生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 54-60.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0847
收稿日期:
2023-09-04
出版日期:
2023-11-26
发布日期:
2023-12-20
通讯作者:
祝英方,教授,研究方向:植物适应逆境的分子机制;E-mail: zhuyf@henu.edu.cn作者简介:
许睿,博士研究生,研究方向:植物适应逆境的分子机制;E-mail: 15003911820@163.com
基金资助:
Received:
2023-09-04
Published:
2023-11-26
Online:
2023-12-20
摘要:
中介体复合物作为真核生物转录机器中的重要共激活子,起着连接RNA聚合酶II和不同转录因子从而调节基因转录的作用。当植物遭遇各种非生物胁迫时,中介体复合物通过整合胁迫信号并激活或抑制靶基因的表达,进而帮助植物适应环境胁迫。本文总结了植物中介体复合物的发现,及其在干旱、盐、极端温度下的功能及调节机制,并探讨了中介体复合体的未来研究方向,有助于理解中介体复合物在非生物胁迫应答中的重要功能。
许睿, 祝英方. 中介体复合物在植物非生物胁迫应答中的功能[J]. 生物技术通报, 2023, 39(11): 54-60.
XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress[J]. Biotechnology Bulletin, 2023, 39(11): 54-60.
[1] |
Liu Y, Ranish JA, Aebersold R, et al. Yeast nuclear extract contains two major forms of RNA polymerase II mediator complexes[J]. J Biol Chem, 2001, 276(10): 7169-7175.
pmid: 11383511 |
[2] |
Kornberg RD. Mediator and the mechanism of transcriptional activation[J]. Trends Biochem Sci, 2005, 30(5): 235-239.
doi: 10.1016/j.tibs.2005.03.011 pmid: 15896740 |
[3] |
Schilbach S, Hantsche M, Tegunov D, et al. Structures of transcription pre-initiation complex with TFIIH and Mediator[J]. Nature, 2017, 551(7679): 204-209.
doi: 10.1038/nature24282 URL |
[4] |
Chong L, Shi XN, Zhu YF. Signal integration by cyclin-dependent kinase 8(CDK8)module and other mediator subunits in biotic and abiotic stress responses[J]. Int J Mol Sci, 2020, 22(1): 354.
doi: 10.3390/ijms22010354 URL |
[5] |
Zhai QZ, Li CY. The plant Mediator complex and its role in jasmonate signaling[J]. J Exp Bot, 2019, 70(13): 3415-3424.
doi: 10.1093/jxb/erz233 pmid: 31089685 |
[6] |
Bäckström S, Elfving N, Nilsson R, et al. Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit[J]. Mol Cell, 2007, 26(5): 717-729.
doi: 10.1016/j.molcel.2007.05.007 pmid: 17560376 |
[7] |
Buendía-Monreal M, Gillmor CS. Mediator: a key regulator of plant development[J]. Dev Biol, 2016, 419(1): 7-18.
doi: S0012-1606(16)30103-8 pmid: 27287881 |
[8] |
An CF, Mou ZL. The function of the Mediator complex in plant immunity[J]. Plant Signal Behav, 2013, 8(3): e23182.
doi: 10.4161/psb.23182 URL |
[9] |
Dolan WL, Chapple C. Conservation and divergence of mediator structure and function: insights from plants[J]. Plant Cell Physiol, 2017, 58(1): 4-21.
doi: 10.1093/pcp/pcw176 pmid: 28173572 |
[10] |
Chen JL, Yang S, Fan BF, et al. The mediator complex: a central coordinator of plant adaptive responses to environmental stresses[J]. Int J Mol Sci, 2022, 23(11): 6170.
doi: 10.3390/ijms23116170 URL |
[11] |
Hasan ASMM, Vander Schoor JK, Hecht V, et al. The CYCLIN-DEPENDENT KINASE module of the mediator complex promotes flowering and reproductive development in pea[J]. Plant Physiol, 2020, 182(3): 1375-1386.
doi: 10.1104/pp.19.01173 pmid: 31964799 |
[12] |
Liu AL, Xiao ZX, Li MW, et al. Transcriptomic reprogramming in soybean seedlings under salt stress[J]. Plant Cell Environ, 2019, 42(1): 98-114.
doi: 10.1111/pce.13186 |
[13] |
Son S, Park SR. Plant translational reprogramming for stress resilience[J]. Front Plant Sci, 2023, 14: 1151587.
doi: 10.3389/fpls.2023.1151587 URL |
[14] |
Weil PA, Luse DS, Segall J, et al. Selective and accurate initiation of transcription at the Ad2 major late promotor in a soluble system dependent on purified RNA polymerase II and DNA[J]. Cell, 1979, 18(2): 469-484.
pmid: 498279 |
[15] |
Gill G, Ptashne M. Negative effect of the transcriptional activator GAL4[J]. Nature, 1988, 334(6184): 721-724.
doi: 10.1038/334721a0 |
[16] |
Kelleher RJ 3rd, Flanagan PM, Kornberg RD. A novel mediator between activator proteins and the RNA polymerase II transcription apparatus[J]. Cell, 1990, 61(7): 1209-1215.
doi: 10.1016/0092-8674(90)90685-8 pmid: 2163759 |
[17] |
Meisterernst M, Roy AL, Lieu HM, et al. Activation of class II gene transcription by regulatory factors is potentiated by a novel activity[J]. Cell, 1991, 66(5): 981-993.
pmid: 1889091 |
[18] |
Flanagan PM, Kelleher RJ, Sayre MH, et al. A mediator required for activation of RNA polymerase II transcription in vitro[J]. Nature, 1991, 350(6317): 436-438.
doi: 10.1038/350436a0 |
[19] |
Kim YJ, Björklund S, Li Y, et al. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II[J]. Cell, 1994, 77(4): 599-608.
doi: 10.1016/0092-8674(94)90221-6 pmid: 8187178 |
[20] |
Bourbon HM, Aguilera A, Ansari AZ, et al. A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II[J]. Mol Cell, 2004, 14(5): 553-557.
doi: 10.1016/j.molcel.2004.05.011 URL |
[21] |
Soutourina J. Transcription regulation by the mediator complex[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 262-274.
doi: 10.1038/nrm.2017.115 URL |
[22] |
Huang CQ, Xu R, Liégeois S, et al. Differential requirements for mediator complex subunits in Drosophila melanogaster host defense against fungal and bacterial pathogens[J]. Front Immunol, 2021, 11: 478958.
doi: 10.3389/fimmu.2020.478958 URL |
[23] |
Mathur S, Vyas S, Kapoor S, et al. The Mediator complex in plants: structure, phylogeny, and expression profiling of representative genes in a dicot(Arabidopsis)and a monocot(rice)during reproduction and abiotic stress[J]. Plant Physiol, 2011, 157(4): 1609-1627.
doi: 10.1104/pp.111.188300 URL |
[24] |
Chen K, Li GJ, Bressan RA, et al. Abscisic acid dynamics, signaling, and functions in plants[J]. J Integr Plant Biol, 2020, 62(1): 25-54.
doi: 10.1111/jipb.12899 |
[25] |
Zeevaart JA. Changes in the levels of abscisic acid and its metabolites in excised leaf blades of Xanthium strumarium during and after water stress[J]. Plant Physiol, 1980, 66(4): 672-678.
doi: 10.1104/pp.66.4.672 pmid: 16661500 |
[26] |
Chen R, Jiang HL, Li L, et al. The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors[J]. Plant Cell, 2012, 24(7): 2898-2916.
doi: 10.1105/tpc.112.098277 URL |
[27] |
Guo PC, Chong L, Wu FM, et al. Mediator tail module subunits MED16 and MED25 differentially regulate abscisic acid signaling in Arabidopsis[J]. J Integr Plant Biol, 2021, 63(4): 802-815.
doi: 10.1111/jipb.v63.4 URL |
[28] |
Li XH, Yang R, Gong YF, et al. The Arabidopsis mediator complex subunit MED19a is involved in ABI5-mediated ABA responses[J]. J Plant Biol, 2018, 61(2): 97-110.
doi: 10.1007/s12374-017-0277-7 |
[29] |
Lai ZB, Schluttenhofer CM, Bhide K, et al. MED18 interaction with distinct transcription factors regulates multiple plant functions[J]. Nat Commun, 2014, 5: 3064.
doi: 10.1038/ncomms4064 pmid: 24451981 |
[30] |
Zhu YF, Huang PC, Guo PC, et al. CDK8 is associated with RAP2.6 and SnRK2.6 and positively modulates abscisic acid signaling and drought response in Arabidopsis[J]. New Phytol, 2020, 228(5): 1573-1590.
doi: 10.1111/nph.v228.5 URL |
[31] |
Wang YF, Hou YX, Qiu JH, et al. Abscisic acid promotes jasmonic acid biosynthesis via a ‘SAPK10-bZIP72-AOC’ pathway to synergistically inhibit seed germination in rice(Oryza sativa)[J]. New Phytol, 2020, 228(4): 1336-1353.
doi: 10.1111/nph.v228.4 URL |
[32] |
Ju L, Jing YX, Shi PT, et al. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabidopsis[J]. New Phytol, 2019, 223(1): 246-260.
doi: 10.1111/nph.2019.223.issue-1 URL |
[33] |
McGrath KC, Dombrecht B, Manners JM, et al. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression[J]. Plant Physiol, 2005, 139(2): 949-959.
doi: 10.1104/pp.105.068544 pmid: 16183832 |
[34] |
Kazan K. The multitalented MEDIATOR25[J]. Front Plant Sci, 2017, 8: 999.
doi: 10.3389/fpls.2017.00999 pmid: 28659948 |
[35] |
Zhang H, Zhao Y, Zhu JK. Thriving under stress: how plants balance growth and the stress response[J]. Dev Cell, 2020, 55(5): 529-543.
doi: 10.1016/j.devcel.2020.10.012 pmid: 33290694 |
[36] |
Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought[J]. Science, 2020, 368(6488): 266-269.
doi: 10.1126/science.aaz7614 pmid: 32299946 |
[37] |
Elfving N, Davoine C, Benlloch R, et al. The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development[J]. Proc Natl Acad Sci USA, 2011, 108(20): 8245-8250.
doi: 10.1073/pnas.1002981108 pmid: 21536906 |
[38] |
Lin LH, Du MM, Li SY, et al. Mediator complex subunit MED25 physically interacts with DST to regulate spikelet number in rice[J]. J Integr Plant Biol, 2022, 64(4): 871-883.
doi: 10.1111/jipb.13238 |
[39] |
Zhu YF, Schluttenhoffer CM, Wang PC, et al. CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and-independent functions in Arabidopsis[J]. Plant Cell, 2014, 26(10): 4149-4170.
doi: 10.1105/tpc.114.128611 URL |
[40] |
Lee M, Dominguez-Ferreras A, Kaliyadasa E, et al. Mediator subunits MED16, MED14, and MED2 are required for activation of ABRE-dependent transcription in Arabidopsis[J]. Front Plant Sci, 2021, 12: 649720.
doi: 10.3389/fpls.2021.649720 URL |
[41] |
Zhu YF, Wang B, Tang K, et al. An Arabidopsis Nucleoporin NUP85 modulates plant responses to ABA and salt stress[J]. PLoS Genet, 2017, 13(12): e1007124.
doi: 10.1371/journal.pgen.1007124 URL |
[42] |
Crawford T, Karamat F, Lehotai N, et al. Specific functions for mediator complex subunits from different modules in the transcriptional response of Arabidopsis thaliana to abiotic stress[J]. Sci Rep, 2020, 10(1): 5073.
doi: 10.1038/s41598-020-61758-w pmid: 32193425 |
[43] |
Warren G, McKown R, Marin AL, et al. Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana(L.) Heynh[J]. Plant Physiol, 1996, 111(4): 1011-1019.
doi: 10.1104/pp.111.4.1011 pmid: 8756493 |
[44] |
Knight H, Veale EL, Warren GJ, et al. The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif[J]. Plant Cell, 1999, 11(5): 875-886.
doi: 10.1105/tpc.11.5.875 pmid: 10330472 |
[45] |
Knight H, Mugford SG, Ulker B, et al. Identification of SFR6, a key component in cold acclimation acting post-translationally on CBF function[J]. Plant J, 2009, 58(1): 97-108.
doi: 10.1111/tpj.2009.58.issue-1 URL |
[46] |
Hemsley PA, Hurst CH, Kaliyadasa E, et al. The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes[J]. Plant Cell, 2014, 26(1): 465-484.
doi: 10.1105/tpc.113.117796 URL |
[47] |
Ohama N, Moo TL, Chua NH. Differential requirement of MED14/17 recruitment for activation of heat inducible genes[J]. New Phytol, 2021, 229(6): 3360-3376.
doi: 10.1111/nph.17119 pmid: 33251584 |
[48] | 魏荷, 李海朝, 练云, 等. 大豆中介体亚基基因鉴定及表达特性分析[J]. 大豆科学, 2016, 35(1): 31-38. |
Wei H, Li HC, Lian Y, et al. Identification and expression profiles of mediator subunit genes in soybean[J]. Soybean Sci, 2016, 35(1): 31-38. | |
[49] |
王晶, 赵军, 宗娜. 玉米中介体亚基ZmMED7基因的克隆及表达分析[J]. 生物技术进展, 2016, 6(5): 328-335, 381.
doi: 10.3969/j.issn.2095-2341.2016.05.04 |
Wang J, Zhao J, Zong N. Cloning and expression analysis of maize mediator subunit gene ZmMED7[J]. Curr Biotechnol, 2016, 6(5): 328-335, 381. | |
[50] |
Guo J, Wei L, Chen SS, et al. The CBP/p300 histone acetyltransferases function as plant-specific MEDIATOR subunits in Arabidopsis[J]. J Integr Plant Biol, 2021, 63(4): 755-771.
doi: 10.1111/jipb.v63.4 URL |
[51] | Liao CJ, Lai ZB, Lee SH, et al. Arabidopsis HOOKLESS1 regulates responses to pathogens and abscisic acid through interaction with MED18 and acetylation of WRKY33 and ABI5 chromatin[J]. Plant Cell, 2016, 28(7): 1662-1681. |
[1] | 展艳, 周利斌, 金文杰, 杜艳, 余丽霞, 曲颖, 马永贵, 刘瑞媛. 辐射诱导植物叶色突变的研究进展[J]. 生物技术通报, 2023, 39(8): 106-113. |
[2] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[3] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[4] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[5] | 张曼, 张叶卓, 何其邹洪, 鄂一岚, 李晔. 植物细胞壁结构及成像技术研究进展[J]. 生物技术通报, 2023, 39(7): 113-122. |
[6] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[7] | 李玉岭, 毛欣, 张元帅, 董元夫, 刘翠兰, 段春华, 毛秀红. 辐射诱变技术在木本植物育种中的应用及展望[J]. 生物技术通报, 2023, 39(6): 12-30. |
[8] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[9] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[10] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[11] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[12] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[13] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[14] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[15] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||