生物技术通报 ›› 2023, Vol. 39 ›› Issue (5): 224-232.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1285
翟莹1(), 李铭杨1, 张军2, 赵旭3, 于海伟1, 李珊珊1, 赵艳1, 张梅娟1, 孙天国1
收稿日期:
2022-10-18
出版日期:
2023-05-26
发布日期:
2023-06-08
作者简介:
翟莹,女,博士,教授,研究方向:植物分子遗传育种;E-mail: fairy39809079@126.com
基金资助:
ZHAI Ying1(), LI Ming-yang1, ZHANG Jun2, ZHAO Xu3, YU Hai-wei1, LI Shan-shan1, ZHAO Yan1, ZHANG Mei-juan1, SUN Tian-guo1
Received:
2022-10-18
Published:
2023-05-26
Online:
2023-06-08
摘要:
核因子(NF-Y)广泛存在于真核生物中,是一类能够在植物非生物胁迫反应中发挥重要调控作用的转录因子。探究大豆GmNF-YA19的抗旱性及作用机制,为GmNF-YA19在抗旱植物育种中的应用奠定基础。运用实时荧光定量PCR(RT-qPCR)对GmNF-YA19在非生物胁迫下的表达量进行检测,克隆GmNF-YA19,构建GmNF-YA19植物表达载体并转化烟草,对转基因烟草的抗旱性进行鉴定。RT-qPCR结果显示GmNF-YA19在大豆中能够响应干旱、高盐、低温及外源ABA,且干旱胁迫下GmNF-YA19的表达量升高最显著。以大豆叶片cDNA为模板,通过PCR克隆GmNF-YA19。序列分析结果显示,GmNF-YA19编码一个含有213个氨基酸的蛋白质,预测分子量22.99 kD,预测等电点9.40。GmNF-YA19蛋白序列包含一个保守的CBF结构域。蛋白系统进化分析表明,GmNF-YA19蛋白与OsNF-YA7蛋白、AtNF-YA4蛋白和AtNF-YA7蛋白亲缘关系较近。共获得4棵转基因烟草植株。在干旱胁迫下,GmNF-YA19的异源表达增强了转基因烟草的抗旱性。与野生型烟草相比,GmNF-YA19转基因烟草中3个抗逆相关基因(NtABA2、NtNCED3-2和NtP5CS)的表达量显著升高。GmNF-YA19的异源表达增强了转基因烟草的抗旱性。
翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232.
ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco[J]. Biotechnology Bulletin, 2023, 39(5): 224-232.
基因(GenBank登录号)Genes(GenBank accession number) | 正向引物Forward primer(5'-3') | 反向引物Reverse primer(5'-3') |
---|---|---|
Gmβ-tubulin(GMU12286) | GGAAGGCTTTCTTGCATTGGTA | AGTGGCATCCTGGTACTGC |
GmNF-YA19(NM001253093) | AGCCATTCTTGTCGAATCATACTG | CCTGTGGTCCATAAGCAACTATTG |
NtActin(AB158612) | TTGCTGGTCGTGATCTTACTGATTG | CAGTCTCCAACTCTTGCTCATAGTC |
NtABA2(EU123520) | TCTCCAAACTTTCCTACTCGCTTTC | CACTGCTTGACGCTCTTCCTTC |
NtNCED3-1(JX101472) | CCCAAATGTGTTCAAGGCGTTTAC | TGCCGTCACCGTCAAAGAAATG |
NtNCED3-2(JX101473) | ATATGGGAAGAAATCGCCTGATGTC | ACAACTTGCTGGTCGGGAATTAC |
NtCAT1(U93244) | CCTCGTGGTTTTGCTGTC | GGGATTTAGGATTTGGCTT |
NtP5CS(HM854026) | GACACGGACTGATGGAAGATTAG | TTCATAGCCTTGCGAGTTAAGC |
表1 RT-qPCR引物序列
Table 1 Primer sequences for RT-qPCR
基因(GenBank登录号)Genes(GenBank accession number) | 正向引物Forward primer(5'-3') | 反向引物Reverse primer(5'-3') |
---|---|---|
Gmβ-tubulin(GMU12286) | GGAAGGCTTTCTTGCATTGGTA | AGTGGCATCCTGGTACTGC |
GmNF-YA19(NM001253093) | AGCCATTCTTGTCGAATCATACTG | CCTGTGGTCCATAAGCAACTATTG |
NtActin(AB158612) | TTGCTGGTCGTGATCTTACTGATTG | CAGTCTCCAACTCTTGCTCATAGTC |
NtABA2(EU123520) | TCTCCAAACTTTCCTACTCGCTTTC | CACTGCTTGACGCTCTTCCTTC |
NtNCED3-1(JX101472) | CCCAAATGTGTTCAAGGCGTTTAC | TGCCGTCACCGTCAAAGAAATG |
NtNCED3-2(JX101473) | ATATGGGAAGAAATCGCCTGATGTC | ACAACTTGCTGGTCGGGAATTAC |
NtCAT1(U93244) | CCTCGTGGTTTTGCTGTC | GGGATTTAGGATTTGGCTT |
NtP5CS(HM854026) | GACACGGACTGATGGAAGATTAG | TTCATAGCCTTGCGAGTTAAGC |
图1 GmNF-YA19在干旱、高盐、低温和ABA处理下的表达量 不同字母表示差异显著性(P <0.05)。下同
Fig. 1 Expressions of GmNF-YA19 under drought, salt, cold and ABA treatments Different letters indicate significant difference(P <0.05). The same below
图2 GmNF-YA19核苷酸及蛋白质氨基酸序列 阴影为CBF结构域;下划线为NF-YB/NF-YC结合子域;黑体为DNA结合子域;*为终止密码子
Fig. 2 Nucleotide and protein amino acid sequences of GmNF-YA19 The shadow is the CBF domain. The underline is NF-YB/NF-YC binding subdomain. The bold one is the DNA binding subdomain. * is the termination codon
图4 GmNF-YA19植物表达载体构建和农杆菌转化 M:DL2000分子量标记物;1:pRI101-GmNF-YA19质粒双酶切;2:农杆菌菌液PCR
Fig. 4 Construction of GmNF-YA19 plant expression vector and Agrobacterium tumefaciens transformation M: DL2000 marker. 1: Double enzyme digestion of pRI101-GmNF-YA19 plasmid.2: PCR of Agrobacterium tumefaciens
图5 GmNF-YA19 转基因烟草基因组DNA PCR检测(A)和RT-qPCR检测(B) M:DL2000分子量标记物;+:pRI101-GmNF-YA19质粒;WT:野生型烟草;OE1-OE4:GmNF-YA19转基因烟草
Fig. 5 Genomic DNA PCR detection (A) and RT-qPCR detection (B) of GmNF-YA19 transgenic tobacco M: DL2000 marker. +: pRI101-GmNF-YA19 plasmid. WT: Wild-type tobacco. OE1-OE4: GmNF-YA19 transgenic tobacco plants
图6 GmNF-YA19转基因烟草在干旱及复水处理下的表型 A:停止浇水前;B:停止浇水10 d;C:停止浇水18 d;D:复水3 d;WT:野生型烟草;OE1-OE3:GmNF-YA19转基因烟草
Fig. 6 Phenotype of GmNF-YA19 transgenic tobacco plants under drought and rehydration treatment A: Before stop watering. B: Stop watering for 10 d. C: Stop watering for 18 d. D: Rehydration 3 d. WT: Wild-type tobacco. OE1-OE3: GmNF-YA19 transgenic tobacco plants
图7 GmNF-YA19转基因烟草干旱胁迫下电解质渗透率、丙二醛含量、可溶性糖含量和脯氨酸含量 WT:野生型烟草;OE1-OE3:GmNF-YA19转基因烟草
Fig. 7 Electrolyte leakage, malondialdehyde contents, soluble carbohydrate contents and proline contents in GmNF-YA19 transgenic tobacco plants under drought stress WT: Wild-type tobacco; OE1-OE3: GmNF-YA19 transgenic tobacco plants
图8 GmNF-YA19转基因烟草抗逆相关基因表达量 WT:野生型烟草;OE1:GmNF-YA19转基因烟草
Fig. 8 Expression of stress-related genes in GmNF-YA19 transgenic tobacco plants WT: Wild-type tobacco. OE1: GmNF-YA19 transgenic tobacco plants
[1] |
Zhu JK. Salt and drought stress signal transduction in plants[J]. Annu Rev Plant Biol, 2002, 53: 247-273.
doi: 10.1146/arplant.2002.53.issue-1 URL |
[2] |
Xu WY, Tang WS, Wang CX, et al. SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway[J]. Front Plant Sci, 2020, 11: 785.
doi: 10.3389/fpls.2020.00785 pmid: 32625221 |
[3] |
Lu X, Zhang XF, Duan H, et al. Three stress-responsive NAC transcription factors from Populus euphratica differentially regulate salt and drought tolerance in transgenic plants[J]. Physiol Plant, 2018, 162(1): 73-97.
doi: 10.1111/ppl.2018.162.issue-1 URL |
[4] |
Wu J, Zhang J, Li X, et al. An overexpression of the AP2/ERF transcription factor from Iris typhifolia in Arabidopsis thaliana confers tolerance to salt stress[J]. Biol Plant, 2019, 63: 776-784.
doi: 10.32615/bp.2019.082 URL |
[5] |
Gao HM, Wang YF, Xu P, et al. Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat[J]. Front Plant Sci, 2018, 9: 997.
doi: 10.3389/fpls.2018.00997 URL |
[6] |
Yao PF, Li CL, Zhao XR, et al. Overexpression of a Tartary buckwheat gene, FtbHLH3, enhances drought/oxidative stress tolerance in transgenic Arabidopsis[J]. Front Plant Sci, 2017, 8: 625.
doi: 10.3389/fpls.2017.00625 URL |
[7] |
Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y[J]. Gene, 1999, 239(1): 15-27.
doi: 10.1016/s0378-1119(99)00368-6 pmid: 10571030 |
[8] | 徐妙云, 朱佳旭, 张敏, 等. 植物miR169/NF-YA调控模块研究进展[J]. 遗传, 2016, 38(8): 700-706. |
Xu MY, Zhu JX, Zhang M, et al. Advances on plant miR169/NF-YA regulation modules[J]. Hereditas, 2016, 38(8): 700-706. | |
[9] |
Li WX, Oono Y, Zhu JH, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance[J]. Plant Cell, 2008, 20(8): 2238-2251.
doi: 10.1105/tpc.108.059444 URL |
[10] |
Gusmaroli G, Tonelli C, Mantovani R. Regulation of novel members of the Arabidopsis thaliana CCAAT-binding nuclear factor Y subunits[J]. Gene, 2002, 283(1/2): 41-48.
doi: 10.1016/S0378-1119(01)00833-2 URL |
[11] | Feng ZJ, He GH, Zheng WJ, et al. Foxtail millet NF-Y families: genome-wide survey and evolution analyses identified two functional genes important in abiotic stresses[J]. Front Plant Sci, 2015, 6: 1142. |
[12] |
Li J, Duan YJ, Sun NL, et al. The miR169n-NF-YA8 regulation module involved in drought resistance in Brassica napus L[J]. Plant Sci, 2021, 313: 111062.
doi: 10.1016/j.plantsci.2021.111062 URL |
[13] |
Su HH, Cao YY, Ku LX, et al. Dual functions of ZmNF-YA3 in photoperiod-dependent flowering and abiotic stress responses in maize[J]. J Exp Bot, 2018, 69(21): 5177-5189.
doi: 10.1093/jxb/ery299 pmid: 30137393 |
[14] | 刘芳兵. 狗牙根CdNF-YA23基因响应盐胁迫的功能解析[D]. 武汉: 中国科学院大学(中国科学院武汉植物园), 2020. |
Liu FB. Functional analysis of CdNF-YA23 from bermudagrass in response to salt stress[D]. Wuhan: Wuhan Botanical Garden, Chinese Academy of Sciences, 2020. | |
[15] |
Lian CL, Li Q, Yao K, et al. Populus trichocarpa PtNF-YA9, A multifunctional transcription factor, regulates seed germination, abiotic stress, plant growth and development in Arabidopsis[J]. Front Plant Sci, 2018, 9: 954.
doi: 10.3389/fpls.2018.00954 URL |
[16] |
Quach TN, Nguyen HTM, Valliyodan B, et al. Genome-wide expression analysis of soybean NF-Y genes reveals potential function in development and drought response[J]. Mol Genet Genomics, 2015, 290(3): 1095-1115.
doi: 10.1007/s00438-014-0978-2 pmid: 25542200 |
[17] |
Ni ZY, Hu Z, Jiang QY, et al. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress[J]. Plant Mol Biol, 2013, 82(1/2): 113-129.
doi: 10.1007/s11103-013-0040-5 URL |
[18] |
Ma XJ, Yu TF, Li XH, et al. Overexpression of GmNFYA5 confers drought tolerance to transgenic Arabidopsis and soybean plants[J]. BMC Plant Biol, 2020, 20(1): 123.
doi: 10.1186/s12870-020-02337-z |
[19] |
Yu YH, Bai YC, Wang P, et al. Soybean nuclear factor YA10 positively regulates drought resistance in transgenic Arabidopsis thaliana[J]. Environ Exp Bot, 2020, 180: 104249.
doi: 10.1016/j.envexpbot.2020.104249 URL |
[20] |
Qiu S, Zhang J, He JQ, et al. Overexpression of GmGolS2-1, a soybean galactinol synthase gene, enhances transgenic tobacco drought tolerance[J]. Plant Cell Tissue Organ Cult, 2020, 143(3): 507-516.
doi: 10.1007/s11240-020-01936-w |
[21] |
Hoekema A, Hirsch PR, Hooykaas PJJ, et al. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid[J]. Nature, 1983, 303(5913): 179-180.
doi: 10.1038/303179a0 |
[22] | 李敏, 于太飞, 徐兆师, 等. 大豆转录因子基因GmNF-YCa可提高转基因拟南芥渗透胁迫的耐性[J]. 作物学报, 2017, 43(8): 1161-1169. |
Li M, Yu TF, Xu ZS, et al. Soybean transcription factor gene GmNF-YCa enhances osmotic stress tolerance of transgenic Arabidopsis[J]. Acta Agron Sin, 2017, 43(8): 1161-1169.
doi: 10.3724/SP.J.1006.2017.01161 URL |
|
[23] |
O'Conner S, Zheng WG, Qi MS, et al. GmNF-YC4-2 increases protein, exhibits broad disease resistance and expedites maturity in soybean[J]. Int J Mol Sci, 2021, 22(7): 3586.
doi: 10.3390/ijms22073586 URL |
[24] |
Mallano AI, Li WB, Tabys D, et al. The soybean GmNFY-B1 transcription factor positively regulates flowering in transgenic Arabidopsis[J]. Mol Biol Rep, 2021, 48(2): 1589-1599.
doi: 10.1007/s11033-021-06164-9 pmid: 33512627 |
[25] |
Lee DK, Kim HI, Jang G, et al. The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner[J]. Plant Sci, 2015, 241: 199-210.
doi: 10.1016/j.plantsci.2015.10.006 URL |
[26] |
黄锁, 胡利芹, 徐东北, 等. 谷子转录因子SiNF-YA5通过ABA非依赖途径提高转基因拟南芥耐盐性[J]. 作物学报, 2016, 42(12): 1787-1797.
doi: 10.3724/SP.J.1006.2016.01787 |
Huang S, Hu LQ, Xu DB, et al. Transcription factor SiNF-YA5 from foxtail millet(Setaria italica)conferred tolerance to high-salt stress through ABA-independent pathway in transgenic Arabidopsis[J]. Acta Agron Sin, 2016, 42(12): 1787-1797.
doi: 10.3724/SP.J.1006.2016.01787 URL |
|
[27] |
Leyva-González MA, Ibarra-Laclette E, Cruz-Ramírez A, et al. Functional and transcriptome analysis reveals an acclimatization strategy for abiotic stress tolerance mediated by Arabidopsis NF-YA family members[J]. PLoS One, 2012, 7(10): e48138.
doi: 10.1371/journal.pone.0048138 URL |
[28] |
Liu JX, Howell SH. bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis[J]. Plant Cell, 2010, 22(3): 782-796.
doi: 10.1105/tpc.109.072173 URL |
[29] |
Alam MM, Tanaka T, Nakamura H, et al. Overexpression of a rice heme activator protein gene(OsHAP2E)confers resistance to pathogens, salinity and drought, and increases photosynthesis and tiller number[J]. Plant Biotechnol J, 2015, 13(1): 85-96.
doi: 10.1111/pbi.2014.13.issue-1 URL |
[30] |
Frey A, Audran C, Marin E, et al. Engineering seed dormancy by the modification of Zeaxanthin epoxidase gene expression[J]. Plant Mol Biol, 1999, 39(6): 1267-1274.
pmid: 10380812 |
[31] |
Jia YY, Liu JL, Bai ZQ, et al. Cloning and functional characterization of the SmNCED3 in Salvia miltiorrhiza[J]. Acta Physiol Plant, 2018, 40(7): 1-9.
doi: 10.1007/s11738-017-2577-4 |
[32] | 李大红, 刘宏伟, 秦兰娟, 等. 拟南芥P5CS1基因转化羽衣甘蓝增强耐盐性分析[J]. 南方农业学报, 2017, 48(5): 768-773. |
Li DH, Liu HW, Qin LJ, et al. Salt tolerance strengthening of Brassica oleracea var. acephala f. tricolor genetically modified by P5CS1 gene from Arabidopsis thaliana[J]. J South Agric, 2017, 48(5): 768-773. |
[1] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[2] | 李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150. |
[3] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[4] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[5] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[6] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[7] | 侯筱媛, 车郑郑, 李姮静, 杜崇玉, 胥倩, 王群青. 大豆膜系统cDNA文库的构建及大豆疫霉效应子PsAvr3a互作蛋白的筛选[J]. 生物技术通报, 2023, 39(4): 268-276. |
[8] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[9] | 陈奕博, 杨万明, 岳爱琴, 王利祥, 杜维俊, 王敏. 基于SLAF标记的大豆遗传图谱构建及苗期耐盐性QTL定位[J]. 生物技术通报, 2023, 39(2): 70-79. |
[10] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[11] | 许睿, 祝英方. 中介体复合物在植物非生物胁迫应答中的功能[J]. 生物技术通报, 2023, 39(11): 54-60. |
[12] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[13] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
[14] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[15] | 白苗, 田雯青, 武帅, 王敏, 王利祥, 岳爱琴, 牛景萍, 张永坡, 高春艳, 张武霞, 郭数进, 杜维俊, 赵晋忠. 激素和逆境胁迫对大豆维生素E和γ-TMT表达的影响[J]. 生物技术通报, 2023, 39(10): 148-162. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||