生物技术通报 ›› 2023, Vol. 39 ›› Issue (2): 203-210.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0582
王凤婷(), 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮()
收稿日期:
2022-05-09
出版日期:
2023-02-26
发布日期:
2023-03-07
作者简介:
王凤婷,女,博士,讲师,研究方向:植物病理学;E-mail: 基金资助:
WANG Feng-ting(), WANG Yan, SUN Ying, CUI Wen-jing, QIAO Kai-bin, PAN Hong-yu, LIU Jin-liang()
Received:
2022-05-09
Published:
2023-02-26
Online:
2023-03-07
摘要:
盐碱地微生物长期在盐碱环境中共存与进化,具有独特适应性和生物学特性,成为微生物改良盐碱地的首选。从吉林省松原市典型苏打盐碱地土壤中分离到1株耐盐碱真菌菌株SYAT-1,通过形态特征观察和ITS-rDNA序列分析对该菌株进行鉴定,并对该菌株不同pH生长特性、耐盐性、拮抗植物病原真菌活性和潜在致病性进行研究。结果表明,该菌株鉴定为土曲霉(Aspergillus terreus)。菌株SYAT-1在碱性(pH 7.0-12.0)培养基条件下均可生长,其生长最适pH范围为7.0-9.0。在0-17.5 mg/mL NaCl 和0-4 mg/mL NaHCO3的PDA培养基上均能生长。拮抗植物病原真菌测定结果显示,菌株SYAT-1对供试植物病原真菌均有一定的抑制效果。潜在致病性测试结果表明,菌株SYAT-1对供试植物无潜在的致病性。土曲霉菌株SYAT-1属于耐高盐碱特性的真菌,并具有抑制植物病原真菌的特性,该结果为利用微生物改良盐碱土和植物病害生物防治提供新的菌株资源和理论支撑。
王凤婷, 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210.
WANG Feng-ting, WANG Yan, SUN Ying, CUI Wen-jing, QIAO Kai-bin, PAN Hong-yu, LIU Jin-liang. Isolation and Identification of Saline-alkali Tolerant Aspergillus terreus SYAT-1 and Its Activities Against Plant Pathogenic Fungi[J]. Biotechnology Bulletin, 2023, 39(2): 203-210.
土壤编号 Soil No. | 采样时间 Collection time | 菌株编号 Strain code | 土壤编号 Soil No. | 采样时间 Collection time | 菌株编号 Strain code | |
---|---|---|---|---|---|---|
SY-1 | 2020.8.10 | SYAT-1 | SY-8 | 2019.9.16 | SYAT-4 | |
SYA-2 | SY-9 | 2019.9.16 | SYA-1 | |||
SY-2 | 2020.8.10 | SYAT-3 | SYAO-3 | |||
SY-3 | 2020.8.10 | SYTA-1 | SY-10 | 2019.9.16 | SYAT-2 | |
SYA-5 | SYA-4 | |||||
SY-4 | 2020.8.10 | SYTH-1 | SYAN-1 | |||
SYA-3 | SY-11 | 2019.9.16 | SYTH-2 | |||
SY-5 | 2020.8.10 | SYAO-1 | SYAN-2 | |||
SY-6 | 2020.8.10 | SYTA-3 | SY-12 | 2019.9.16 | SYTA-2 | |
SY-7 | 2020.8.10 | SYA-6 | SYA-6 | |||
SYAO-2 |
表1 采集与分离的真菌菌株
Table 1 Collected and isolated fungal strains
土壤编号 Soil No. | 采样时间 Collection time | 菌株编号 Strain code | 土壤编号 Soil No. | 采样时间 Collection time | 菌株编号 Strain code | |
---|---|---|---|---|---|---|
SY-1 | 2020.8.10 | SYAT-1 | SY-8 | 2019.9.16 | SYAT-4 | |
SYA-2 | SY-9 | 2019.9.16 | SYA-1 | |||
SY-2 | 2020.8.10 | SYAT-3 | SYAO-3 | |||
SY-3 | 2020.8.10 | SYTA-1 | SY-10 | 2019.9.16 | SYAT-2 | |
SYA-5 | SYA-4 | |||||
SY-4 | 2020.8.10 | SYTH-1 | SYAN-1 | |||
SYA-3 | SY-11 | 2019.9.16 | SYTH-2 | |||
SY-5 | 2020.8.10 | SYAO-1 | SYAN-2 | |||
SY-6 | 2020.8.10 | SYTA-3 | SY-12 | 2019.9.16 | SYTA-2 | |
SY-7 | 2020.8.10 | SYA-6 | SYA-6 | |||
SYAO-2 |
图2 基于ITS-rDNA 核苷酸序列构建的系统进化树 Bootstrap值(%)大于50的显示。系统树上各个菌株表示为:登录号-菌株名称-菌株号
Fig. 2 Phylogenetic tree constructed based on ITS-rDNA nucleotide sequences Bootstrap values(%)> 50 were displayed. The individual strain in the system tree was represented as:GenBank number-Strain name-Strain number
图3 菌株SYAT-1在不同pH下生长 不同小写字母表示在0.05水平差异显著。下同
Fig. 3 Growth of strain SYAT-1 at different pH Different lower letters indicate significant differences at 0.05 level. The same below
图6 菌株SYAT-1对不同病原真菌的拮抗效果 (a):核盘菌;(b):禾谷镰孢;(c):灰葡萄孢;(d):玉米小班病菌;(e):玉米大斑病菌;(f)稻瘟病菌
Fig. 6 Antagonistic effect of strain SYAT-1 against diffe-rent pathogenic fungi (a):Sclerotinia sclerotiorum;(b):Fusarium graminearum;(c):Botrytis cinerea;(d):Cochliobolus heterostrophus;(e):Setosphaeria turcica;(f):Magnaporthe oryzae
植物病原真菌Plant pathogenic fungus | 抑菌率Inhibition rate/% |
---|---|
Sclerotinia sclerotiorum | 34.12±0.81d |
Fusarium graminearum | 35.29±0.69d |
Botrytis cinerea | 42.35±0.65c |
Cochliobolus heterostrophus | 47.89±0.33b |
Setosphaeria turcica | 50.59±0.74a |
Magnaporthe oryzae | 21.57±0.73e |
表2 菌株SYAT-1对6种植物病原真菌的抑菌率
Table2 Inhibition rates of strain SYAT-1 against six plant pathogenic fungi
植物病原真菌Plant pathogenic fungus | 抑菌率Inhibition rate/% |
---|---|
Sclerotinia sclerotiorum | 34.12±0.81d |
Fusarium graminearum | 35.29±0.69d |
Botrytis cinerea | 42.35±0.65c |
Cochliobolus heterostrophus | 47.89±0.33b |
Setosphaeria turcica | 50.59±0.74a |
Magnaporthe oryzae | 21.57±0.73e |
图7 菌株SYAT-1潜在致病性测试 A:核盘菌接种烟草、番茄和大豆叶片;B:土曲霉SYAT-1接种烟草、番茄和大豆叶片;C1,C2:玉米大斑病菌孢子悬浮液接种玉米叶片;C3,C4:接种土曲霉SYAT-1孢子悬浮液;C5:接种20% Tween-20作为对照
Fig. 7 Potential pathogenicity test of the strain SYAT-1 A:Tobacco,tomato and soybean leaves inoculated with S. sclerotiorum. B:Tobacco,tomato and soybean leaves inoculated with A. terreus SYAT-1. C1,C2:Maize leaves inoculated with spore suspension of S. turcica. C3,C4:Maize leaves inoculated with spore suspension of A. terreus SYAT-1. C5:Maize leaves inoculation with 20% Tween-20 as control
[1] | 王佳丽, 黄贤金, 钟太洋, 等. 盐碱地可持续利用研究综述[J]. 地理学报, 2011, 66(5):673-684. |
Wang JL, Huang XJ, Zhong TY, et al. Review on sustainable utilization of salt-affected land[J]. Acta Geogr Sin, 2011, 66(5):673-684.
doi: 10.11821/xb201105010 |
|
[2] |
Li JG, Pu LJ, et al. Soil salinization research in China:advances and prospects[J]. J Geogr Sci, 2014, 24(5):943-960.
doi: 10.1007/s11442-014-1130-2 URL |
[3] |
Liu SL, Maimaitiaili B, Joergensen RG, et al. Response of soil microorganisms after converting a saline desert to arable land in central Asia[J]. Appl Soil Ecol, 2016, 98:1-7.
doi: 10.1016/j.apsoil.2015.08.024 URL |
[4] | 杨劲松, 姚荣江. 我国盐碱地的治理与农业高效利用[J]. 中国科学院院刊, 2015, (201):162-170 |
Yang JS, Yao RJ. Management and efficient agricultural utilization of salt-affected soil in China[J]. Bulletin of the Chinese Academy of Sciences, 2015, (201):162-170. | |
[5] | 任培根, 周培瑾. 中度嗜盐菌的研究进展[J]. 微生物学报, 2003, 43(3):427-431. |
Ren PG, Zhou PJ. Reseach progress of moderately halophilic eubacteria[J]. Acta Microbiol Sin, 2003, 43(3):427-431. | |
[6] |
Gunde-Cimermana N, Zalarb P, De HS, et al. Hypersaline waters in salterns - natural ecological niches for halophilic black yeasts[J]. FEMS Microbiol Ecol, 2000, 32(3):235-240.
pmid: 10858582 |
[7] |
Kis-Papo T, Oren A, et al. Survival of filamentous fungi in hypersaline Dead Sea water[J]. Microb Ecol, 2003, 45(2):183-190.
pmid: 12545316 |
[8] |
Wei Y, Zhang SH. Abiostress resistance and cellulose degradation abilities of haloalkaliphilic fungi:applications for saline-alkaline remediation[J]. Extremophiles, 2018, 22(2):155-164.
doi: 10.1007/s00792-017-0986-3 pmid: 29290045 |
[9] | 黄瑞环, 韩小斌, 刘京, 等. 海洋曲霉和海洋木霉抗植物病原菌活性次级代谢产物研究进展[J]. 江苏农业学报, 2020, 36(5):1332-1341. |
Huang RH, Han XB, Liu J, et al. Research progress on secondary metabolites with anti-phytopathogenic activities of marine-derived Aspergillus sp and Trichoderma sp[J]. Jiangsu J Agric Sci, 2020, 36(5):1332-1341. | |
[10] |
李瑾, 彭可为, 潘求一, 等. 解淀粉芽胞杆菌HR-2的分离鉴定及对水稻稻瘟病菌的拮抗效果[J]. 生物技术通报, 2021, 37(3):27-34.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0970 |
Li J, Peng KW, Pan QY, et al. Isolation and identification of Bacillus amyloliquefaciens HR-2 and biological control of rice blast[J]. Biotechnol Bull, 2021, 37(3):27-34. | |
[11] | 祖雪, 周瑚, 朱华珺, 等. 枯草芽孢杆菌K-268的分离鉴定及对水稻稻瘟病的防病效果[J]. 生物技术通报, 2022, 38(6): 136-146. |
Zu X, Zhou H, Zhu HJ, et al. Isolation and identification of Bacillus subtilis K-268 and its biological control effect on rice blast[J]. Biotechnol Bull, 2022, 38(6): 136-146. | |
[12] |
马小翔, 刘亚月, 聂影影, 等. 基于质谱的分子网络分析化学调控对土曲霉C23-3次生代谢产物及生物活性的影响[J]. 生物技术通报, 2021, 37(8):95-110.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1398 |
Ma XX, Liu YY, Nie YY, et al. LC-MS/MS based molecular network analysis of the effects of chemical regulation on the secondary metabolites and biological activities of a fungal strain Aspergillus terreus C23-3[J]. Biotechnol Bull, 2021, 37(8):95-110. | |
[13] | White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[M]// PCR Protocols Amsterdam: Elsevier, 1990:315-322. |
[14] | 刘冰, 周红霞, 赵美茜, 等. 玉米茎腐病生防菌株的筛选及抑菌作用研究[J]. 玉米科学, 2021, 29(6):164-168. |
Liu B, Zhou HX, Zhao MX, et al. Screening of biocontrol strains against corn stalk rot and antifungal mechanisms[J]. J Maize Sci, 2021, 29(6):164-168. | |
[15] |
迪力热巴·阿不都肉苏力, 穆耶赛尔·奥斯曼, 祖力胡玛尔·肉孜, 等. 盐碱土壤微生物多样性与生物改良研究进展[J]. 生物技术通报, 2021, 37(10):225-233.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1344 |
Dilireba A, Muyesaier A, Zulihumaer R, et al. Advances on microbial diversity and biological improvement of saline-alkali soil[J]. Biotechnol Bull, 2021, 37(10):225-233.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1344 |
|
[16] | 刘晓丹, 刘金亮, 魏毅, 等. 一株极端耐盐曲霉的分离、鉴定及生物学特性分析[J]. 吉林大学学报:理学版, 2011, 49(3):548-553. |
Liu XD, Liu JL, Wei Y, et al. Isolation, identification and biologic characteristics of an extreme halotolerant Aspergillus sp[J]. J Jilin Univ Sci Ed, 2011, 49(3):548-553. | |
[17] | 郑晓梅, 丁旭扬, 黄婷, 等. 一株产酸黑曲霉的分离鉴定及其在盐碱土改良中的应用[J]. 山东农业科学, 2019, 51(4):69-73, 78. |
Zheng XM, Ding XY, Huang T, et al. Isolation and identification of an acid-producing Aspergillus niger and its application in improvement of saline-alkali soil[J]. Shandong Agric Sci, 2019, 51(4):69-73, 78. | |
[18] | 李学平, 谢文军, 范延辉. 盐碱地塔宾曲霉菌的解磷能力及其对小麦生长的影响[J]. 水土保持通报, 2017, 37(1):93-96. |
Li XP, Xie WJ, Fan YH. Phosphate-solubilizing ability of Aspergillus tubingensis and its effects on growth of wheat in seedling stage[J]. Bull Soil Water Conserv, 2017, 37(1):93-96. | |
[19] | 王丹, 芶剑渝, 韩小斌, 等. 海洋真菌次级代谢产物在植物保护中的研究与应用[J]. 中国生物防治学报, 2019, 35(1):146-158. |
Wang D, Gou JY, Han XB, et al. Research and application of secondary metabolites from marine-derived fungus in plant protection[J]. Chin J Biol Control, 2019, 35(1):146-158. | |
[20] | 黄庶识, 等. 3株抗水稻和荔枝病原菌的海洋真菌的分离鉴定[J]. 基因组学与应用生物学, 2010, 29(4):665-672. |
Huang SS, et al. Isolation and identification of 3 strains of marine fungi with antagonistic ability against Litchi and rice pathogenic fungi[J]. Genom Appl Biol, 2010, 29(4):665-672. | |
[21] | 孙好芬. 两株热带马尾藻内生真菌次生代谢产物研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2012. |
Sun HF. Optimization of culture conditions and secondary metabolites of two Sargassum sp derived endophytic fungus[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2012. | |
[22] | 杨遂群. 五株海藻及红树林来源真菌次级代谢产物的分子多样性挖掘与生物活性研究[D]. 北京: 中国科学院大学, 2018. |
Yang SQ. Chemical diversity and biological evaluation of secondary metabolites of five fungul strains derived from marine algae and mangrove[D]. Beijing: University of Chinese Academy of Sciences, 2018. | |
[23] | 李祝, 肖洋, 邱红波. 黑曲霉绿色防控植物病害菌剂创制及应用[Z]. 贵阳: 贵州大学, 2019. |
Li Z, Xiao Y, Q HB. The creation and application of Aspergillus niger green control of plant disease fungicide[Z]. Guiyang: Guizhou University, 2019. | |
[24] | 刘警鞠, 张雨森, 陈娟, 等. 曲霉属的现代分类命名研究进展[J]. 生物技术通报, 2022, 38(7): 109-118. |
Liu JL, Zhang YS, Chen J, et al. Research progress in modern taxonomy and nomenclature of Aspergillus.[J]. Biotechnol Bul, 2022, 38(7): 109-118. | |
[25] | 沙娜瓦尔·色买提, 玉山江·买买提, 郭庆元, 等. 枣果霉烂病病原鉴定(二)——引起新疆枣果霉烂病的几种青霉菌的分离鉴定[J]. 新疆农业科学, 2016, 53(4):698-705. |
Shanawaer S, Yushanjiang M, Guo QY, et al. Identification of the pathogen causing jujube fruit mildew(part II)—isolation and identification of Penicillium fungus causing jujube fruit mildew[J]. Xinjiang Agric Sci, 2016, 53(4):698-705. |
[1] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[2] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[3] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[4] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[5] | 唐瑞琪, 赵心清, 朱笃, 汪涯. 大肠杆菌对木质纤维素水解液抑制物的胁迫耐受性[J]. 生物技术通报, 2023, 39(11): 205-216. |
[6] | 黄佳艳, 冯小艳, 沈林波, 王文治, 胡海燕, 张树珍. 甘蔗ShPR10基因的克隆及其编码蛋白与甘蔗线条花叶病毒P1蛋白的互作研究[J]. 生物技术通报, 2023, 39(10): 163-174. |
[7] | 刘艺云, 邓利敏, 岳慧颖, 岳超, 刘健华. 质粒接合转移及其抑制剂的研究进展[J]. 生物技术通报, 2022, 38(9): 35-46. |
[8] | 祖雪, 周瑚, 朱华珺, 任佐华, 刘二明. 枯草芽孢杆菌K-268的分离鉴定及对水稻稻瘟病的防病效果[J]. 生物技术通报, 2022, 38(6): 136-146. |
[9] | 王春艳, 腊贵晓, 苏秀红, 李萌, 董诚明. 地黄不同时期内生促生细菌的筛选及其促生特性分析[J]. 生物技术通报, 2022, 38(4): 242-252. |
[10] | 张功友, 王一涵, 郭敏, 张婷婷, 王兵, 刘红美. 重楼中一株产纤维素酶内生真菌的分离及鉴定[J]. 生物技术通报, 2022, 38(2): 95-104. |
[11] | 牛鸿宇, 舒倩, 杨海君, 颜智勇, 谭菊. 一株十二烷基硫酸钠高效降解菌的分离鉴定、降解特性及代谢途径研究[J]. 生物技术通报, 2022, 38(12): 287-299. |
[12] | 孙忠娟, 刘倩倩, 郭雨纤, 王光辉, 王晨芳. Analog-sensitive蛋白激酶研究系统在植物病原真菌中的建立[J]. 生物技术通报, 2022, 38(11): 49-57. |
[13] | 张小妮, 翁伊纯, 范奕浩, 王晓娟, 赵佳宇, 张云龙. Mito-OS-Timer:一种靶向监测线粒体氧化应激的荧光秒表[J]. 生物技术通报, 2022, 38(10): 97-105. |
[14] | 朱永安, 王淼, 曹静, 喻鹤, 曹振, 金茂俊, 王静, 佘永新. 农药残留检测关键用酶固定化研究进展[J]. 生物技术通报, 2022, 38(1): 258-268. |
[15] | 崔欣雨, 李荣荣, 蔡瑞, 王妍, 郑猛虎, 徐春城. 苜蓿青贮中乳酸降解菌的分离、鉴定及降解性能研究[J]. 生物技术通报, 2021, 37(9): 58-67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||