生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 247-257.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1111
高宇轩1(), 靳静晨2, 徐利杉1, 高雅娟1, 张闻天1, 李晨晨1, 张国伟1, 靳永胜1,3()
收稿日期:
2021-08-30
出版日期:
2022-07-26
发布日期:
2022-08-09
作者简介:
高宇轩,女,硕士研究生,研究方向:环境微生物;E-mail: 基金资助:
GAO Yu-xuan1(), JIN Jing-chen2, XU Li-shan1, GAO Ya-Juan1, ZHANG Wen-tian1, LI Chen-chen1, ZHANG Guo-wei1, JIN Yong-sheng1,3()
Received:
2021-08-30
Published:
2022-07-26
Online:
2022-08-09
摘要:
基于异养硝化-好氧反硝化菌的生物脱氮技术可有效去除污水中的氮素。高盐废水处理过程中存在抑制微生物生长、脱氮效率低等诸多短板。为解决高盐废水难脱氮问题,从农药厂化工污水中筛选出一株耐受8%(W/V)高盐浓度的异养硝化-好氧反硝化菌株,命名为N07。在不同盐度和不同溶氧条件下测定了菌株的氮素去除率,并探究了单因素环境因子对菌株脱氮性能的影响。结果表明:菌株N07鉴定为巨大芽孢杆菌(Bacillus megatherium);能耐受8%盐度且繁殖旺盛,对氨氮和亚硝态氮去除率最高达到73.61%和83.56%,属于中度嗜盐菌;该菌在有氧条件下表现出高效的反硝化能力,12 h对硝态氮和亚硝态氮去除率为11.87 mg/(L· h)和8.26 mg/(L· h);菌株在碳源为蔗糖、C/N为25、pH为7、转速160 r/min、温度为28℃时,硝化能力最佳。Bacillus megatheriumN07因能在高盐分环境降解氮素的特性,为异养硝化-好氧反硝化菌在沿海养殖业等高盐含氮污水处理的实际应用提供参考。
高宇轩, 靳静晨, 徐利杉, 高雅娟, 张闻天, 李晨晨, 张国伟, 靳永胜. 耐盐异养硝化-好氧反硝化菌Bacillus megatherium N07的分离及脱氮特性[J]. 生物技术通报, 2022, 38(7): 247-257.
GAO Yu-xuan, JIN Jing-chen, XU Li-shan, GAO Ya-Juan, ZHANG Wen-tian, LI Chen-chen, ZHANG Guo-wei, JIN Yong-sheng. Isolation of Halophilic Heterotrophic Nitrification-aerobic Denitrification Bacterium Bacillus megatherium N07 and Its Denitrification Characteristics[J]. Biotechnology Bulletin, 2022, 38(7): 247-257.
编号No. | 氨氮Ammonia nitrogen | 总氮Total nitrogen | ||||
---|---|---|---|---|---|---|
去除率 Removal rate/% | 降解速率 Degradation rate/(mg·(L·h)-1) | 去除率 Removal rate/% | 降解速率 Degradation rate/(mg·(L·h)-1) | |||
N01 | 55.53 | 4.63 | 33.78 | 2.81 | ||
N04 | 50.21 | 4.16 | 24.77 | 2.06 | ||
N07 | 70.95 | 5.91 | 63.84 | 5.33 |
表1 三株反硝化菌脱氮性能比较
Table 1 Comparison of nitrogen removal performance of three denitrification strains
编号No. | 氨氮Ammonia nitrogen | 总氮Total nitrogen | ||||
---|---|---|---|---|---|---|
去除率 Removal rate/% | 降解速率 Degradation rate/(mg·(L·h)-1) | 去除率 Removal rate/% | 降解速率 Degradation rate/(mg·(L·h)-1) | |||
N01 | 55.53 | 4.63 | 33.78 | 2.81 | ||
N04 | 50.21 | 4.16 | 24.77 | 2.06 | ||
N07 | 70.95 | 5.91 | 63.84 | 5.33 |
图1 菌株N07的形态学鉴定 A:固体培养基的菌落形态;B:革兰氏染色结果;C:SEM扫描电镜菌体形态
Fig. 1 Morphological identification of strain N07 A:Colony morphology of solid medium. B:Gram staining results. C:SEM cell morphology
图3 不同盐度下菌株N07的生长情况 A:培养基以氨氮为唯一氮源;B:培养基以亚硝态氮为唯一氮源。图中误差线表示标准差,不同字母表示存在显著性差异,P <0.05(n=3),下同
Fig.3 Growth of strain N07 under different salinities A:Ammonia nitrogen was the only nitrogen source in the medium. B:Nitrite nitrogen was the only nitrogen source in the medium. The error line in the figure represents the standard deviation,different letters indicated significant difference,P <0.05(n=3). The same below
图4 不同盐度下菌株N07的脱氮效果 A:培养基以氨氮为唯一氮源;B:培养基以亚硝态氮为唯一氮源
Fig. 4 Nitrogen removal effect of strain N07 at different salinities A:Ammonia nitrogen was the only nitrogen source in the medium. B:Nitrite nitrogen was the only nitrogen source in the medium
图5 不同溶氧条件下菌株N07降解硝态氮的性能 A:好氧条件;B:微厌氧条件
Fig. 5 Degradation performance of strain N07 under different DO A:Aerobic conditions;B:Micro-anaerobic conditions
图6 不同溶氧条件下菌株N07降解亚硝态氮的性能 A:好氧条件;B:微厌氧条件
Fig. 6 Degradation of nitrite nitrogen by strain N07 under different DO A:Aerobic conditions;B:Micro-anaerobic conditions
[1] | 袁建华, 赵天涛, 彭绪亚. 极端条件下异养硝化-好氧反硝化菌脱氮的研究进展[J]. 生物工程学报, 2019, 35(6):942-955. |
Yuan JH, Zhao TT, Peng XY. Advances in heterotrophic nitrification-aerobic denitrifying bacteria for nitrogen removal under extreme conditions[J]. Chin J Biotechnol, 2019, 35(6):942-955. | |
[2] |
Zeng JY, Liao SA, Qiu M, et al. Effects of carbon sources on the removal of ammonium, nitrite and nitrate nitrogen by the red yeast Sporidiobolus pararoseus Y1[J]. Bioresour Technol, 2020, 312:123593.
doi: 10.1016/j.biortech.2020.123593 URL |
[3] |
He XL, Sun Q, Xu TY, et al. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel halotolerant bacterium Pseudomonas mendocina TJPU04[J]. Bioprocess Biosyst Eng, 2019, 42(5):853-866.
doi: 10.1007/s00449-019-02088-8 URL |
[4] | 孙智毅. 一株异养硝化—好氧反硝化Cupriavidus sp. S1的筛选及降解特性研究[D]. 太原: 太原理工大学, 2017. |
Sun ZY. Screening and degradation characteristics of a heterotrophic nitrification-aerobic denitrification bacterium Cupriavidus sp. S1[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
[5] | 陈青云, 江林峰, 陈建奇, 等. 高效异养硝化细菌Alcaligenes faecalis Ni3-1的分离及其脱氨特性研究[J]. 环境工程, 2015, 33(5):48-53. |
Chen QY, Jiang LF, Chen JQ, et al. Isolation and nh4+-n removal characteristics of a high-efficient heterotrophic nitrifying bacterium Alcaligenes faecalis Ni3-1[J]. Environ Eng, 2015, 33(5):48-53. | |
[6] | 赵坤, 田相利, 董双林, 等. 一株异养硝化-好氧反硝化地衣芽孢杆菌的脱氮特性及机制研究[J]. 中国海洋大学学报:自然科学版, 2020, 50(8):43-52. |
Zhao K, Tian XL, Dong SL, et al. Nitrogen removal characteristic and mechanism of heterotrophic nitrifying-aerobic denitrifying Bacillus licheniformis[J]. Period Ocean Univ China, 2020, 50(8):43-52. | |
[7] |
Yu R, Perez-Garcia O, Lu HJ, et al. Nitrosomonas europaea adaptation to anoxic-oxic cycling:insights from transcription analysis, proteomics and metabolic network modeling[J]. Sci Total Environ, 2018, 615:1566-1573.
doi: 10.1016/j.scitotenv.2017.09.142 URL |
[8] | 王特. Halomonas sp. B01 SND脱氮特性及其耐盐脱氮机理研究[D]. 大连: 大连海事大学, 2020. |
Wang T. Nitrogen removal characteristics and salt-tolerant nitrogen removal mechanism of Halomonas sp. B01 SND[D]. Dalian: Dalian Maritime University, 2020. | |
[9] |
Duan JM, Fang HD, Su B, et al. Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater[J]. Bioresour Technol, 2015, 179:421-428.
doi: 10.1016/j.biortech.2014.12.057 URL |
[10] | 康兆颜, 白洁, 郭晓旭, 等. 纳米ZnO对1株异养硝化-好氧反硝化菌Halomonas sp. KGL1的生物胁迫效应研究[J]. 中国海洋大学学报:自然科学版, 2019, 49(12):81-88. |
Kang ZY, Bai J, Guo XX, et al. Biological effects of zinc oxide nanoparticles on heterotrophic nitrification and aerobic denitrification bacterium Halomonas sp. KGL1[J]. Period Ocean Univ China, 2019, 49(12):81-88. | |
[11] |
Guo Y, Zhou XM, Li YG, et al. Heterotrophic nitrification and aerobic denitrification by a novel Halomonas campisalis[J]. Biotechnol Lett, 2013, 35(12):2045-2049.
doi: 10.1007/s10529-013-1294-3 URL |
[12] |
Li CE, Yang JS, Wang X, et al. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24[J]. Bioresour Technol, 2015, 182:18-25.
doi: 10.1016/j.biortech.2015.01.100 URL |
[13] | 向书迪. 耐冷好氧反硝化菌Pseudomonas plecoglossicida Y-1的特性及对不同氮源和生活污水脱氮特性研究[D]. 重庆: 西南大学, 2020. |
Xiang SD. The characteristics of cold-tolerant aerobic denitrifying bacteria Pseudomonas plecoglossicida Y-1 and its characteristics for nitrogen removal from different nitrogen sources and domestic sewage[D]. Chongqing: Southwest University, 2020. | |
[14] |
Wan CL, Yang X, Lee DJ, et al. Aerobic denitrification by novel isolated strain using NO-2-N as nitrogen source[J]. Bioresour Technol, 2011, 102(15):7244-7248.
doi: 10.1016/j.biortech.2011.04.101 URL |
[15] |
Yang M, Lu DW, Qin BD, et al. Highly efficient nitrogen removal of a coldness-resistant and low nutrient needed bacterium, Janthinobacterium sp. M-11[J]. Bioresour Technol, 2018, 256:366-373.
doi: 10.1016/j.biortech.2018.02.049 URL |
[16] | 袁会兰. 好氧反硝化途径关键酶基因克隆与功能研究[D]. 北京: 中国农业科学院, 2016. |
Yuan HL. Cloning and function of key enzymes of aerobic denitrification pathway[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. | |
[17] | 陈均利, 彭英湘, 刘锋, 等. 异养硝化-好氧反硝化菌脱氮特性研究进展[J]. 环境科学与技术, 2020, 43(5):41-48. |
Chen JL, Peng YX, Liu F, et al. Research advances in denitrification property of the heterotrophic nitrification-aerobic denitrification bacteria[J]. Environ Sci Technol, 2020, 43(5):41-48. | |
[18] |
Li CE, Yang JS, Wang X, et al. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24[J]. Bioresour Technol, 2015, 182:18-25.
doi: 10.1016/j.biortech.2015.01.100 URL |
[19] | 陈猛, 李安章, 张明霞, 等. 一株异养硝化-好氧反硝化菌的分离鉴定及其对养殖废水中氮的去除特性[J]. 农业资源与环境学报, 2020, 37(2):270-279. |
Chen M, Li AZ, Zhang MX, et al. Isolation and identification of a heterotrophic nitrifying and aerobic denitrifying strain and its removal characteristics of nitrogen in breeding wastewater[J]. J Agric Resour Environ, 2020, 37(2):270-279. | |
[20] |
杜全能, 朱文娟, 兰时乐. 一株异养硝化-好氧反硝化皱褶念珠菌(Diutina rugosa)的分离及脱氮特性[J]. 生物技术通报, 2020, 36(1):60-65.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0685 |
Du QN, Zhu WJ, Lan SL. Isolation and characterization of heterotrophic nitrification-aerboic denitrification Diutina rugosa[J]. Biotechnol Bull, 2020, 36(1):60-65. | |
[21] |
Yang L, Wang XH, Cui S, et al. Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putidastrain NP5[J]. Bioresour Technol, 2019, 285:121360.
doi: 10.1016/j.biortech.2019.121360 URL |
[22] |
Liu Y, Ai GM, Wu MR, et al. Photobacterium sp. NNA4, an efficient hydroxylamine-transforming heterotrophic nitrifier/aerobic denitrifier[J]. J Biosci Bioeng, 2019, 128(1):64-71.
doi: 10.1016/j.jbiosc.2018.12.014 URL |
[23] |
Shanahan JW, Semmens MJ. Alkalinity and pH effects on nitrification in a membrane aerated bioreactor:an experimental and model analysis[J]. Water Res, 2015, 74:10-22.
doi: 10.1016/j.watres.2014.12.055 pmid: 25703659 |
[24] |
Ren YX, Yang L, Liang X. The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB[J]. Bioresour Technol, 2014, 171:1-9.
doi: 10.1016/j.biortech.2014.08.058 URL |
[25] |
Lukow T, Diekmann H. Aerobic denitrification by a newly isolated heterotrophic bacterium strain TL1[J]. Biotechnol Lett, 1997, 19(11):1157-1159.
doi: 10.1023/A:1018465232392 URL |
[26] |
Takenaka S, Zhou Q, Kuntiya A, et al. Isolation and characterization of thermotolerant bacterium utilizing ammonium and nitrate ions under aerobic conditions[J]. Biotechnol Lett, 2007, 29(3):385-390.
pmid: 17203345 |
[27] |
Qin W, Li WG, Huang XF, et al. A proteomic analysis of heterotrophic nitrifying bacterium Acinetobacter sp. HITLi 7T adaptation to low temperature using two-dimensional difference gel electrophoresis approach[J]. Int Biodeterior Biodegrad, 2016, 113:113-119.
doi: 10.1016/j.ibiod.2016.03.009 URL |
[28] | 冯叶. 低温冲击对异养硝化—好氧反硝化菌HN-02的影响研究[D]. 成都: 西南交通大学, 2014. |
Feng Y. Research on the response mechanism of heterotrophic nitrification-aerobic denitrification bacterial HN-02Antioxidant enzyme system under low-temperature shock[D]. Chengdu: Southwest Jiaotong University, 2014. |
[1] | 张宇红, 董先博, 刘香宇, 许家琪, 徐子祾. 新型异养硝化-好氧反硝化菌Paracoccus sp. QD-19的分离及脱氮特性研究[J]. 生物技术通报, 2023, 39(3): 301-310. |
[2] | 董怡华, 王凌潇, 任涵雪, 陈峰. 一株耐低温异养硝化-好氧反硝化菌的分离鉴定及其脱氮特性[J]. 生物技术通报, 2023, 39(12): 237-249. |
[3] | 张漫漫, 何腾霞, 丁晨雨, 陈梦苹, 吴启凤. 生物脱氮中工程纳米颗粒的毒害作用及减毒措施的研究进展[J]. 生物技术通报, 2022, 38(2): 227-236. |
[4] | 赵洋, 孙慧明, 林浩澎, 罗娉婷, 朱雅婷, 陈琼华, 舒琥. 一株安全高效的好氧反硝化菌Pseudomonas stutzeri DZ11的生物安全性及脱氮性能研究[J]. 生物技术通报, 2022, 38(10): 226-234. |
[5] | 钱婷, 叶建仁. 巨大芽孢杆菌ZS-3溶无机磷机制及其对樟树的促生作用[J]. 生物技术通报, 2020, 36(8): 45-52. |
[6] | 陈哲, 黄静, 赵佳, 梁宏. 番茄灰霉病病原菌分离鉴定及拮抗菌筛选[J]. 生物技术通报, 2017, 33(8): 81-87. |
[7] | 连红民, 邱忠平, 何昆明, 周文秀. 一株好氧反硝化-异养硝化菌的筛选及脱氮特性研究[J]. 生物技术通报, 2015, 31(6): 138-143. |
[8] | 陈倩, 马涛, 王婷. 异养硝化好氧反硝化菌株Agrobacterium tumefaciens LAD9羟胺氧化酶的分离纯化[J]. 生物技术通报, 2014, 0(7): 69-73. |
[9] | 郑丽侠, 张大伟. 一株异养硝化细菌的分离鉴定及紫外诱变育种[J]. 生物技术通报, 2013, 0(12): 184-188. |
[10] | 金辉;廖思明;王青艳;刘筱梦;黄日波;. 碱性α-淀粉酶基因在巨大芽孢杆菌中的表达及酶学性质研究[J]. , 2011, 0(11): 154-159. |
[11] | 杨胜远;韦锦;李云;. 两株植物内生巨大芽孢杆菌的生物学特性比较[J]. , 2010, 0(03): 185-190. |
[12] | . 抗生素[J]. , 1991, 0(10): 63-67. |
[13] | 孙国凤;. 日本从美国引进生产维生素B_(12)的工程微生物技术[J]. , 1988, 0(03): 17-17. |
[14] | 柴勇;. 维生素B12生物合成基因的克隆技术[J]. , 1987, 0(06): 5-5. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||