生物技术通报 ›› 2023, Vol. 39 ›› Issue (7): 143-150.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1449
李文辰1(), 刘鑫1, 康越1, 李伟2, 齐泽铮1, 于璐1, 王芳1()
收稿日期:
2022-11-24
出版日期:
2023-07-26
发布日期:
2023-08-17
通讯作者:
王芳,女,博士,副教授,研究方向:植物抗病性;E-mail: wangfangnd@hotmail.com作者简介:
李文辰,男,硕士研究生,研究方向:植物抗病性;E-mail: liwenchen2021@163.com
基金资助:
LI Wen-chen1(), LIU Xin1, KANG Yue1, LI Wei2, QI Ze-zheng1, YU Lu1, WANG Fang1()
Received:
2022-11-24
Published:
2023-07-26
Online:
2023-08-17
摘要:
病毒诱导的基因沉默(virus-induced gene silencing,VIGS)技术已广泛用于植物基因功能研究,以烟草脆裂病毒 (tobacco rattle virus, TRV)为载体的沉默体系介导大豆基因沉默效率有待明确,采用无缝克隆技术构建TRV-VIGS沉默体系,探索不同接种方法对大豆靶基因在不同组织间的沉默效率,为大豆基因功能研究提供依据。以八氢番茄红素去饱和酶(phytoene desaturase, GmPDS)及泛素连接酶(GmATL3)基因为靶基因,将含有pTRV1和重组载体菌液采用注射、灌根(agroinoculation)、注射与灌根相结合3种方法分别接种大豆中黄13,接种28 d观察沉默表型现象,并使用RT-qPCR技术检测根部与叶部基因相对表达量,明确不同方法沉默效果。注射接种的大豆叶边缘及叶内出现黄化褪绿,灌根接种与注射加灌根接种的叶片表面出现褪绿斑点及褶皱褪绿表型。RT-qPCR结果表明,3种接种方法对沉默GmPDS效果接近100%;注射接种对GmATL3的沉默效率在叶部为80%-95%,根部为40%-60%;灌根与注射加灌根接种,根部沉默效率为70%-90%,叶部沉默效率为15%-50%。不同接种方法产生不同程度沉默表型,且对不同内源基因沉默效率不同。接种方法对不同组织沉默效率存在差异,注射方法对叶片沉默效率最高,注射加灌根结合的方法对根部沉默效率最高。
李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150.
LI Wen-chen, LIU Xin, KANG Yue, LI Wei, QI Ze-zheng, YU Lu, WANG Fang. Optimization and Application of Tobacco Rattle Virus-induced Gene Silencing System in Soybean[J]. Biotechnology Bulletin, 2023, 39(7): 143-150.
引物名称Primer name | 引物序列Primer sequence(5'-3') | 引物长度Primer length/bp |
---|---|---|
GmATL3-1-F | taaggttaccGAATTCTGGATCCCGCGGTG | 374 |
GmATL3-1-R | atgcccgggcCTCGAGAGGATGAGGATGAACCTTCC | |
GmATL3-2-F | taaggttaccGAATTCGGTGACTCTTCCGCG | 296 |
GmATL3-2-R | atgcccgggcCTCGAGTACCAACACCGGTAGGGAG | |
GmPDS-F | taaggttaccGAATTCTCTCCGCGTCCTCTAAAAC | 332 |
GmPDS-R | atgcccgggcCTCGAGTCCAGGCTTATTTGGCATAGC | |
qATL3-F | TGCCTTCATCTCTTCGCCAG | 196 |
qATL3-R | CCGCACATTCCAAACCATCC | |
qPDS-F | CCGCTGCAAGCTTGGCTTTA | 218 |
qPDS-R | CGACACGCAAGGGAGAGAAA | |
EF4-F | TGCCGCCAAGAAGAAGTGAT | 149 |
EF4-R | GCGGACACTTCAAAATATAACTGGT |
表1 引物序列
Table 1 Primer sequence
引物名称Primer name | 引物序列Primer sequence(5'-3') | 引物长度Primer length/bp |
---|---|---|
GmATL3-1-F | taaggttaccGAATTCTGGATCCCGCGGTG | 374 |
GmATL3-1-R | atgcccgggcCTCGAGAGGATGAGGATGAACCTTCC | |
GmATL3-2-F | taaggttaccGAATTCGGTGACTCTTCCGCG | 296 |
GmATL3-2-R | atgcccgggcCTCGAGTACCAACACCGGTAGGGAG | |
GmPDS-F | taaggttaccGAATTCTCTCCGCGTCCTCTAAAAC | 332 |
GmPDS-R | atgcccgggcCTCGAGTCCAGGCTTATTTGGCATAGC | |
qATL3-F | TGCCTTCATCTCTTCGCCAG | 196 |
qATL3-R | CCGCACATTCCAAACCATCC | |
qPDS-F | CCGCTGCAAGCTTGGCTTTA | 218 |
qPDS-R | CGACACGCAAGGGAGAGAAA | |
EF4-F | TGCCGCCAAGAAGAAGTGAT | 149 |
EF4-R | GCGGACACTTCAAAATATAACTGGT |
图1 GmATL3与GmPDS序列及沉默片段区域 蓝色代表基因序列全长,GmATL3全长1 347 bp,GmPDS全长2 196 bp;紫色代表GmATL3 CDS编码区全长783 bp,GmPDS CDS编码区全长1 710 bp;红色代表保守结构区域,GmATL3保守结构区域全长132 bp,GmPDS保守结构区域全长1 665 bp;黑色代表沉默片段选择区域,GmATL3-1位于492-833 bp,GmATL3-2位于265-528 bp,GmPDS位于695-880 bp
Fig. 1 GmATL3 and GmPDS gene sequences and silent fragment regions Blue indicates the full length of the gene sequences, 1 347 bp for GmATL3 gene and 2 196 bp for GmPDS gene; purple indicates the full length of the CDS coding region, 783 bp for GmATL3 coding region and 1 710 bp for GmPDS CDS coding region; red represents the conserved structural region, 402 bp for GmATL3 and 1 665 bp for GmPDS, respectively; black represents silent fragment regions, 492-833 bp for GmATL3-1, 265-528 bp for GmATL3-2 and 695-880 bp for GmPDS
图2 GmATL3-1、GmATL3-2、GmPDS PCR凝胶电泳检测 1:GmATL3-1;2:GmATL3-2;3:GmPDS;M:DL2000 DNA marker
Fig. 2 GmATL3-1, GmATL3-2 and GmPDS PCR electrophoresis detection
图4 3种接种方法GmATL3-1、GmATL3-2、GmPDS在根与叶中的相对表达量 A:注射接种;B:灌根接种;C:注射加灌根接种;D:1:叶部对照组;2:叶部试验组;3:根部对照组;4:根部试验组;M:DL2000 marker。**代表P ≤ 0.01,***代表P ≤ 0.001,ns代表差异不显著
Fig. 4 Relative expressions of GmATL3-1, GmATL3-2 and GmPDS in the roots and leaves by three inoculation methods A: Injection inoculation; B: root inoculation; C: injection plus root inoculation; D: 1: leaf control; 2: leaf test group; 3: root control; 4: root test group; M: DL2000 marker.** indicates P ≤ 0.01,*** indicates P ≤ 0.001 and ns indicates no signifraunt differenle
[1] |
Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants[J]. Science, 1999, 286(5441): 950-952.
doi: 10.1126/science.286.5441.950 pmid: 10542148 |
[2] |
Ratcliff F, Martin-Hernandez AM, Baulcombe DC, et al. Technical advance. Tobacco rattle virus as a vector for analysis of gene function by silencing[J]. The Plant Journal, 2001, 25(2): 237-245.
doi: 10.1046/j.0960-7412.2000.00942.x URL |
[3] | 王淑敏, 高雪彦, 刘东升, 等. 致病基因“猎手”: RNA干扰技术在分子生物学中的教学设计[J]. 生命的化学, 2022, 42(8): 1609-1616. |
Wang SM, Gao XY, Liu DS, et al. Pathogenic gene “hunters” - teaching design of RNA interference technology in molecular biology[J]. Chemistry of life, 2022, 42(8): 1609-1616. | |
[4] |
Becker A, Lange M. VIGS--genomics goes functional[J]. Trends in Plant Science, 2010, 15(1): 1-4.
doi: 10.1016/j.tplants.2009.09.002 pmid: 19819180 |
[5] |
Shi GY, Hao MY, Tian BM, et al. A methodological advance of tobacco rattle virus-induced gene silencing for functional genomics in plants[J]. Frontiers in Plant Science, 2021, 12: 671091.
doi: 10.3389/fpls.2021.671091 URL |
[6] |
Constantin GD, Krath BN, MacFarlane SA, et al. Virus-induced gene silencing as a tool for functional genomics in a legume species[J]. The Plant Journal. 2004, 40(4): 622-631.
doi: 10.1111/tpj.2004.40.issue-4 URL |
[7] |
Kim KH, Lim S, Kang YJ, et al. Optimization of a virus-induced gene silencing system with Soybean yellow common mosaic virus for gene function studies in soybeans[J]. The Plant Pathology Journal, 2016, 32(2): 112-122.
doi: 10.5423/PPJ.OA.04.2015.0063 URL |
[8] |
Díaz-Camino C, Annamalai P, Sanchez F, et al. An effective virus-based gene silencing method for functional genomics studies in common bean[J]. Plant Methods, 2011, 7: 16.
doi: 10.1186/1746-4811-7-16 pmid: 21668993 |
[9] |
Yamagishi N, Yoshikawa N. Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with apple latent spherical virus vectors[J]. Plant Molecular Biology, 2009, 71(1): 15-24.
doi: 10.1007/s11103-009-9505-y URL |
[10] |
Nagamatsu A, Masuta C, Senda M, et al. Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing[J]. Plant Biotechnology Journal, 2007, 5(6): 778-790.
doi: 10.1111/j.1467-7652.2007.00288.x pmid: 17764520 |
[11] | Singh AK, Ghosh D, Chakraborty S. Optimization of tobacco rattle virus(TRV)-based virus-induced gene silencing(VIGS)in tomato[J]. Methods in Molecular Biology(Clifton, N J), 2022, 2408: 133-145. |
[12] | Baulcombe DC. Viruses and gene silencing in plants[J]. Archives of virology supplementum, 1999, 15: 189-201. |
[13] |
Valentine T, Shaw J, Blok VC, et al. Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector[J]. Plant Physiology, 2004, 136(4): 3999-4009.
doi: 10.1104/pp.104.051466 pmid: 15591447 |
[14] |
Wang YF, Huang N, Ye N, et al. An efficient virus-induced gene silencing system for functional genomics research in walnut(Jug-lans regia L.) fruits[J]. Frontiers in Plant Science, 2021, 12: 661633.
doi: 10.3389/fpls.2021.661633 URL |
[15] | Cai CP, Wang XY, Zhang BH, et al. Tobacco rattle virus-induced gene silencing in cotton[M]// Methods in Molecular Biology. New York: Springer New York Press, 2018: 105-119. |
[16] |
Garg A, Sharma S, Srivastava P, et al. Application of virus-induced gene silencing in Andrographis paniculata, an economically important medicinal plant[J]. Protoplasma, 2021, 258(5): 1155-1162.
doi: 10.1007/s00709-021-01631-3 |
[17] |
Zhou J, Hunter DA, Lewis DH, et al. Insights into carotenoid accumulation using VIGS to block different steps of carotenoid biosynthesis in petals of California poppy[J]. Plant Cell Reports, 2018, 37(9): 1311-1323.
doi: 10.1007/s00299-018-2314-5 pmid: 29922849 |
[18] |
Liao JJ, Xie L, Shi HW, et al. Development of an efficient transient expression system for Siraitia grosvenorii fruit and functional characterization of two NADPH-cytochrome P450 reductases[J]. Phytochemistry, 2021, 189: 112824.
doi: 10.1016/j.phytochem.2021.112824 URL |
[19] | Zhang J, Yu DS, Zhang Y, et al. Vacuum and Co-cultivation agroinfiltration of(germinated)seeds results in tobacco rattle virus(TRV)mediated whole-plant virus-induced gene silencing(VIGS)in wheat and maize[J]. Frontiers in Plant Science, 2017, 8: 389-393. |
[20] |
刘晓彬, 刘娜, 李福宽, 等. TRV介导的大豆基因瞬时沉默体系的建立[J]. 中国农业科学, 2015, 48(12): 2479-2486.
doi: 10.3864/j.issn.0578-1752.2015.12.021 |
Liu XB, Liu N, Li FK, et al. Establishment of a TRV-mediated transient gene-silencing system in soybean[J]. Scientia Agricultura Sinica, 2015, 48(12): 2479-2486. | |
[21] |
Tavares-Esashika ML, Campos RNS, Blawid R, et al. Characterization of an infectious clone of pepper ringspot virus and its use as a viral vector[J]. Archives of Virology, 2020, 165(2): 367-375.
doi: 10.1007/s00705-019-04505-5 pmid: 31845151 |
[22] | Cheng CX, Gao JP, Ma N. Investigation of petal senescence by TRV-mediated virus-induced gene silencing in rose[J]. Methods in Molecular Biology(Clifton, N J), 2018, 1744: 49-63. |
[23] | Meng LH, Wang RH, Zhu BZ, et al. Efficient virus-induced gene silencing in Solanum rostratum[J]. PLoS One, 2016, 11(6): e0156228. |
[24] |
Zhang JX, Wang FR, Zhang CY, et al. A novel VIGS method by agroinoculation of cotton seeds and application for elucidating functions of GhBI-1 in salt-stress response[J]. Plant Cell Reports, 2018, 37(8): 1091-1100.
doi: 10.1007/s00299-018-2294-5 |
[25] | 王芳. 小粒黑豆抗胞囊线虫SSH-cDNA文库构建及重要基因表达分析[D]. 沈阳: 沈阳农业大学, 2012. |
Wang F. Xiaolidou SSH-cDNA library construction and expression analysis of important genes under Heterodera glycines infection[D]. Shenyang: Shenyang Agricultural University, 2012. | |
[26] | 孙天杰, 麻楠, 孙立永, 等. 一种基于TRV-VIGS的高通量大豆基因功能验证方法[J]. 农业生物技术学报, 2020, 28(11): 2080-2090. |
Sun TJ, Ma N, Sun LY, et al. A TRV-VIGS-based approach for high throughput gene function veri-fication in soybean(Glycine max)[J]. Journal of Agricultural Biotechnology, 2020, 28(11): 2080-2090. | |
[27] | Ma SH, Niu HW, Liu CJ, et al. Expression stabilities of candidate reference genes for RT-qPCR under different stress conditions in soybean[J]. PLos One, 2013, 8(10): e75271. |
[28] |
Ryu CM, Anand A, Kang L, et al. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species[J]. The Plant Journal, 2004, 40(2): 322-331.
doi: 10.1111/tpj.2004.40.issue-2 URL |
[29] |
Senthil-Kumar M, Mysore KS. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato[J]. Plant Biotechnology Journal, 2011, 9(7): 797-806.
doi: 10.1111/j.1467-7652.2011.00589.x pmid: 21265998 |
[30] |
Schachtsiek J, Hussain T, Azzouhri K, et al. Virus-induced gene silencing(VIGS)in Cannabis sativa L.[J]. Plant Methods, 2019, 15: 157.
doi: 10.1186/s13007-019-0542-5 pmid: 31889981 |
[31] | Velásquez AC, Chakravarthy S, Martin GB. Virus-induced gene silencing(VIGS)in Nicotiana benthamiana and tomato[J]. Jove-Journal of Visualized Experiments: JoVE, 2009(28): 1292. |
[32] |
Chen JC, Jiang CZ, Gookin T, et al. Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence[J]. Plant Molecular Biology, 2004, 55(4): 521-530.
doi: 10.1007/s11103-004-0590-7 URL |
[33] |
Zhou BJ, Zeng LR. Elucidating the role of highly homologous Nicotiana benthamiana ubiquitin E2 gene family members in plant immunity through an improved virus-induced gene silencing approach[J]. Plant Methods, 2017, 13: 59.
doi: 10.1186/s13007-017-0210-6 |
[34] | 张景霞, 王芙蓉, 高阳, 等. VIGS技术及其在棉花功能基因组研究中的应用进展[J]. 棉花学报, 2015, 27(5): 469-473. |
Zhang JX, Wang FR, Gao Y. Application of VIGS in studies of gene function in cotton[J]. Cotton Science, 2015, 27(5): 469-473. |
[1] | 刘珍银, 段郅臻, 彭婷, 王童欣, 王健. 基于三角梅的病毒诱导基因沉默体系的建立与优化[J]. 生物技术通报, 2023, 39(7): 123-130. |
[2] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[3] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[4] | 侯筱媛, 车郑郑, 李姮静, 杜崇玉, 胥倩, 王群青. 大豆膜系统cDNA文库的构建及大豆疫霉效应子PsAvr3a互作蛋白的筛选[J]. 生物技术通报, 2023, 39(4): 268-276. |
[5] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[6] | 陈奕博, 杨万明, 岳爱琴, 王利祥, 杜维俊, 王敏. 基于SLAF标记的大豆遗传图谱构建及苗期耐盐性QTL定位[J]. 生物技术通报, 2023, 39(2): 70-79. |
[7] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[8] | 白苗, 田雯青, 武帅, 王敏, 王利祥, 岳爱琴, 牛景萍, 张永坡, 高春艳, 张武霞, 郭数进, 杜维俊, 赵晋忠. 激素和逆境胁迫对大豆维生素E和γ-TMT表达的影响[J]. 生物技术通报, 2023, 39(10): 148-162. |
[9] | 于惠林, 吴孔明. 中国转基因大豆的产业化策略[J]. 生物技术通报, 2023, 39(1): 1-15. |
[10] | 李秀青, 胡子曜, 雷建峰, 代培红, 刘超, 邓嘉辉, 刘敏, 孙玲, 刘晓东, 李月. 棉花黄萎病抗性相关基因GhTIFY9的克隆与功能分析[J]. 生物技术通报, 2022, 38(8): 127-134. |
[11] | 郭宾会, 宋丽. 大豆孢囊线虫侵染对乙烯合成及信号传导基因表达调控的研究[J]. 生物技术通报, 2022, 38(8): 150-158. |
[12] | 石广成, 杨万明, 杜维俊, 王敏. 大豆耐盐种质的筛选及其耐盐生理特性分析[J]. 生物技术通报, 2022, 38(4): 174-183. |
[13] | 付偲僮, 司未佳, 刘颖, 程堂仁, 王佳, 张启翔, 潘会堂. TRV介导的小报春基因沉默技术体系的建立[J]. 生物技术通报, 2022, 38(4): 295-302. |
[14] | 郑向, 段左平, 张杰, 潘素君, 戴良英, 刘世名, 李魏. 大豆疫霉菌效应子研究进展[J]. 生物技术通报, 2022, 38(11): 10-20. |
[15] | 陈倩, 张露源, 陈伯昌, 吴海燕. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||