生物技术通报 ›› 2023, Vol. 39 ›› Issue (3): 301-310.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0834
收稿日期:
2022-07-06
出版日期:
2023-03-26
发布日期:
2023-04-10
通讯作者:
张宇红作者简介:
张宇红,女,博士,副教授,研究方向:污水处理、生物技术;E-mail:zhangyhhit@163.com
基金资助:
ZHANG Yu-hong(), DONG Xian-bo, LIU Xiang-yu, XU Jia-qi, XU Zi-ling
Received:
2022-07-06
Published:
2023-03-26
Online:
2023-04-10
摘要:
从沈阳市南部污水处理厂活性污泥中分离获得同时具备异养硝化和好氧反硝化能力的新型菌株,研究其脱氮特性,为改善污水厂的脱氮处理工艺奠定基础。对菌株进行形态学观察和16S rRNA基因鉴定;分别以NH4Cl、NaNO2、KNO3为唯一氮源探究菌株的脱氮能力;以碳源、C/N比、pH值、温度、转速、接种量(V:V)等因素对菌株脱氮效果的影响进行研究。获得一株新型异养硝化-好氧反硝化菌株,经16S rRNA基因序列比对为副球菌属(Paracoccus),命名为Paracoccus sp. QD-19。菌株对初始氨氮浓度在300 mg/L以下的低浓度氨氮去除率能够达到100%,去除速率为8.707 mg/(L·h)且在脱氮过程中几乎没有亚硝态氮和硝态氮的积累。以亚硝态氮和硝态氮作为唯一氮源时,对此两种氮源的去除率36 h内均能达到99%,去除速率分别为4.944和5.666 mg/(L·h)。确定了去除氨氮的最佳脱氮条件:琥珀酸钠为碳源,C/N比为10,pH值为7,接种量(V:V)为1%,温度为30℃,转速为140 r/min。菌株Paracoccus sp. QD-19同时具有异养硝化和好氧反硝化的能力,并且具备不积累亚硝态氮和硝态氮的特性,为污水厂脱氮工艺的改进提供了实践基础。
张宇红, 董先博, 刘香宇, 许家琪, 徐子祾. 新型异养硝化-好氧反硝化菌Paracoccus sp. QD-19的分离及脱氮特性研究[J]. 生物技术通报, 2023, 39(3): 301-310.
ZHANG Yu-hong, DONG Xian-bo, LIU Xiang-yu, XU Jia-qi, XU Zi-ling. Isolation of a Novel Heterotrophic Nitrification-Aerobic Denitrification Bacterium Paracoccus sp. QD-19 and Its Characterization of Removing Nitrogen[J]. Biotechnology Bulletin, 2023, 39(3): 301-310.
图2 平板菌落形态和革兰氏染色 a:菌株QD-19平板菌落形态;b:金黄葡萄球菌革兰氏染色阳性对照;c:大肠杆菌革兰氏染色阴性对照;d:菌株QD-19革兰氏染色镜检图
Fig. 2 Colony morphology on medium and gram stain a: Colony morphology of the strain QD-19 on medium b: The positive control for Gram staining of Staphylococcus aureus. c: The negative control for Gram staining of Escherichia coli. d: Gram staining results of the strain QD-19
初始氨氮浓度Initial ammonia nitrogen concentration/(mg·L-1) | 24 h去除量Removal quantity at 24 h/(mg·L-1) | 72 h最高去除速率Maximum removal rate at 72 h/(mg·L-1·h-1) | 72 h平均去除速率Average removal rate at 72 h(mg·L-1·h-1) |
---|---|---|---|
100 | 99.943 | 8.707 | 4.164 |
200 | 155.593±1.136 | 9.464 | 4.188 |
300 | 188.908±0.656 | 12.871 | 4.537±0.010 |
500 | 257.430±3.470 | 18.929 | 6.478±0.018 |
800 | 321.787±1.639 | 22.714 | 8.321±0.039 |
1 000 | 337.687±2.623 | 22.714 | 8.139±0.063 |
表1 不同初始氨氮浓度下菌株的去除速率
Table 1 Removal rates of strains at different initial ammonia nitrogen concentrations
初始氨氮浓度Initial ammonia nitrogen concentration/(mg·L-1) | 24 h去除量Removal quantity at 24 h/(mg·L-1) | 72 h最高去除速率Maximum removal rate at 72 h/(mg·L-1·h-1) | 72 h平均去除速率Average removal rate at 72 h(mg·L-1·h-1) |
---|---|---|---|
100 | 99.943 | 8.707 | 4.164 |
200 | 155.593±1.136 | 9.464 | 4.188 |
300 | 188.908±0.656 | 12.871 | 4.537±0.010 |
500 | 257.430±3.470 | 18.929 | 6.478±0.018 |
800 | 321.787±1.639 | 22.714 | 8.321±0.039 |
1 000 | 337.687±2.623 | 22.714 | 8.139±0.063 |
[1] |
Watari T, Nakamura Y, Kotcharoen W, et al. Application of down-flow hanging sponge - Upflow sludge blanket system for nitrogen removal in Epinephelus bruneus closed recirculating aquaculture system[J]. Aquaculture, 2021, 532: 735997.
doi: 10.1016/j.aquaculture.2020.735997 URL |
[2] | Wolfe A, Patz J, 葛继志. 活性氮和人类健康: 眼前和长远的意义[J]. AMBIO-人类环境杂志, 2002, 31(2): 120-125, 199. |
Wolfe A, Patz J, Ge JZ. Reactive nitrogen and human health: acute and long-term implications[J]. AMBIO- Journal of the Human Environment, 2002, 31(2): 120-125, 199.
doi: 10.1579/0044-7447-31.2.120 URL |
|
[3] | 张成明, 董保成, 张建华, 等. 直接空气吹脱法去除废水中的氨氮[J]. 食品与发酵工业, 2021, 47(19): 155-160. |
Zhang CM, Dong BC, Zhang JH, et al. Preliminary study on ammonia nitrogen removal from wastewater by direct air stripping[J]. Food Ferment Ind, 2021, 47(19): 155-160. | |
[4] | 胡锦刚, 肖春桥, 邓祥意, 等. 稀土矿山氨氮废水生物脱氮方法研究进展[J]. 武汉工程大学学报, 2022, 44(1): 1-8. |
Hu JG, Xiao CQ, Deng XY, et al. Research progress in biological denitrification methods of ammonia nitrogen wastewater from rare earth mines[J]. J Wuhan Inst Technol, 2022, 44(1): 1-8. | |
[5] | 杨成荫, 陈杨, 欧阳坤, 等. 氨氮废水处理技术的研究现状及展望[J]. 工业水处理, 2018, 38(3): 1-5. |
Yang CY, Chen Y, Ouyang K, et al. Current research situation and prospect of ammonia nitrogen wastewater treatment technology[J]. Ind Water Treat, 2018, 38(3): 1-5. | |
[6] |
Wang L, Li BR, Li YM, et al. Enhanced biological nitrogen removal under low dissolved oxygen in an anaerobic-anoxic-oxic system: Kinetics, stoichiometry and microbial community[J]. Chemosphere, 2021, 263: 128184.
doi: 10.1016/j.chemosphere.2020.128184 URL |
[7] | 彭静, 刘斌, 姜磊. 短程硝化反硝化菌种的培养[J]. 给水排水, 2021, 57(S2): 179-182. |
Peng J, Liu B, Jiang L. Cultivation of short-range nitrification and denitrification ammonia oxidizing bacteria[J]. Water & Wastewater Eng, 2021, 57(S2): 179-182. | |
[8] |
Robertson LA, van Niel EW, Torremans RA, et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thios-phaera pantotropha[J]. Appl Environ Microbiol, 1988, 54(11): 2812-2818.
doi: 10.1128/aem.54.11.2812-2818.1988 URL |
[9] |
Yang Q, Yang T, Shi Y, et al. The nitrogen removal characterization of a cold-adapted bacterium: Bacillus simplex H-b[J]. Bioresour Technol, 2021, 323: 124554.
doi: 10.1016/j.biortech.2020.124554 URL |
[10] |
高宇轩, 靳静晨, 徐利杉, 等. 耐盐异养硝化-好氧反硝化菌Bacillus megatherium N07的分离及脱氮特性[J]. 生物技术通报, 2022, 38(7): 247-257.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1111 |
Gao YX, Jin JC, Xu LS, et al. Isolation of halophilic heterotrophic nitrification-aerobic denitrification bacterium Bacillus megatherium N07 and its denitrification characteristics[J]. Biotechnol Bull, 2022, 38(7): 247-257. | |
[11] | 高雅娟, 靳静晨, 高洁, 等. 耐高浓度氨氮的异养硝化好氧反硝化菌株U1的鉴定及其脱氮特性[J]. 微生物学通报, 2022, 49(7): 2442-2456. |
Gao YJ, Jin JC, Gao J, et al. Identification and denitrification characteristics of heterotrophic nitrification and aerobic denitrification strain U1 resistant to high concentrations of ammonia nitrogen[J]. Microbiol China, 2022, 49(7): 2442-2456. | |
[12] |
Chen J, Gu SY, Hao HH, et al. Characteristics and metabolic pathway of Alcaligenes sp. TB for simultaneous heterotrophic nitrification-aerobic denitrification[J]. Appl Microbiol Biotechnol, 2016, 100(22): 9787-9794.
pmid: 27678119 |
[13] |
Xia L, Li XM, Fan WH, et al. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge[J]. Bioresour Technol, 2020, 301: 122749.
doi: 10.1016/j.biortech.2020.122749 URL |
[14] | 司圆圆, 王林钰, 张卓婷, 等. 有机碳源添加对脱氮副球菌脱氮效果的影响[J]. 水处理技术, 2020, 46(4): 52-55. |
Si YY, Wang LY, Zhang ZT, et al. Effect of organic carbon source on the nitrogen removal of paracoccusdenitrificans[J]. Technol Water Treat, 2020, 46(4): 52-55. | |
[15] | 雷强, 张燕, 孙燕, 等. 异养硝化-好氧反硝化菌YZ-12的脱氮性能及其对养殖废水的处理效果[J]. 环境工程学报, 2022, 16(1): 301-310. |
Lei Q, Zhang Y, Sun Y, et al. Denitrification performance and aquaculture wastewater treating effects of heterotrophic nitrifying aerobic denitrifying bacteria YZ-12[J]. Chin J Environ Eng, 2022, 16(1): 301-310. | |
[16] | 高艳辉, 谭娜, 赵天涛, 等. 同步异养硝化好氧反硝化细菌Acinetobacter sp. TAC-1的氮代谢途径研究[J]. 重庆理工大学学报: 自然科学, 2022, 36(1): 204-214. |
Gao YH, Tan N, Zhao TT, et al. New insight into the nitrogen metabolism pathway of simultaneous heterotrophic nitrification-aerobic denitrification bacteria Acinetobacter sp. TAC-1[J]. J Chongqing Univ Technol Nat Sci, 2022, 36(1): 204-214. | |
[17] | 李贵珍, 赖其良, 邵宗泽, 等. 异养硝化-好氧反硝化细菌的研究进展[J]. 生物资源, 2018, 40(5): 419-429. |
Li GZ, Lai QL, Shao ZZ, et al. Research progress of heterotrophic nitrification-aerobic denitrification bacteria[J]. Biotic Resour, 2018, 40(5): 419-429. | |
[18] | 张广瑞, 胡利强, 李海松. 游离氨与游离亚硝酸对中试膜生物反应器短程硝化及微生物群落结构的影响[J]. 环境科学研究, 2021, 34(12): 2917-2923. |
Zhang GR, Hu LQ, Li HS. Effects of free ammonia and free nitrous acid on partial nitrification and microbial community structure in pilot-scale MBR[J]. Res Environ Sci, 2021, 34(12): 2917-2923. | |
[19] | 陈猷鹏, 毛铮. 氨氮胁迫下E.coli单菌运动行为与成膜能力研究[J]. 安全与环境学报, 2022, 22(2): 1067-1074. |
Chen YP, Mao Z. Movement behavior and biofilm formation ability of E. coli under ammonia nitrogen stress[J]. J Saf Environ, 2022, 22(2): 1067-1074. | |
[20] |
Arnold PK, Jackson BT, Paras KI, et al. A non-canonical tricarboxylic acid cycle underlies cellular identity[J]. Nature, 2022, 603(7901): 477-481.
doi: 10.1038/s41586-022-04475-w |
[21] |
Chen LF, Lin JQ, Pan D, et al. Ammonium removal by a newly isolated heterotrophic nitrification-aerobic denitrification bacteria Pseudomonas stutzeri SDU10 and its potential in treatment of piggery wastewater[J]. Curr Microbiol, 2020, 77(10): 2792-2801.
doi: 10.1007/s00284-020-02085-1 |
[22] |
Wang QK, He JZ. Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5[J]. Water Res, 2020, 185: 116300.
doi: 10.1016/j.watres.2020.116300 URL |
[23] | 陈翠忠, 李俊峰, 刘生宝, 等. 间歇式活性污泥法(SBR)系统碳氮比对同步硝化反硝化微生物群落分布及脱氮效能的影响[J]. 环境化学, 2021, 40(11): 3598-3607. |
Chen CZ, Li JF, Liu SB, et al. Effect of C/N ratio on the microbial community of simultaneous nitrification and denitrification(SND)and the biological nitrogen removal in sequencing batch reactor(SBR)[J]. Environ Chem, 2021, 40(11): 3598-3607. | |
[24] |
赵洋, 孙慧明, 林浩澎, 等. 一株安全高效的好氧反硝化菌Pseudomonas stutzeri DZ11的生物安全性及脱氮性能研究[J]. 生物技术通报, 2022, 38(10):226-234.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1084 |
Zhao Y, Sun H, Lin H, et al. Biosafety and nitrogen removal performance of a safe and efficient aerobic denitrifying Pseudomonas stutzeri DZ11[J]. Biotechnol Bull, 2022, 38(10):226-234. | |
[25] |
Yang L, Wang XH, Cui S, et al. Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5[J]. Bioresour Technol, 2019, 285: 121360.
doi: 10.1016/j.biortech.2019.121360 URL |
[26] |
Rout PR, Bhunia P, Dash RR. Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal[J]. Bioresour Technol, 2017, 244(Pt 1): 484-495.
doi: 10.1016/j.biortech.2017.07.186 URL |
[1] | 高宇轩, 靳静晨, 徐利杉, 高雅娟, 张闻天, 李晨晨, 张国伟, 靳永胜. 耐盐异养硝化-好氧反硝化菌Bacillus megatherium N07的分离及脱氮特性[J]. 生物技术通报, 2022, 38(7): 247-257. |
[2] | 王亚军, 司运美. 除磷菌CP-7的筛选及其降解特性研究[J]. 生物技术通报, 2022, 38(7): 258-268. |
[3] | 张漫漫, 何腾霞, 丁晨雨, 陈梦苹, 吴启凤. 生物脱氮中工程纳米颗粒的毒害作用及减毒措施的研究进展[J]. 生物技术通报, 2022, 38(2): 227-236. |
[4] | 赵洋, 孙慧明, 林浩澎, 罗娉婷, 朱雅婷, 陈琼华, 舒琥. 一株安全高效的好氧反硝化菌Pseudomonas stutzeri DZ11的生物安全性及脱氮性能研究[J]. 生物技术通报, 2022, 38(10): 226-234. |
[5] | 李珍阳, 姜润, 刘琳, 李思琦, 王晓慧. 低温异养硝化菌的筛选、鉴定及降解特性研究[J]. 生物技术通报, 2021, 37(10): 45-56. |
[6] | 李思琦, 杨静丹, 刘琳, 刘二佳, 王晓慧. 好氧反硝化菌Achromobacter sp.L16的脱氮特性[J]. 生物技术通报, 2020, 36(6): 93-101. |
[7] | 杜全能, 朱文娟, 兰时乐. 一株异养硝化-好氧反硝化皱褶念珠菌(Diutina rugosa)的分离及脱氮特性[J]. 生物技术通报, 2020, 36(1): 60-65. |
[8] | 李文甫, 杜柳冰, 刘思莹, 翁美遂, 舒琥, 陈琼华. 一株高效好氧反硝化细菌的分离鉴定及脱氮性能研究[J]. 生物技术通报, 2019, 35(9): 202-209. |
[9] | 刘攀龙, 于鲁冀, 李廷梅, 范铮, 陈涛. 污染河流土著异养硝化菌的筛选及其鉴定[J]. 生物技术通报, 2017, 33(10): 178-183. |
[10] | 郝明辉,于鲁冀,李廷梅,刘攀龙. 一株异养硝化菌的筛选及生长特性研究[J]. 生物技术通报, 2016, 32(4): 168-174. |
[11] | 连红民, 邱忠平, 何昆明, 周文秀. 一株好氧反硝化-异养硝化菌的筛选及脱氮特性研究[J]. 生物技术通报, 2015, 31(6): 138-143. |
[12] | 王硕, 时文歆, 王燕, 于水利, 李激. 低温污水生物处理技术研究现状与展望[J]. 生物技术通报, 2015, 31(5): 48-53. |
[13] | 陈倩, 马涛, 王婷. 异养硝化好氧反硝化菌株Agrobacterium tumefaciens LAD9羟胺氧化酶的分离纯化[J]. 生物技术通报, 2014, 0(7): 69-73. |
[14] | 赵翠娟, 宋文军, 朱高雄, 魏纪平, 李博志, 张军. 除氨氮菌在污水处理中的研究进展[J]. 生物技术通报, 2013, 0(2): 31-34. |
[15] | 郑丽侠, 张大伟. 一株异养硝化细菌的分离鉴定及紫外诱变育种[J]. 生物技术通报, 2013, 0(12): 184-188. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||