产量为18.74 mg/L;在此基础上通过共过表达黑曲霉自身来源的肌醇加氧酶(anmioxA)和肌醇-1-磷酸合酶(aninoA)、酿酒酵母Saccharomyces cerevisiae S288C来源的羧酸转运蛋白(scJEN1),强化了合成通路和外泌途径,将产量提高至102.10 mg/L;通过表达来自乳酸乳球菌Lactococcus lactis subsp. cremoris MG1363的NADH氧化酶(llnox),建立NAD+辅因子循环系统,使产量进一步提高至115.65 mg/L;利用RNA干扰技术对竞争支路中的关键酶磷酸果糖激酶(pfkA)和葡萄糖-6-磷酸脱氢酶(zwf)进行弱化表达,葡萄糖二酸最终的产量达到313.65 mg/L。本研究为微生物高效生产葡萄糖二酸和下游相关产品生产奠定基础。

关键词: 葡萄糖二酸, 黑曲霉, 辅因子循环系统, RNA干扰

Abstract:

D-glucaric acid, a dicarboxylic acid derivative of glucose, is an important platform compound and is used in medicine, chemical industry and other fields. Using Aspergillus niger as the chassis cell for D-glucaric acid production, expressing the uronate dehydrogenase gene ppudh from Pseudomonas putida KT2440 in A. niger, D-glucaric acid biosynthesis with a titer of 18.74 mg/L was successfully achieved. Strengthening D-glucaric acid biosynthesis secretion, by overexpressing the endogenous inositol oxygenase(anmioxA)and inositol-1-phosphate synthase(aninoA)as well as the carboxylate transporter(scJEN1)from Saccharomyces cerevisiae S288C, D-glucaric acid production was improved significantly with a titer of 102.10 mg/L. Further establishing a NAD+ cofactor recycling system by expressing a NADH oxidase(llnox)from Lactococcus lactis subsp. cremoris MG1363 D-glucaric acid yield was improved to 115.65 mg/L. Finally reducing the carbon flux to glycolysis and pentose phosphate pathway enabled the highest D-glucaric acid production of 313.65 mg/L, which lays the foundation for efficient production of glucaric acid and the corresponding downstream chemicals by microorganisms.

Key words: glucaric acid, Aspergillus niger, cofactor recycling system, RNA interference