生物技术通报 ›› 2023, Vol. 39 ›› Issue (5): 32-43.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1106
张雪萍1,2(), 鲁雨晴1,2, 张月倩1,2, 李晓娟1,2()
收稿日期:
2022-09-09
出版日期:
2023-05-26
发布日期:
2023-06-08
通讯作者:
李晓娟,女,博士,教授,研究方向:植物细胞生物学;E-mail: lixj@bjfu.edu.cn作者简介:
张雪萍,女,硕士研究生,研究方向:植物细胞生物学;E-mail: zhangxp97@bjfu.edu.cn
基金资助:
ZHANG Xue-ping1,2(), LU Yu-qing1,2, ZHANG Yue-qian1,2, LI Xiao-juan1,2()
Received:
2022-09-09
Published:
2023-05-26
Online:
2023-06-08
摘要:
细胞外囊泡是细胞在生理和病理条件下通过胞吐作用释放的具有磷脂双分子层结构的纳米级囊泡。细胞外囊泡作为蛋白质、核酸、脂质和代谢物等物质的载体,能够在细胞与细胞之间穿梭,行使物质传递、信息交流的功能,是细胞间通讯的重要媒介。近年来,植物中细胞外囊泡的研究也不断深入,其研究和分析技术也取得了很大进展。本文介绍了细胞外囊泡的组成,综述了植物中细胞外囊泡的生物学功能,分析了细胞外囊泡分离与富集方法的优缺点,以及原位成像技术的应用,最后对植物细胞外囊泡研究技术发展的重点进行了展望。
张雪萍, 鲁雨晴, 张月倩, 李晓娟. 植物细胞外囊泡及其分析技术的进展[J]. 生物技术通报, 2023, 39(5): 32-43.
ZHANG Xue-ping, LU Yu-qing, ZHANG Yue-qian, LI Xiao-juan. Advances in Plant Extracellular Vesicles and Analysis Techniques[J]. Biotechnology Bulletin, 2023, 39(5): 32-43.
图1 胞外囊泡的产生和传递 A:哺乳动物EVs生物发生途经。(a)微囊泡途径:由细胞质膜直接出芽脱落并释放到细胞外。(b)外泌体途径:细胞质膜向内凹陷后发生内吞作用,形成早期内涵体。早期内涵体将进一步向内凹陷形成晚期内涵体,包被部分细胞质和某些物质(如核酸、高尔基体和细胞核的蛋白质),从而产生腔内囊泡(ILV),具有ILV的多泡体(MVB)会与细胞膜融合,其内容物(ILV)可释放到细胞外环境中。释放的囊泡被称为外泌体。(c)凋亡小体以凋亡细胞的小泡形式释放。这些EVs可以与细胞外基质相互作用,并将其中的内容物输送到靶细胞。参照Chen等[35]修改。B:植物EVs的生物发生途经。(a)EXPO途经:EXPO是一种球形双膜结构,能与质膜融合并释放单层膜囊泡;(b)Vacuole途径:植物细胞中含有水解酶和防御成分的液泡可以与质膜融合,并将防御物质释放到细胞外空间,抑制病原体的增殖。(c)MVB途径:植物中的MVB可以与质膜融合,然后将EVs释放到细胞外空间。参照Cong等[33]修改
Fig. 1 Formation and delivery of extracellular vesicle A: The mammalian EVs biogenesis pathway.(a)Microvesicle pathway: Direct budding from the cytoplasmic membrane and release outside the cell.(b)Exosome pathway: Endocytosis occurs after the inward depression of the cytoplasmic membrane to form early endosomes. Early endosomes will be further recessed inward to form late endosomes, which coat part of the cytoplasm and certain substances(such as nucleic acids, proteins in the Golgi apparatus, and nucleus), resulting in intraluminal vesicles(ILVs). Multivesicular bodies(MVB)with ILVs fuse with cell membranes, and their contents(ILVs)can be released into the extracellular environment. The released vesicles are called exosomes.(c)Apoptotic bodies are released as vesicles of apoptotic cells. These EVs can interact with the extracellular matrix and transport its contents to target cells. Refer to Chen et al[35]. B: The biogenesis pathway of plant EVs.(a)exocyst-positive organelle(EXPO)pathway: EXPO is a spherical double-membrane structure, which can fuse with plasma membrane to release monolayer vesicles;(b)Vacuole pathway: The vacuole containing hydrolases and defense components in plant cells can fuse with the plasma membrane and release the defense material into the extracellular space to inhibit pathogen proliferation.(c)MVB pathway: In plants, MVB can fuse with plasma membrane and release EVs into the extracellular space. Refer to Cong et al[33]
技术名称 Approaches | 原理 Mechanism of enrichment | 优点 Advantages | 缺点 Disadvantages | 参考文献 References |
---|---|---|---|---|
超速离心法 Ultracentrifugation | 密度 | “金标准”,操作简便,可以分离大量样品 | 持续时间长,设备昂贵,离心速度过高可能会影响EVs的完整性 | [ |
蔗糖密度梯度离心 Sucrose density gradient ultracentrifugation | 密度 | 分离纯度高,没有其他化学品污染 | 持续时间长(>4 h),样本量大,需要超离心,回收率低 | [ |
沉淀法 Coprecipitation | 表面电荷 | 操作简单、快速、成本低,对EVs损伤小 | 分离的外泌体纯度通常很低 | [ |
尺寸排阻色谱法 Size-exclusive chromatography | 大小和分子量 | 高效、操作简单且耗时短,提取外泌体得率与纯度高,能保持EV的完整性 | 费用高,需要专用设备,色谱柱使用次数与加样体积有限制,复杂性大蛋白聚集体和脂蛋白与共分离 | [ |
超滤法 Ultrafiltration | 大小 | 程序简单,允许同时处理多个样本,省时,可较好地保持EV活性 | 无法滤除小于滤膜孔径的杂质,样品使用前需去除细胞等大的膜状结构 | [ |
微流控技术 Microfluidics technology | 大小、密度和表面抗原亲和 | 小型化、集成化、高通量和耗费时间短 | 研究技术尚未标准化;成本高,设备昂贵 | [ |
免疫亲和捕获技术 Immunoaffinity capture-based technique | 表面抗原亲和 | 高纯度,高特异性 | 抗体制备存在限制,成本高 | [ |
表1 主要EVs的分离方法及优缺点
Table 1 Isolation methods and advantages and disadvantages of main EVs
技术名称 Approaches | 原理 Mechanism of enrichment | 优点 Advantages | 缺点 Disadvantages | 参考文献 References |
---|---|---|---|---|
超速离心法 Ultracentrifugation | 密度 | “金标准”,操作简便,可以分离大量样品 | 持续时间长,设备昂贵,离心速度过高可能会影响EVs的完整性 | [ |
蔗糖密度梯度离心 Sucrose density gradient ultracentrifugation | 密度 | 分离纯度高,没有其他化学品污染 | 持续时间长(>4 h),样本量大,需要超离心,回收率低 | [ |
沉淀法 Coprecipitation | 表面电荷 | 操作简单、快速、成本低,对EVs损伤小 | 分离的外泌体纯度通常很低 | [ |
尺寸排阻色谱法 Size-exclusive chromatography | 大小和分子量 | 高效、操作简单且耗时短,提取外泌体得率与纯度高,能保持EV的完整性 | 费用高,需要专用设备,色谱柱使用次数与加样体积有限制,复杂性大蛋白聚集体和脂蛋白与共分离 | [ |
超滤法 Ultrafiltration | 大小 | 程序简单,允许同时处理多个样本,省时,可较好地保持EV活性 | 无法滤除小于滤膜孔径的杂质,样品使用前需去除细胞等大的膜状结构 | [ |
微流控技术 Microfluidics technology | 大小、密度和表面抗原亲和 | 小型化、集成化、高通量和耗费时间短 | 研究技术尚未标准化;成本高,设备昂贵 | [ |
免疫亲和捕获技术 Immunoaffinity capture-based technique | 表面抗原亲和 | 高纯度,高特异性 | 抗体制备存在限制,成本高 | [ |
[1] |
van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228.
doi: 10.1038/nrm.2017.125 URL |
[2] |
Han CS, Yang JJ, Sun JC, et al. Extracellular vesicles in cardiovascular disease: biological functions and therapeutic implications[J]. Pharmacol Ther, 2022, 233: 108025.
doi: 10.1016/j.pharmthera.2021.108025 URL |
[3] |
Bahmani L, Ullah M. Different sourced extracellular vesicles and their potential applications in clinical treatments[J]. Cells, 2022, 11(13): 1989.
doi: 10.3390/cells11131989 URL |
[4] |
Wu PP, Zhang B, Ocansey DKW, et al. Extracellular vesicles: a bright star of nanomedicine[J]. Biomaterials, 2021, 269: 120467.
doi: 10.1016/j.biomaterials.2020.120467 URL |
[5] |
Rutter BD, Innes RW. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins[J]. Plant Physiol, 2017, 173(1): 728-741.
doi: 10.1104/pp.16.01253 pmid: 27837092 |
[6] |
Rybak K, Robatzek S. Functions of extracellular vesicles in immunity and virulence[J]. Plant Physiol, 2019, 179(4): 1236-1247.
doi: 10.1104/pp.18.01557 pmid: 30705070 |
[7] |
Yáñez-Mó M, Siljander PRM, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions[J]. J Extracell Vesicles, 2015, 4: 27066.
doi: 10.3402/jev.v4.27066 pmid: 25979354 |
[8] |
Zhang Y, Liu YF, Liu HY, et al. Exosomes: biogenesis, biologic function and clinical potential[J]. Cell Biosci, 2019, 9: 19.
doi: 10.1186/s13578-019-0282-2 pmid: 30815248 |
[9] |
Thakur A, Ke XS, Chen YW, et al. The mini player with diverse functions: extracellular vesicles in cell biology, disease, and therapeutics[J]. Protein Cell, 2022, 13(9): 631-654.
doi: 10.1007/s13238-021-00863-6 |
[10] |
di BMA. Overview and update on extracellular vesicles: considerations on exosomes and their application in modern medicine[J]. Biology, 2022, 11(6): 804.
doi: 10.3390/biology11060804 URL |
[11] |
Hua YQ, Chang XL, Fang LQ, et al. Subgroups of extracellular vesicles: can they be defined by “labels? ”[J]. DNA Cell Biol, 2022, 41(3): 249-256.
doi: 10.1089/dna.2021.0488 URL |
[12] |
van der Pol E, Böing AN, Harrison P, et al. Classification, functions, and clinical relevance of extracellular vesicles[J]. Pharmacol Rev, 2012, 64(3): 676-705.
doi: 10.1124/pr.112.005983 pmid: 22722893 |
[13] |
Jadli AS, Ballasy N, Edalat P, et al. Inside(sight)of tiny communicator: exosome biogenesis, secretion, and uptake[J]. Mol Cell Biochem, 2020, 467(1-2): 77-94.
doi: 10.1007/s11010-020-03703-z |
[14] |
Jiang K, Dong C, Yin Z, et al. The critical role of exosomes in tumor biology[J]. J Cell Biochem, 2019, 120: 6820-6832.
doi: 10.1002/jcb.27813 |
[15] |
Shao HL, Im H, Castro CM, et al. New technologies for analysis of extracellular vesicles[J]. Chem Rev, 2018, 118(4): 1917-1950.
doi: 10.1021/acs.chemrev.7b00534 pmid: 29384376 |
[16] | 张维, 俞立, 陈扬. 细胞外囊泡检测分析方法研究进展[J]. 中国细胞生物学学报, 2020, 42(1): 159-165. |
Zhang W, Yu L, Chen Y. Research progress in extracellular vesicles detection and analysis[J]. Chin J Cell Biol, 2020, 42(1): 159-165. | |
[17] |
Zhao XX, Lei YX, Zheng JJ, et al. Identification of markers for migrasome detection[J]. Cell Discov, 2019, 5: 27.
doi: 10.1038/s41421-019-0093-y pmid: 31123599 |
[18] | Thakur A, Parra DC, Motallebnejad P, et al. Exosomes: Small vesicles with big roles in cancer, vaccine development, and therapeutics[J]. Bioact Mater, 2021, 10: 281-294. |
[19] |
Rostyslav OB, Shkandina T. Patterns of apoptotic cell-derived macrophages discriminate glycosylation[J]. J Biol Chem, 2011, 287(1): 496-503.
doi: 10.1074/jbc.M111.273144 URL |
[20] |
Xie WY, Melzig MF. The stability of medicinal plant microRNAs in the herb preparation process[J]. Molecules, 2018, 23(4): 919.
doi: 10.3390/molecules23040919 URL |
[21] |
Cui Y, Gao JY, He YL, et al. Plant extracellular vesicles[J]. Protoplasma, 2020, 257(1): 3-12.
doi: 10.1007/s00709-019-01435-6 pmid: 31468195 |
[22] |
Halperin W, Jensen WA. Ultrastructural changes during growth and embryogenesis in carrot cell cultures[J]. J Ultrastruct Res, 1967, 18(3-4): 428-443.
doi: 10.1016/S0022-5320(67)80128-X URL |
[23] | de Palma M, Ambrosone A, Leone A, et al. Plant roots release small extracellular vesicles with antifungal activity[J]. Plants(Basel), 2020, 9(12): 1777. |
[24] |
Regente M, Pinedo M, San Clemente H, et al. Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth[J]. J Exp Bot, 2017, 68(20): 5485-5495.
doi: 10.1093/jxb/erx355 pmid: 29145622 |
[25] |
Micali CO, Neumann U, Grunewald D, et al. Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria[J]. Cell Microbiol, 2011, 13(2): 210-226.
doi: 10.1111/j.1462-5822.2010.01530.x URL |
[26] |
Stotz HU, Brotherton D, Inal J. Communication is key: extracellular vesicles as mediators of infection and defence during host-microbe interactions in animals and plants[J]. FEMS Microbiol Rev, 2022, 46(1): fuab044.
doi: 10.1093/femsre/fuab044 URL |
[27] |
Wang F, Shang YF, Fan BF, et al. Arabidopsis LIP5, a positive regulator of multivesicular body biogenesis, is a critical target of pathogen-responsive MAPK cascade in plant basal defense[J]. PLoS Pathog, 2014, 10(7): e1004243.
doi: 10.1371/journal.ppat.1004243 URL |
[28] |
Movahed N, Cabanillas DG, Wan J, et al. Turnip mosaic virus components are released into the extracellular space by vesicles in infected leaves[J]. Plant Physiol, 2019, 180(3): 1375-1388.
doi: 10.1104/pp.19.00381 pmid: 31019004 |
[29] |
Regente M, Corti Monzón G, de la Canal L. Phospholipids are present in extracellular fluids of imbibing sunflower seeds and are modulated by hormonal treatments[J]. J Exp Bot, 2008, 59(3): 553-562.
doi: 10.1093/jxb/erm329 pmid: 18212025 |
[30] |
Cai Q, Qiao LL, Wang M, et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes[J]. Science, 2018, 360(6393): 1126-1129.
doi: 10.1126/science.aar4142 pmid: 29773668 |
[31] |
Fang Y, Wang ZW, Liu XL, et al. Biogenesis and biological functions of extracellular vesicles in cellular and organismal communication with microbes[J]. Front Microbiol, 2022, 13: 817844.
doi: 10.3389/fmicb.2022.817844 URL |
[32] |
Wang J, Ding Y, Wang JQ, et al. EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells[J]. Plant Cell, 2010, 22(12): 4009-4030.
doi: 10.1105/tpc.110.080697 URL |
[33] |
Cong MH, Tan SY, Li SM, et al. Technology insight: plant-derived vesicles-How far from the clinical biotherapeutics and therapeutic drug carriers?[J]. Adv Drug Deliv Rev, 2022, 182: 114108.
doi: 10.1016/j.addr.2021.114108 URL |
[34] |
Hatsugai N, Iwasaki S, Tamura K, et al. A novel membrane fusion-mediated plant immunity against bacterial pathogens[J]. Genes Dev, 2009, 23(21): 2496-2506.
doi: 10.1101/gad.1825209 URL |
[35] |
Chen JC, Li PL, Zhang TY, et al. Review on strategies and technologies for exosome isolation and purification[J]. Front Bioeng Biotechnol, 2022, 9: 811971.
doi: 10.3389/fbioe.2021.811971 URL |
[36] |
Ramirez SH, Andrews AM, Paul D, et al. Extracellular vesicles: mediators and biomarkers of pathology along CNS barriers[J]. Fluids Barriers CNS, 2018, 15(1): 19.
doi: 10.1186/s12987-018-0104-7 pmid: 29960602 |
[37] |
Urzì O, Gasparro R, Ganji NR, et al. Plant-RNA in extracellular vesicles: the secret of cross-kingdom communication[J]. Membranes, 2022, 12(4): 352.
doi: 10.3390/membranes12040352 URL |
[38] |
Hansen LL, Nielsen ME. Plant exosomes: using an unconventional exit to prevent pathogen entry?[J]. J Exp Bot, 2017, 69(1): 59-68.
doi: 10.1093/jxb/erx319 pmid: 29036447 |
[39] |
Thordal-Christensen H. Fresh insights into processes of nonhost resistance[J]. Curr Opin Plant Biol, 2003, 6(4): 351-357.
doi: 10.1016/s1369-5266(03)00063-3 pmid: 12873530 |
[40] |
Shishova MF, Yemelyanov VV. Proteome and lipidome of plant cell membranes during development[J]. Russ J Plant Physiol, 2021, 68(5): 800-817.
doi: 10.1134/S1021443721050162 |
[41] |
Song JB, Huang RK, Guo MJ, et al. Lipids associated with plant-bacteria interaction identified using a metabolomics approach in an Arabidopsis thaliana model[J]. PeerJ, 2022, 10: e13293.
doi: 10.7717/peerj.13293 URL |
[42] |
Liu NJ, Wang N, Bao JJ, et al. Lipidomic analysis reveals the importance of GIPCs in Arabidopsis leaf extracellular vesicles[J]. Mol Plant, 2020, 13(10): 1523-1532.
doi: 10.1016/j.molp.2020.07.016 URL |
[43] |
Baldrich P, Rutter BD, Karimi HZ, et al. Plant extracellular vesicles contain diverse small RNA species and are enriched in 10- to 17-nucleotide “tiny” RNAs[J]. Plant Cell, 2019, 31(2): 315-324.
doi: 10.1105/tpc.18.00872 URL |
[44] |
Jiao J, Peng D. Wheat microRNA1023 suppresses invasion of Fusarium graminearum via targeting and silencing FGSG_03101[J]. J Plant Interact, 2018, 13(1): 514-521.
doi: 10.1080/17429145.2018.1528512 URL |
[45] |
Cai Q, He BY, Wang SM, et al. Message in a bubble: shuttling small RNAs and proteins between cells and interacting organisms using extracellular vesicles[J]. Annu Rev Plant Biol, 2021, 72: 497-524.
doi: 10.1146/annurev-arplant-081720-010616 pmid: 34143650 |
[46] |
de Lorenzo G, Ferrari S, Giovannoni M, et al. Cell wall traits that influence plant development, immunity, and bioconversion[J]. Plant J, 2019, 97(1): 134-147.
doi: 10.1111/tpj.14196 |
[47] |
Chukhchin DG, Bolotova K, Sinelnikov I, et al. Exosomes in the phloem and xylem of woody plants[J]. Planta, 2019, 251(1): 12.
doi: 10.1007/s00425-019-03315-y pmid: 31776666 |
[48] |
de Bellis D, Kalmbach L, Marhavy P, et al. Extracellular vesiculo-tubular structures associated with suberin deposition in plant cell walls[J]. Nat Commun, 2022, 13(1): 1489.
doi: 10.1038/s41467-022-29110-0 pmid: 35304458 |
[49] |
Panagopoulou MS, Wark AW, Birch DJS, et al. Phenotypic analysis of extracellular vesicles: a review on the applications of fluorescence[J]. J Extracell Vesicles, 2020, 9(1): 1710020.
doi: 10.1080/20013078.2019.1710020 URL |
[50] |
Clos-Sansalvador M, Monguió-Tortajada M, Roura S, et al. Commonly used methods for extracellular vesicles’ enrichment: implications in downstream analyses and use[J]. Eur J Cell Biol, 2022, 101(3): 151227.
doi: 10.1016/j.ejcb.2022.151227 URL |
[51] | 刘春辰, 林慧娴, 郑磊. 细胞外囊泡检测技术及其临床应用进展[J]. 检验医学, 2020, 35(12): 1207-1212. |
Liu CC, Lin HX, Zheng L. Research progress in extracellular vesicle detection technique and its clinical application[J]. Lab Med, 2020, 35(12): 1207-1212. | |
[52] |
Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of exosome composition[J]. Cell, 2019, 177(2): 428-445.e18.
doi: S0092-8674(19)30212-0 pmid: 30951670 |
[53] |
Huang YF, Wang SM, Cai Q, et al. Effective methods for isolation and purification of extracellular vesicles from plants[J]. J Integr Plant Biol, 2021, 63(12): 2020-2030.
doi: 10.1111/jipb.13181 |
[54] |
Iwai K, Yamamoto S, Yoshida M, et al. Isolation of extracellular vesicles in saliva using density gradient ultracentrifugation[J]. Methods Mol Biol, 2017, 1660: 343-350.
doi: 10.1007/978-1-4939-7253-1_27 pmid: 28828669 |
[55] |
Kontopoulou E, Strachan S, Reinhardt K, et al. Evaluation of dsDNA from extracellular vesicles(EVs)in pediatric AML diagnostics[J]. Ann Hematol, 2020, 99(3): 459-475.
doi: 10.1007/s00277-019-03866-w pmid: 31932899 |
[56] | Martins TS, Vaz M, Henriques AG. A review on comparative studies addressing exosome isolation methods from body fluids[J]. Anal Bioanal Chem, 2022: 2022 Jul 15. |
[57] |
Lischnig A, Bergqvist M, Ochiya T, et al. Quantitative proteomics identifies proteins enriched in large and small extracellular vesicles[J]. Mol Cell Proteomics, 2022, 21(9): 100273.
doi: 10.1016/j.mcpro.2022.100273 URL |
[58] | Konoshenko MY, Lekchnov EA, Vlassov AV, et al. Isolation of extracellular vesicles: general methodologies and latest trends[J]. Biomed Res Int, 2018, 2018: 8545347. |
[59] |
Monguió-Tortajada M, Morón-Font M, Gámez-Valero A, et al. Extracellular-vesicle isolation from different biological fluids by size-exclusion chromatography[J]. Curr Protoc Stem Cell Biol, 2019, 49(1): e82.
doi: 10.1002/cpsc.v49.1 URL |
[60] |
Monguió-Tortajada M, Gálvez-Montón C, Bayes-Genis A, et al. Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography[J]. Cell Mol Life Sci, 2019, 76(12): 2369-2382.
doi: 10.1007/s00018-019-03071-y pmid: 30891621 |
[61] |
Guan S, Yu HL, Yan GQ, et al. Characterization of urinary exosomes purified with size exclusion chromatography and ultracentrifugation[J]. J Proteome Res, 2020, 19(6): 2217-2225.
doi: 10.1021/acs.jproteome.9b00693 pmid: 32248692 |
[62] |
Otahal A, Kuten-Pella O, Kramer K, et al. Functional repertoire of EV-associated miRNA profiles after lipoprotein depletion via ultracentrifugation and size exclusion chromatography from autologous blood products[J]. Sci Rep, 2021, 11(1): 5823.
doi: 10.1038/s41598-021-84234-5 pmid: 33712660 |
[63] |
Tataruch-Weinert D, Musante L, Kretz O, et al. Urinary extracellular vesicles for RNA extraction: optimization of a protocol devoid of prokaryote contamination[J]. J Extracell Vesicles, 2016, 5: 30281.
doi: 10.3402/jev.v5.30281 pmid: 27345058 |
[64] |
Linxweiler J, Junker K. Extracellular vesicles in urological malignancies: an update[J]. Nat Rev Urol, 2020, 17(1): 11-27.
doi: 10.1038/s41585-019-0261-8 pmid: 31827264 |
[65] |
Liangsupree T, Multia E, Riekkola ML. Modern isolation and separation techniques for extracellular vesicles[J]. J Chromatogr A, 2021, 1636: 461773.
doi: 10.1016/j.chroma.2020.461773 URL |
[66] |
刘娜, 杜盼盼, 杨扬, 等. 基于微流控技术的外泌体分离方法的研究进展[J]. 生物技术通报, 2019, 35(1): 207-213.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0571 |
Liu N, Du PP, Yang Y, et al. Research progress on exosomes isolation methods based on microfluidics technology[J]. Biotechnol Bull, 2019, 35(1): 207-213.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0571 |
|
[67] |
Witwer KW, Buzás EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research[J]. J Extracell Vesicles, 2013, 2(1):20360.
doi: 10.3402/jev.v2i0.20360 URL |
[68] |
Sun JW, Chen Z, Tian KW, et al. Magnetic bead-based adsorption strategy for exosome isolation[J]. Front Bioeng Biotechnol, 2022, 10: 942077.
doi: 10.3389/fbioe.2022.942077 URL |
[69] |
Zhao ZH, Yu SR, Li M, et al. Isolation of exosome-like nanoparticles and analysis of microRNAs derived from coconut water based on small RNA high-throughput sequencing[J]. J Agric Food Chem, 2018, 66(11): 2749-2757.
doi: 10.1021/acs.jafc.7b05614 URL |
[70] |
Ju SW, Mu JY, Dokland T, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis[J]. Mol Ther, 2013, 21(7): 1345-1357.
doi: 10.1038/mt.2013.64 pmid: 23752315 |
[71] |
Kalarikkal SP, Prasad D, Kasiappan R, et al. A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes[J]. Sci Rep, 2020, 10(1): 4456.
doi: 10.1038/s41598-020-61358-8 pmid: 32157137 |
[72] |
Gámez-Valero A, Monguió-Tortajada M, Carreras-Planella L, et al. Size-Exclusion Chromatography-based isolation minimally alters Extracellular Vesicles' characteristics compared to precipitating agents[J]. Sci Rep, 2016, 6: 33641.
doi: 10.1038/srep33641 pmid: 27640641 |
[73] |
Nordin JZ, Lee Y, Vader P, et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties[J]. Nanomedicine, 2015, 11(4): 879-883.
doi: 10.1016/j.nano.2015.01.003 pmid: 25659648 |
[74] |
He BY, Cai Q, Qiao LL, et al. RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles[J]. Nat Plants, 2021, 7(3): 342-352.
doi: 10.1038/s41477-021-00863-8 pmid: 33633358 |
[75] |
Bordanaba-Florit G, Royo F, Kruglik SG, et al. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles[J]. Nat Protoc, 2021, 16(7): 3163-3185.
doi: 10.1038/s41596-021-00551-z pmid: 34135505 |
[76] | 李叶, 黄华平, 张新春, 等. 浅析透射电子显微镜在生物学科中的应用[J]. 热带农业科学, 2019, 39(12): 58-67. |
Li Y, Huang HP, Zhang XC, et al. Current application of transmission electron microscope in biology[J]. Chin J Trop Agric, 2019, 39(12): 58-67. | |
[77] |
Jong AY, Wu CH, Li JB, et al. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells[J]. J Extracell Vesicles, 2017, 6(1): 1294368.
doi: 10.1080/20013078.2017.1294368 URL |
[78] |
An QL, van Bel AJ, Hückelhoven R. Do plant cells secrete exosomes derived from multivesicular bodies?[J]. Plant Signal Behav, 2007, 2(1): 4-7.
doi: 10.4161/psb.2.1.3596 pmid: 19704795 |
[79] |
Zeyen RJ, Bushnel WR. Papilla response of barley epidermal cells caused by Erysiphe graminis: rate and method of deposition determined by microcinematography and transmission electron microscopy[J]. Can J Bot, 1979, 57(8): 898-913.
doi: 10.1139/b79-111 URL |
[80] |
Sokolova V, Ludwig AK, Hornung S, et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy[J]. Colloids Surf B Biointerfaces, 2011, 87(1): 146-150.
doi: 10.1016/j.colsurfb.2011.05.013 URL |
[81] |
Sharma S, Rasool HI, Palanisamy V, et al. Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy[J]. ACS Nano, 2010, 4(4): 1921-1926.
doi: 10.1021/nn901824n pmid: 20218655 |
[82] |
Tian Y, Ma L, Gong MF, et al. Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry[J]. ACS Nano, 2018, 12(1): 671-680.
doi: 10.1021/acsnano.7b07782 pmid: 29300458 |
[83] |
Yuana Y, Koning RI, Kuil ME, et al. Cryo-electron microscopy of extracellular vesicles in fresh plasma[J]. J Extracell Vesicles, 2013, 2(1):21494.
doi: 10.3402/jev.v2i0.21494 URL |
[84] |
Pi J, Cai J. Cell topography and its quantitative imaging by AFM[J]. Methods Mol Biol, 2019, 1886: 99-113.
doi: 10.1007/978-1-4939-8894-5_6 pmid: 30374864 |
[85] |
Vorselen D, Piontek MC, Roos WH, et al. Mechanical characterization of liposomes and extracellular vesicles, a protocol[J]. Front Mol Biosci, 2020, 7: 139.
doi: 10.3389/fmolb.2020.00139 pmid: 32850949 |
[86] |
Sharma S, Gillespie BM, Palanisamy V, et al. Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes[J]. Langmuir, 2011, 27(23): 14394-14400.
doi: 10.1021/la2038763 pmid: 22017459 |
[87] |
Kruglik SG, Royo F, Guigner JM, et al. Raman tweezers microspectroscopy of circa 100 nm extracellular vesicles[J]. Nanoscale, 2019, 11(4): 1661-1679.
doi: 10.1039/c8nr04677h pmid: 30620023 |
[88] |
No JH, Nishu SD, Hong JK, et al. Raman-deuterium isotope probing and metagenomics reveal the drought tolerance of the soil microbiome and its promotion of plant growth[J]. mSystems, 2022, 7(1): e0124921.
doi: 10.1128/msystems.01249-21 URL |
[89] |
Enciso-Martinez A, van der Pol E, Hau CM, et al. Label-free identification and chemical characterisation of single extracellular vesicles and lipoproteins by synchronous Rayleigh and Raman scattering[J]. J Extracell Vesicles, 2020, 9(1): 1730134.
doi: 10.1080/20013078.2020.1730134 URL |
[90] |
Chen C, Zong SF, Wang ZY, et al. Visualization and intracellular dynamic tracking of exosomes and exosomal miRNAs using single molecule localization microscopy[J]. Nanoscale, 2018, 10(11): 5154-5162.
doi: 10.1039/c7nr08800k pmid: 29492481 |
[1] | 宋志忠, 徐维华, 肖慧琳, 唐美玲, 陈景辉, 管雪强, 刘万好. 酿酒葡萄铁调节转运蛋白基因VvIRT1的克隆、表达与功能[J]. 生物技术通报, 2023, 39(8): 234-240. |
[2] | 谢东, 汪流伟, 李宁健, 李泽霖, 徐子航, 张庆华. 一株多功能菌株的发掘、鉴定及解磷条件优化[J]. 生物技术通报, 2023, 39(7): 241-253. |
[3] | 吴昊, 刘紫微, 郑颖, 戴雅文, 时权. 单细胞水平解析人牙龈间充质干细胞异质性[J]. 生物技术通报, 2023, 39(7): 325-332. |
[4] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[5] | 马学虎, 马莉花, 苟妍, 马燕芬. 线粒体功能障碍引起的相关炎性疾病及靶向治疗[J]. 生物技术通报, 2023, 39(6): 119-125. |
[6] | 肖亮, 吴正丹, 陆柳英, 施平丽, 尚小红, 曹升, 曾文丹, 严华兵. 木薯重要性状基因的研究进展[J]. 生物技术通报, 2023, 39(6): 31-48. |
[7] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[8] | 熊淑琪. 胆汁酸生理功能及其与肠道微生物互作研究进展[J]. 生物技术通报, 2023, 39(4): 187-200. |
[9] | 胡明月, 杨宇, 郭仰东, 张喜春. 低温胁迫下番茄SlMYB96的功能分析[J]. 生物技术通报, 2023, 39(4): 236-245. |
[10] | 杨俊钊, 张新蕊, 赵国柱, 郑菲. 新型GH5家族多结构域纤维素酶的结构与功能研究[J]. 生物技术通报, 2023, 39(4): 71-80. |
[11] | 李天顺, 李宸葳, 王佳, 朱龙佼, 许文涛. 功能核酸筛选过程中次级文库的有效制备[J]. 生物技术通报, 2023, 39(3): 116-122. |
[12] | 刘铖霞, 孙宗艳, 罗云波, 朱鸿亮, 曲桂芹. bHLH转录因子的磷酸化调控植物生理功能的研究进展[J]. 生物技术通报, 2023, 39(3): 26-34. |
[13] | 陈楚雯, 李洁, 赵瑞鹏, 刘媛, 吴锦波, 李志雄. 藏鸡GPX3基因的克隆、组织表达谱研究及功能预测[J]. 生物技术通报, 2023, 39(3): 311-320. |
[14] | 张玉娟, 黎冬华, 宫慧慧, 崔新晓, 高春华, 张秀荣, 游均, 赵军胜. 芝麻NAC转录因子基因SiNAC77的克隆及耐盐功能分析[J]. 生物技术通报, 2023, 39(11): 308-317. |
[15] | 支添添, 周舟, 陈纪鹏, 韩成云. 甘蓝型油菜酪氨酸代谢关键基因FAH的克隆、功能鉴定和表达分析[J]. 生物技术通报, 2023, 39(10): 115-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||