生物技术通报 ›› 2023, Vol. 39 ›› Issue (1): 232-242.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0471

• 研究报告 • 上一篇    下一篇

朱砂根叶绿体全基因组解析及系统发育分析

刘雄伟(), 刘畅, 曾宪法, 杨小英, 俸婷婷, 赵杰宏, 周英()   

  1. 贵州中医药大学药学院 药食两用资源应用与开发研究中心,贵阳 550025
  • 收稿日期:2022-04-15 出版日期:2023-01-26 发布日期:2023-02-02
  • 作者简介:刘雄伟,女,讲师,研究方向:中药药效物质及品质评价;E-mail: 453184149@qq.com
  • 基金资助:
    国家重点研发计划项目(2018YFC1708100);贵州省科技计划项目(黔科合平台人才[2019]5407);贵州省“十四五”中医药(贵州省“十四五”中医药);民族医药科学技术研究课题(QZYY-2021-098);贵州中医药大学2021年度科研创新和探索专项(2018YFC170810201);贵州中医药大学2021年度科研创新和探索专项(2018YFC170810101);贵州中医药大学博士启动基金(贵中医博士启动[2019]04 号)

Comparative and Phylogenetic Analyses of Complete Chloroplast Genomes in Ardisia crenata

LIU Xiong-wei(), LIU Chang, ZENG Xian-fa, YANG Xiao-ying, FENG Ting-ting, ZHAO Jie-hong, ZHOU Ying()   

  1. School of Pharmacy/Research Center for Application and Development of Medicine and Food Dual-use Resources, Guizhou University of Traditional Chinese Medicine, Guiyang 550025
  • Received:2022-04-15 Published:2023-01-26 Online:2023-02-02

摘要:

基于Illumina平台对朱砂根和红凉伞叶绿体全基因组进行测序,利用生物信息学比较叶绿体基因组结构特征与变异程度,旨在明确朱砂根(Ardisia crenata)及红凉伞(Ardisia crenata var. bicolor)叶绿体基因组特征及差异,并与同科其他物种叶绿体全基因组进行比较分析,确定其在紫金牛属系统发育位置。结果表明,朱砂根和红凉伞均为由一个大单拷贝区(LSC)、一个小单拷贝区(SSC)和一对反向重复区(IRa/IRb)构成的环状四分体结构,注释得到132个基因,其重复序列的类型与分布模式相似,但数量有所差异。其中psbAmatKrpoC2ropBndhKaccDndhFndhDndhHycf1等基因的编码区存在差异,这些位点为朱砂根分子鉴定提供新位点。朱砂根及红凉伞叶绿体基因组具有较高保守性,叶绿体基因组之间没有重排或倒置,IR区序列变异最低,SSC区变异程度最高。系统发育树分析表明紫金牛科和报春花科为两个分支,朱砂根和红凉伞归为紫金牛科,且朱砂根与红凉伞亲缘关系最为密切,从分子水平为红凉伞作为朱砂根变种提供了科学解释。本研究解析了朱砂根及变种红凉伞叶绿体基因组结构,探讨了紫金牛科属间系统发育关系,也为紫金牛科药用植物分类鉴定、系统进化及资源开发利用研究奠定基础。

关键词: 紫金牛科, 朱砂根, 红凉伞, 叶绿体基因组, 系统发育

Abstract:

Illumina sequencing platform was used to obtain the whole chloroplast genome sequences of Ardisia crenata. Compared with the structural characteristics and variation degree of chloroplast genomes based on bioinformatics methods, this study is aimed to clarify the characteristics and differences of the chloroplast genomes of A. crenata and Ardisia crenata var. bicolor, to compare and analyze the chloroplast genomes, and to provide reference for the phylogenetic study of Myrsinaceae. As results, both of them were composed of one large single copy region(LSC), one small single copy region(SSC)and a pair of reverse repeat regions(IRa/IRb). Total 132 genes were annotated, and their repeat sequence types and distribution patterns were similar, but the number was different. The results of comparative genomics showed that the coding regions of psbA, matK, rpoC2, ropB, ndhK, accD, ndhF, ndhD, ndhH and ycf1 genes were different, and they provided new loci for molecular identification of Ardisia. The chloroplast genome of A. crenata and A. crenata var. bicolor was highly conserved, and there was no rearrangement or inversion between chloroplast genomes. The variation of IR region sequence was the lowest, and the variation degree of SSC region was the highest. In the phylogenetic tree, the A. crenata and A. crenata var. bicolor were sister groups, which clearly reflected the genetic relationship, and provided a scientific explanation for the variety of A. crenata from molecular level. The Myrsinaceae and Primulaceae can be divided into two branches according based on the support rate. In this study, the chloroplast genome structure of A. crenata was analyzed, and the phylogenetic relationship among the genera of Myrsinaceae was discussed, which lays a foundation for the study of taxonomic identification, phylogenetic evolution and resource exploitation and utilization of medicinal plants of Myrsinaceae.

Key words: Myrsinaceae, Ardisia crenata, Ardisia crenata var. bicolor, chloroplast genome, phylogeny