生物技术通报 ›› 2023, Vol. 39 ›› Issue (1): 243-252.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0419
收稿日期:
2022-04-07
出版日期:
2023-01-26
发布日期:
2023-02-02
作者简介:
朱金成,男,硕士,研究方向:棉花分子育种;E-mail: 基金资助:
ZHU Jin-cheng(), YANG Yang, LOU Hui, ZHANG Wei()
Received:
2022-04-07
Published:
2023-01-26
Online:
2023-02-02
摘要:
为探究外源褪黑素对棉花抗枯萎病的影响及作用机理,以海岛棉新海14号为材料,于叶面喷施不同浓度褪黑素(0、10、25、50、75、100 μmol/L)后接种棉花枯萎病菌,对枯萎病菌侵染后棉花幼苗进行抗病性鉴定、抗病相关酶活性及基因表达分析。结果表明,外源褪黑素对棉花枯萎病菌的生长无抑制作用,10-100 μmol/L褪黑素均能在一定程度上提高棉花对枯萎病的抗性,其中50 μmol/L褪黑素处理效果最好。与对照相比,50 μmol/L褪黑素预处理能有效减少接菌后棉花叶片中的过氧化氢(H2O2)含量和超氧阴离子(O2·-)的产生速率,增强过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、几丁质酶(CHT)、β-1,3葡聚糖酶(GLU)、多酚氧化酶(PPO)、苯丙氨酸解氨酶(PAL)活性,并显著提高木质素代谢途径相关基因(GbPAL、Gb4CL和GbCAD)和类黄酮代谢途径关键基因(GbCHI、GbDFR和GbTT7)的表达量。表明50 μmol/L 的褪黑素处理能提高接菌后棉花抗氧化能力,增强防御酶活性,调控木质素、类黄酮代谢途径相关基因的表达,从而提高棉花对枯萎病的抗性。
朱金成, 杨洋, 娄慧, 张薇. 外源褪黑素调控棉花枯萎病抗性研究[J]. 生物技术通报, 2023, 39(1): 243-252.
ZHU Jin-cheng, YANG Yang, LOU Hui, ZHANG Wei. Regulation of Fusarium wilt Resistance in Cotton by Exogenous Melatonin[J]. Biotechnology Bulletin, 2023, 39(1): 243-252.
引物名称Primer name | 引物序列Primer sequence(5'-3') | |
---|---|---|
正向Forward(F) | 反向Reverse(R) | |
GbPAL-F/R | CCAATGGTGAACTCCACCCGTC | TCGTCGGCGTAGGCATAGAGAT |
Gb4CL-F/R | CGACGTCGTAGCGCTTCCTTAT | CTCGTGACCAAACCTTTGTGCG |
GbCAD-F/R | CCCGAGAAACTAGCACCAGAGC | GCCGCATTAGAGCTCACAAGGA |
GbCHI-F/R | CAATGACTGTGGAGCCGACA | CCCAGAGATGATGATTCAGTGG |
GbDFR-F/R | GTTCCCACCAAGTTCAAAGATG | GAAGCAGTCCCTTTTCTCGG |
GbTT7-F/R | GCTTGCGAGATCAATGGCTACT | CAGCACCAAATGGAATCAACTC |
GhUBQ7-F/R | GAAGGCATTCCACCTGACCAAC | CTTGACCTTCTTCTTCTTGTGCTTG |
表1 荧光定量PCR引物序列
Table 1 Primer sequences for quantitative PCR
引物名称Primer name | 引物序列Primer sequence(5'-3') | |
---|---|---|
正向Forward(F) | 反向Reverse(R) | |
GbPAL-F/R | CCAATGGTGAACTCCACCCGTC | TCGTCGGCGTAGGCATAGAGAT |
Gb4CL-F/R | CGACGTCGTAGCGCTTCCTTAT | CTCGTGACCAAACCTTTGTGCG |
GbCAD-F/R | CCCGAGAAACTAGCACCAGAGC | GCCGCATTAGAGCTCACAAGGA |
GbCHI-F/R | CAATGACTGTGGAGCCGACA | CCCAGAGATGATGATTCAGTGG |
GbDFR-F/R | GTTCCCACCAAGTTCAAAGATG | GAAGCAGTCCCTTTTCTCGG |
GbTT7-F/R | GCTTGCGAGATCAATGGCTACT | CAGCACCAAATGGAATCAACTC |
GhUBQ7-F/R | GAAGGCATTCCACCTGACCAAC | CTTGACCTTCTTCTTCTTGTGCTTG |
图1 不同浓度外源褪黑素预处理对棉花枯萎病抗性的影响 A:接种枯萎菌22 d后棉花植株表型;B:接种枯萎菌22 d后棉花剖杆表型;C:接种枯萎菌后不同时间点棉花病情指数。不同字母表示差异显著(P<0.05),下同
Fig. 1 Effects of exogenous melatonin pretreatment at different concentration on the cotton resistance to Fusarium oxysporum f.sp. vasinfectum(Fov) A: Disease phenotypes of cotton with different treatments at 22 d. B: Disease phenotypes in stems of cotton treated with different treatments at 22 d. C: Cotton disease index at different time points of plants treated with different treatments. Different letters indicate significant difference(P <0.05), the same below
图2 不同浓度外源褪黑素对枯萎菌生长的影响 A:放置7 d后枯萎菌生长情况;B:放置7 d后枯萎菌菌落直径
Fig. 2 Effects of exogenous melatonin at different concentration on the growth of Fov A: Fov colonies 7 d after inoculation on PDA medium. B: Fov colony diameter 7 d after inoculation on PDA medium
图3 褪黑素预处理对接菌后棉花抗氧化系统的影响 * 表示差异显著(P<0.05),** 表示差异极显著(P<0.01),下同
Fig. 3 Effects of melatonin pretreatment on cotton antioxidant system after Fov inoculated * indicates significant difference(P < 0.05), ** indicates extremely significant difference(P < 0.01), the same below
图5 褪黑素预处理对接菌后棉花木质素、类黄酮代谢通路相关基因表达水平的影响
Fig. 5 Effects of melatonin pretreatment on the cotton expressions of genes related to phenylpropane metabolic pathway related genes after Fov inoculated
[1] | 余力, 何玉梅, 海丽齐汗·哈力克, 等. 海岛棉枯萎病对产量性状的贡献分析[J]. 新疆农业科学, 2015, 52(7): 1346-1351. |
Yu L, He YM, Hailiguli H, et al. Analysis on genetic contribution of Fusarium wilt to yield traits in island cotton[J]. Xinjiang Agric Sci, 2015, 52(7): 1346-1351. | |
[2] | 黄启秀, 曲延英, 倪志勇, 等. 海岛棉类黄酮代谢通路相关基因的克隆及序列分析[J]. 基因组学与应用生物学, 2018, 37(10): 4414-4422. |
Huang QX, Qu YY, Ni ZY, et al. Cloning and sequence analysis of related genes involved in flavonoids metabolism pathway in Gossypium barbadense L.[J]. Genom Appl Biol, 2018, 37(10): 4414-4422. | |
[3] |
Wang PZ, Su L, Qin L, et al. Identification and molecular mapping of a Fusarium wilt resistant gene in upland cotton[J]. Theor Appl Genet, 2009, 119(4): 733-739.
doi: 10.1007/s00122-009-1084-4 URL |
[4] |
Davis RM, Colyer PD, Rothrock CS, et al. Fusarium wilt of cotton: population diversity and implications for management[J]. Plant Dis, 2006, 90(6): 692-703.
doi: 10.1094/PD-90-0692 pmid: 30781226 |
[5] | 刘叶, 阿依保他·托合达白, 郭楠楠, 等. 农杆菌介导的棉花枯萎病菌转化体系的优化[J]. 微生物学通报, 2021, 48(9): 2991-3001. |
Liu Y, Ayibaota T, Guo NN, et al. Optimization of Agrobacterium tumefaciens-mediated transformation system for Fusarium oxysporum[J]. Microbiol China, 2021, 48(9): 2991-3001. | |
[6] |
Xu J, Xu XY, Tian LL, et al. Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton[J]. Sci Rep, 2016, 6: 29022.
doi: 10.1038/srep29022 URL |
[7] |
Zhang ZY, Zhao J, Ding LY, et al. Constitutive expression of a novel antimicrobial protein, Hcm1, confers resistance to both Verticillium and Fusarium wilts in cotton[J]. Sci Rep, 2016, 6: 20773.
doi: 10.1038/srep20773 URL |
[8] | Gong B, Shi QH. Review of melatonin in horticultural crops[J]. Scientia Agricultura Sinica, 2017, 50(12): 2326-2337. |
[9] | Lee HY, Hwang OJ, Back K. Phytomelatonin as a signaling molecule for protein quality control via chaperone, autophagy, and ubiquitin-proteasome systems in plants[J]. J Exp Bot, 2022: 2022 Mar 5;erac002. |
[10] |
Back K. Melatonin metabolism, signaling and possible roles in plants[J]. Plant J, 2021, 105(2): 376-391.
doi: 10.1111/tpj.14915 URL |
[11] |
Liu JP, Wu H, Wang B, et al. Exogenous melatonin enhances cold resistance by improving antioxidant defense and cold-responsive genes’ expression in banana[J]. Horticulturae, 2022, 8(3): 260.
doi: 10.3390/horticulturae8030260 URL |
[12] | Altaf MA, Shahid R, Ren MX, et al. Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system[J]. Antioxidants(Basel), 2022, 11(2): 309. |
[13] | Chen L, Liu LT, Lu B, et al. Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton(Gossypium hirsutum L.)[J]. PLoS One, 2020, 15(1): e0228241. |
[14] |
Jahan MS, Shu S, Wang Y, et al. Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of ABA- and GA-mediated pathways[J]. Front Plant Sci, 2021, 12: 650955.
doi: 10.3389/fpls.2021.650955 URL |
[15] |
Liu CX, Chen LL, Zhao RR, et al. Melatonin induces disease resistance to Botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway[J]. J Agric Food Chem, 2019, 67(22): 6116-6124.
doi: 10.1021/acs.jafc.9b00058 URL |
[16] |
Sun YK, Liu ZY, Lan GP, et al. Effect ofexogenous melatonin on resistance of cucumber to downy mildew[J]. Sci Hortic, 2019, 255: 231-241
doi: 10.1016/j.scienta.2019.04.057 URL |
[17] |
Zhang ZK, Wang T, Liu GS, et al. Inhibition of downy blight and enhancement of resistance in litchi fruit by postharvest application of melatonin[J]. Food Chem, 2021, 347: 129009.
doi: 10.1016/j.foodchem.2021.129009 URL |
[18] |
Lu RF, Liu ZY, Shao YD, et al. Melatonin is responsible for rice resistance to rice stripe virus infection through a nitric oxide-dependent pathway[J]. Virol J, 2019, 16(1): 141.
doi: 10.1186/s12985-019-1228-3 pmid: 31752902 |
[19] |
Kong MM, Liang J, Ali Q, et al. 5-methoxyindole, a chemical homolog of melatonin, adversely affects the phytopathogenic fungus Fusarium graminearum[J]. Int J Mol Sci, 2021, 22(20): 10991.
doi: 10.3390/ijms222010991 URL |
[20] | 陈磊. 海岛棉抗枯萎病性的遗传分析及遗传连锁图谱加密[D]. 乌鲁木齐: 新疆农业大学, 2012. |
Chen L. Genetic analysis of sea island cotton resistance to cotton Fusarium wilt s and linkage map encryption[D]. Urumqi: Xinjiang Agricultural University, 2012. | |
[21] |
Yin LH, Wang P, Li MJ, et al. Exogenous melatonin improves Malus resistance to Marssonina apple blotch[J]. J Pineal Res, 2013, 54(4): 426-434.
doi: 10.1111/jpi.12038 URL |
[22] | Tiwari RK, Lal MK, Naga KC, et al. Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops[J]. Sci Hortic, 2020, 272: 109592. |
[23] | 夏铭. 褪黑素对萝卜黑斑病调控的影响[D]. 贵阳: 贵州大学, 2021. |
Xia M. Effect of melatonin on the regula tion of radish(Raphanus sativus L.)black spot[D]. Guiyang: Guizhou University, 2021. | |
[24] |
Li C, He QL, Zhang F, et al. Melatonin enhances cotton immunity to Verticillium wilt via manipulating lignin and gossypol biosynthesis[J]. Plant J, 2019, 100(4): 784-800.
doi: 10.1111/tpj.14477 URL |
[25] |
Li TT, Wu QX, Zhu H, et al. Comparative transcriptomic and metabolic analysis reveals the effect of melatonin on delaying anthracnose incidence upon postharvest banana fruit peel[J]. BMC Plant Biol, 2019, 19(1): 289.
doi: 10.1186/s12870-019-1855-2 pmid: 31262259 |
[26] |
Li SG, Xu YH, Bi Y, et al. Melatonin treatment inhibits gray mold and induces disease resistance in cherry tomato fruit during postharvest[J]. Postharvest Biol Technol, 2019, 157: 110962.
doi: 10.1016/j.postharvbio.2019.110962 URL |
[27] |
Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annu Rev Plant Biol, 2004, 55: 373-399.
pmid: 15377225 |
[28] |
Konappa N, Krishnamurthy S, Siddaiah CN, et al. Evaluation of biological efficacy of Trichoderma asperellum against tomato bacterial wilt caused by Ralstonia solanacearum[J]. Egypt J Biol Pest Control, 2018, 28: 63.
doi: 10.1186/s41938-018-0069-5 URL |
[29] |
Ali MB, Khatun S, Hahn EJ, et al. Enhancement of phenylpropanoid enzymes and lignin in Phalaenopsis orchid and their influence on plant acclimatisation at different levels of photosynthetic photon flux[J]. Plant Growth Regul, 2006, 49(2/3): 137-146.
doi: 10.1007/s10725-006-9003-z URL |
[30] |
van Loon LC, Rep M, Pieterse CMJ. Significance of inducible defense-related proteins in infected plants[J]. Annu Rev Phytopathol, 2006, 44: 135-162.
pmid: 16602946 |
[31] |
Piasecka A, Jedrzejczak-Rey N, Bednarek P. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals[J]. New Phytol, 2015, 206(3): 948-964.
doi: 10.1111/nph.13325 pmid: 25659829 |
[32] |
Hou JN, Zhao FA, Yang XJ, et al. Lignin synthesis related genes with potential significance in the response of upland cotton to Fusarium wilt identified by transcriptome profiling[J]. Trop Plant Biol, 2021, 14(2): 106-119.
doi: 10.1007/s12042-020-09278-9 URL |
[33] |
Gao SW, Ma WY, Lyu XN, et al. Melatonin may increase disease resistance and flavonoid biosynthesis through effects on DNA methylation and gene expression in grape berries[J]. BMC Plant Biol, 2020, 20(1): 231.
doi: 10.1186/s12870-020-02445-w pmid: 32448301 |
[1] | 娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167. |
[2] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[3] | 康凌云, 韩露露, 韩德平, 陈建胜, 甘瀚凌, 邢凯, 马友记, 崔凯. 褪黑素缓解空肠黏膜上皮细胞氧化损伤的效果研究[J]. 生物技术通报, 2023, 39(9): 291-299. |
[4] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[5] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[6] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[7] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[8] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
[9] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[10] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[11] | 邓嘉辉, 雷建峰, 赵燚, 刘敏, 胡子曜, 尤扬子, 邵武奎, 柳建飞, 刘晓东. 基于Csy4与MCP的新型迷你基因组编辑系统的构建[J]. 生物技术通报, 2023, 39(10): 68-79. |
[12] | 李霁虹, 荆玉玲, 马桂珍, 郭荣君, 李世东. 无色杆菌77的基因组构成及其趋化和耐药特性[J]. 生物技术通报, 2022, 38(9): 136-146. |
[13] | 李秀青, 胡子曜, 雷建峰, 代培红, 刘超, 邓嘉辉, 刘敏, 孙玲, 刘晓东, 李月. 棉花黄萎病抗性相关基因GhTIFY9的克隆与功能分析[J]. 生物技术通报, 2022, 38(8): 127-134. |
[14] | 袁存霞, 李艳楠, 张肖冲, 杨瑞, 刘建利, 李靖宇. As3+胁迫下Bacillus sp. ZJS3菌株的生理生化响应特性[J]. 生物技术通报, 2022, 38(7): 236-246. |
[15] | 赵曾强, 郭文婷, 张析, 李潇玲, 张薇. 棉花抗枯萎病相关基因GhERF5-4D的克隆及功能分析[J]. 生物技术通报, 2022, 38(4): 193-201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||