生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 205-216.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0722

• 综述与专论 • 上一篇    下一篇

大肠杆菌对木质纤维素水解液抑制物的胁迫耐受性

唐瑞琪1(), 赵心清2, 朱笃1, 汪涯1()   

  1. 1.江西省生物加工过程重点实验室 江西科技师范大学生命科学学院,南昌 330013
    2.微生物代谢国家重点实验室 教育部代谢与发育科学国际合作联合实验室 上海交通大学生命科学技术学院,上海 200240
  • 收稿日期:2023-07-28 出版日期:2023-11-26 发布日期:2023-12-20
  • 通讯作者: 汪涯,男,博士,副教授,研究方向:微生物生态和代谢调控;E-mail: wangya@jxstnu.edu.cn
  • 作者简介:唐瑞琪,女,博士,讲师,研究方向:微生物代谢工程和合成生物学;E-mail: rq_tang@jxstnu.edu.cn
  • 基金资助:
    国家重点研发项目(2021YFC2101303-4);国家重点研发计划(2022YFE0108500);江西省自然科学基金项目(20232BAB205008);江西科技师范大学博士科研启动基金(2022BSQD11)

Stress Tolerance of Escherichia coli to Inhibitors in Lignocellulosic Hydrolysates

TANG Rui-qi1(), ZHAO Xin-qing2, ZHU Du1, WANG Ya1()   

  1. 1. Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013
    2. State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240
  • Received:2023-07-28 Published:2023-11-26 Online:2023-12-20

摘要:

木质纤维素类生物质是前景广阔的化石原料替代品,其生物炼制可生产生物能源、生物基化学品和生物材料等多种产品,可降低碳排放,有助于实现“双碳”目标,因此受到越来越多的关注。然而,木质纤维素生物炼制需要经过预处理、微生物发酵和产物纯化等多个步骤,其中,预处理过程产生的多种化合物抑制微生物的细胞生长和发酵性能,是制约生物转化效率的瓶颈之一。大肠杆菌是木质纤维素生物炼制常用的宿主,被广泛应用于多种化合物的生产,研究其对木质纤维素水解液中抑制物的耐受性,对于提高木质纤维素生物炼制效率具有重要意义。本文首先介绍了木质纤维素的主要成分和基本结构,对木质纤维素的预处理方法以及预处理后水解液中的主要抑制物种类进行了简单阐述;随后,总结了木质纤维素水解液中几类主要抑制物呋喃类、羧酸类和酚类对大肠杆菌细胞的毒性,以及大肠杆菌对上述抑制物的胁迫响应机制和基于机制的菌株改造靶点;最后,综述了提高大肠杆菌对上述抑制物的胁迫耐受性的菌株改造策略,包括随机突变、实验室适应性进化和组学辅助的理性设计等,为利用代谢工程构建用于木质纤维素生物炼制的高效大肠杆菌菌株提供参考。

关键词: 木质纤维素水解液抑制物, 胁迫耐受性, 大肠杆菌, 菌株改造, 呋喃类, 羧酸类, 酚类

Abstract:

Lignocellulosic biomass(LCB)is a promising alternative to fossil material, the biofuels, biochemicals and biomaterials are produced via its biorefinery, which may reduce carbon emissions, contributing to achieve the carbon peaking and carbon neutrality goals. Therefore, LCB is receiving more and more attentions. However, there are multiple steps involved in lignocellulosic biorefinery including pretreatment, microbial fermentation and product purification, in which, various compounds generated from pretreatment of LCB inhibit cell growth and fermentation performance of microbes, which is one of the bottlenecks of bioconversion efficiency. Escherichia coli is a commonly used host for lignocellulosic biorefinery and extensively used for the production of many compounds, thus, it is of great importance to study the stress tolerance of E. coli to inhibitors in lignocellulosic hydrolysates for improving lignocellulosic biorefinery efficiency. This paper first introduced the main components and structures of lignocellulose, and briefly elucidated pretreatment methods to lignocellulose as well as main inhibitors in the hydrolysate after pretreatment. Then the paper summarized the toxic effects of main inhibitor furans, carboxylic acids and phenolics in the hydrolysate of lignocellulose on E. coli, as well as the mechanisms of stress tolerance against these inhibitors and the engineering targets for improving strain tolerance based on the mechanisms. Finally, the paper reviewed the strategies for strain engineering to improve the tolerance of E. coli to above motioned inhibitors, including random mutagenesis, adaptive laboratory evolution and omics-assisted rational design,, aiming to provide references for metabolic engineering of efficient E. coli strains for lignocellulosic biorefinery.

Key words: inhibitors in lignocellulosic hydrolysate, stress tolerance, Escherichia coli, strain engineering, furans, carboxylic acids, phenolics