生物技术通报 ›› 2023, Vol. 39 ›› Issue (1): 1-15.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0667
• 转基因作物专题 • 下一篇
收稿日期:
2022-05-30
出版日期:
2023-01-26
发布日期:
2023-02-02
作者简介:
于惠林,女,博士,副研究员,研究方向:转基因作物环境安全评价;E-mail: 基金资助:
Received:
2022-05-30
Published:
2023-01-26
Online:
2023-02-02
摘要:
大豆是事关人民生活和经济社会发展的重要农产品之一,提高大豆生产水平和增加自给能力,是中国农业生产必须解决的重大问题。由于中国耕地资源不足的限制,科技创新是提升大豆生产能力的唯一出路。转基因育种是推动大豆生产发展的颠覆性技术,对美国、巴西和阿根廷等世界主产国大豆产业的发展发挥了重要作用。经过20多年的科技创新,中国转基因耐除草剂和抗虫育种技术已经成熟,这些产品的产业化种植可显著降低大豆生产成本和提升单产水平。基于中国转基因大豆技术发展进度和大豆生产的国情特点,我们提出了采用如下策略科学有序推进产业化工作。一是,在产品应用时间上,按照单一耐草甘膦除草剂、多个基因耐草甘膦和草铵膦等多种除草剂,以及耐除草剂与抗虫等复合性状等产品,依次推进相关种子的产业化;二是,在产品区域布局上,按照靶标杂草和害虫的地理分布特点顶层设计各种耐除草剂和抗虫大豆产品的种植区域;三是,在生物安全管理上,研发应用抗性杂草和害虫种群监测与治理技术,延长转基因产品的使用寿命。同时,还要加强野生大豆资源的保护工作,降低转基因大豆基因漂移对野生大豆生物多样性的影响。
于惠林, 吴孔明. 中国转基因大豆的产业化策略[J]. 生物技术通报, 2023, 39(1): 1-15.
YU Hui-lin, WU Kong-ming. Commercialization Strategy of Transgenic Soybean in China[J]. Biotechnology Bulletin, 2023, 39(1): 1-15.
No. | 目标性状 Target trait | 研发机构 Developer | 转化事件 Events | 商品名称 Trade name | 转入基因 Gene introduced | 商业化种植批准(年份) Approved for commercial planting(Year) |
---|---|---|---|---|---|---|
1 | 耐草甘膦Glyphosate tolerance | 孟山都Monsanto | GTS 40-3-2(40-3-2) | Roundup ReadyTM soybean | cp4 epsps | 美国USA(1994),加拿大Canada(1995),墨西哥Mexio(1996),乌拉圭Uruguay(1996),阿根廷Argentina(1996),巴西Brazil(1998),南非South Africa(2001),哥斯达黎加Costa Rica(2001),巴拉圭Paraguay(2004),玻利维亚Bolivia(2005),日本Japan(2005),智利Chile(2007) |
2 | 耐草甘膦Glyphosate tolerance | 孟山都Monsanto | MON89788 | Genuity? Roundup Ready 2 YieldTM | cp4 epsps | 美国USA(2007),加拿大Canada(2007),乌拉圭Uruguay(2007),哥斯达黎加Costa Rica(2008),日本Japan(2008) |
3 | 耐草铵膦Glufosinatet olerance | 拜耳作物科学Bayer CropScience | A2704-21 | Liberty Link? soybean | Pat | 美国USA(1996) |
4 | 耐草铵膦Glufosinate tolerance | 拜耳作物科学Bayer CropScience | A5547-35 | Liberty Link? soybean | pat | 美国USA(1996) |
5 | 耐草铵膦Glufosinate tolerance | 拜耳作物科学Bayer CropScience | W62 | Liberty LinkTM soybean | bar | 美国USA(1996) |
6 | 耐草铵膦Glufosinate tolerance | 拜耳作物科学Bayer CropScience | W98 | Liberty LinkTM soybean | bar | 美国USA(1996) |
7 | 耐草铵膦Glufosinatet olerance | 拜耳作物科学Bayer CropScience | A5547-127 | Liberty Link? soybean | pats | 美国USA(1998),加拿大Canada(1999),日本Japan(2006),巴西Brazil(2010),阿根廷Argentina(2011),乌拉圭Uruguay(2012) |
8 | 耐草铵膦Glufosinate tolerance | 巴斯夫BASF | A2704-12 | Liberty Link? soybean | pat | 美国USA(1996),加拿大Canada(1999),日本Japan(2006),巴西Brazil(2010),阿根廷Argentina(2011),乌拉圭Uruguay(2012) |
9 | 耐咪唑啉酮类除草剂 Imidazolinone herbicide tolerance | 巴斯夫BASF | CV127 | Cultivance | csr1-2 | 巴西Brazil(2009),阿根廷Argentina(2013),加拿大Canada(2012),日本Japan(2013), 巴拉圭Paraguay(2014),美国USA(2014) |
10 | 耐草铵膦和非生物因子抗性Glufosinate tolerance and antibiotic resistance | 拜耳作物科学Bayer CropScience | GU262 | Liberty LinkTM soybean | Pat,bla | 美国USA(1998) |
11 | 耐磺酰脲类除草剂和草甘膦Sulfonylurea herbicide and glyphosate tolerance | 杜邦DuPont | DP356043 | Optimum GATTM | gm-hra,gat4601 | 美国USA(2008),加拿大Canada(2009),日本Japan(2009) |
12 | 耐麦草畏和草甘膦 Dicamba and glyphosate tolerance | 孟山都Monsanto | MON87708 | Genuity? Roundup ReadyTM 2 XtendTM | dmo,cp4 epsps | 加拿大Canada(2012),日本Japan(2013),美国USA(2015),巴西Brazil(2016) |
13 | 耐草甘膦和麦草畏 Glyphosate and dicamba tolerance | 孟山都Monsanto | MON87708× MON89788 | dmo,cp4 epsp | 哥伦比亚Colombia(2012),乌拉圭Uruguay(2012),日本Japan(2014),巴西Brazil(2017) | |
14 | 耐2,4-D和草铵膦 2,4-D and glufosinate tolerance | 陶氏益农DOW Agroscience | DAS68416-4 | aad-12,pat | 加拿大Canada(2012),日本Japan(2014),美国USA(2014),巴西Brazil(2015) | |
15 | 耐草甘膦和异噁唑草酮 Glyphosate and isoxaflutole tolerance | 巴斯夫BASF | FG72 | 2mepsps,hppdPF W336 | 加拿大Canada(2012),阿根廷Argentina(2018),巴西Brazil(2015),日本Japan(2016),美国USA(2013) | |
16 | 耐草甘膦和增产 Glyphosate tolerance and enhanced photosynthesis/Yield | 孟山都Monsanto | MON87712 | cp4 epsps,bbx32 | 美国USA(2013) | |
17 | 耐2,4-D、草甘膦和草铵膦 2,4-D,glyphosate andglufosinate tolerance | 陶氏益农Dow AgroScience | DAS44406-6 | aad-12,2mepsps,pat | 加拿大Canada(2013),美国USA(2014),阿根廷Argentina(2015),巴西Brazil (2015),日本Japan(2015) | |
18 | 耐2,4-D、草甘膦和草铵膦 2,4-D,glyphosate and glufosinate tolerance | 陶氏益农Dow AgroScience | DAS68416-4× MON89788 | aad-12,cp4 epsps,pat | 加拿大Canada(2013),日本Japan(2014) | |
19 | 耐草铵膦和硝磺草酮Glufosinate and mesotrione tolerance | 巴斯夫BASF | SYHT0H2 | Herbicide-tolerant Soybean line | pat,avhppd-03 | 加拿大Canada(2014),美国USA(2014),日本Japan(2016),阿根廷Argentina(2017) |
20 | 耐草甘膦、异噁唑草酮和草铵膦Glyphosate tolerance,isoxaflutole tolerance and glufosinate tolerance | 拜耳作物科学Bayer CropScience | Liberty Link? GT27TM | FG72 x A5547-127 | 2mepsps,hppdPF W336,pat | 巴西Brazil(2015),日本Japan(2016),阿根廷Argentina(2018) |
21 | 耐草铵膦、麦草畏和草甘膦Glufosinate,dicamba and glyphosate tolerance | 孟山都Monsanto | MON87708× MON89788 ×A5547-127 | pat,dmo,cp4 epsps | 日本Japan(2017) | |
22 | 耐草甘膦和抗旱 Glyphosate tolerance and drought stress tolerance | 罗萨里奥农业生物技术研究所INDEAR | HB4×GTS 40-3-2 | cp4 epsps,hahb-4 | 阿根廷Argentina(2018),巴西Brazil(2019) | |
23 | 耐草甘膦和草铵膦 Glyphosate and glufosinate tolerance | 罗萨里奥农业生物技术研究所INDEAR | DBN9004 | cp4 epsps,pat | 阿根廷Argentina(2019),中国China(2020) |
表1 全球转基因耐除草剂大豆转化事件及商业化概况
Table 1 Transgenic herbicide-tolerant soybean events and their commercial situation in the world
No. | 目标性状 Target trait | 研发机构 Developer | 转化事件 Events | 商品名称 Trade name | 转入基因 Gene introduced | 商业化种植批准(年份) Approved for commercial planting(Year) |
---|---|---|---|---|---|---|
1 | 耐草甘膦Glyphosate tolerance | 孟山都Monsanto | GTS 40-3-2(40-3-2) | Roundup ReadyTM soybean | cp4 epsps | 美国USA(1994),加拿大Canada(1995),墨西哥Mexio(1996),乌拉圭Uruguay(1996),阿根廷Argentina(1996),巴西Brazil(1998),南非South Africa(2001),哥斯达黎加Costa Rica(2001),巴拉圭Paraguay(2004),玻利维亚Bolivia(2005),日本Japan(2005),智利Chile(2007) |
2 | 耐草甘膦Glyphosate tolerance | 孟山都Monsanto | MON89788 | Genuity? Roundup Ready 2 YieldTM | cp4 epsps | 美国USA(2007),加拿大Canada(2007),乌拉圭Uruguay(2007),哥斯达黎加Costa Rica(2008),日本Japan(2008) |
3 | 耐草铵膦Glufosinatet olerance | 拜耳作物科学Bayer CropScience | A2704-21 | Liberty Link? soybean | Pat | 美国USA(1996) |
4 | 耐草铵膦Glufosinate tolerance | 拜耳作物科学Bayer CropScience | A5547-35 | Liberty Link? soybean | pat | 美国USA(1996) |
5 | 耐草铵膦Glufosinate tolerance | 拜耳作物科学Bayer CropScience | W62 | Liberty LinkTM soybean | bar | 美国USA(1996) |
6 | 耐草铵膦Glufosinate tolerance | 拜耳作物科学Bayer CropScience | W98 | Liberty LinkTM soybean | bar | 美国USA(1996) |
7 | 耐草铵膦Glufosinatet olerance | 拜耳作物科学Bayer CropScience | A5547-127 | Liberty Link? soybean | pats | 美国USA(1998),加拿大Canada(1999),日本Japan(2006),巴西Brazil(2010),阿根廷Argentina(2011),乌拉圭Uruguay(2012) |
8 | 耐草铵膦Glufosinate tolerance | 巴斯夫BASF | A2704-12 | Liberty Link? soybean | pat | 美国USA(1996),加拿大Canada(1999),日本Japan(2006),巴西Brazil(2010),阿根廷Argentina(2011),乌拉圭Uruguay(2012) |
9 | 耐咪唑啉酮类除草剂 Imidazolinone herbicide tolerance | 巴斯夫BASF | CV127 | Cultivance | csr1-2 | 巴西Brazil(2009),阿根廷Argentina(2013),加拿大Canada(2012),日本Japan(2013), 巴拉圭Paraguay(2014),美国USA(2014) |
10 | 耐草铵膦和非生物因子抗性Glufosinate tolerance and antibiotic resistance | 拜耳作物科学Bayer CropScience | GU262 | Liberty LinkTM soybean | Pat,bla | 美国USA(1998) |
11 | 耐磺酰脲类除草剂和草甘膦Sulfonylurea herbicide and glyphosate tolerance | 杜邦DuPont | DP356043 | Optimum GATTM | gm-hra,gat4601 | 美国USA(2008),加拿大Canada(2009),日本Japan(2009) |
12 | 耐麦草畏和草甘膦 Dicamba and glyphosate tolerance | 孟山都Monsanto | MON87708 | Genuity? Roundup ReadyTM 2 XtendTM | dmo,cp4 epsps | 加拿大Canada(2012),日本Japan(2013),美国USA(2015),巴西Brazil(2016) |
13 | 耐草甘膦和麦草畏 Glyphosate and dicamba tolerance | 孟山都Monsanto | MON87708× MON89788 | dmo,cp4 epsp | 哥伦比亚Colombia(2012),乌拉圭Uruguay(2012),日本Japan(2014),巴西Brazil(2017) | |
14 | 耐2,4-D和草铵膦 2,4-D and glufosinate tolerance | 陶氏益农DOW Agroscience | DAS68416-4 | aad-12,pat | 加拿大Canada(2012),日本Japan(2014),美国USA(2014),巴西Brazil(2015) | |
15 | 耐草甘膦和异噁唑草酮 Glyphosate and isoxaflutole tolerance | 巴斯夫BASF | FG72 | 2mepsps,hppdPF W336 | 加拿大Canada(2012),阿根廷Argentina(2018),巴西Brazil(2015),日本Japan(2016),美国USA(2013) | |
16 | 耐草甘膦和增产 Glyphosate tolerance and enhanced photosynthesis/Yield | 孟山都Monsanto | MON87712 | cp4 epsps,bbx32 | 美国USA(2013) | |
17 | 耐2,4-D、草甘膦和草铵膦 2,4-D,glyphosate andglufosinate tolerance | 陶氏益农Dow AgroScience | DAS44406-6 | aad-12,2mepsps,pat | 加拿大Canada(2013),美国USA(2014),阿根廷Argentina(2015),巴西Brazil (2015),日本Japan(2015) | |
18 | 耐2,4-D、草甘膦和草铵膦 2,4-D,glyphosate and glufosinate tolerance | 陶氏益农Dow AgroScience | DAS68416-4× MON89788 | aad-12,cp4 epsps,pat | 加拿大Canada(2013),日本Japan(2014) | |
19 | 耐草铵膦和硝磺草酮Glufosinate and mesotrione tolerance | 巴斯夫BASF | SYHT0H2 | Herbicide-tolerant Soybean line | pat,avhppd-03 | 加拿大Canada(2014),美国USA(2014),日本Japan(2016),阿根廷Argentina(2017) |
20 | 耐草甘膦、异噁唑草酮和草铵膦Glyphosate tolerance,isoxaflutole tolerance and glufosinate tolerance | 拜耳作物科学Bayer CropScience | Liberty Link? GT27TM | FG72 x A5547-127 | 2mepsps,hppdPF W336,pat | 巴西Brazil(2015),日本Japan(2016),阿根廷Argentina(2018) |
21 | 耐草铵膦、麦草畏和草甘膦Glufosinate,dicamba and glyphosate tolerance | 孟山都Monsanto | MON87708× MON89788 ×A5547-127 | pat,dmo,cp4 epsps | 日本Japan(2017) | |
22 | 耐草甘膦和抗旱 Glyphosate tolerance and drought stress tolerance | 罗萨里奥农业生物技术研究所INDEAR | HB4×GTS 40-3-2 | cp4 epsps,hahb-4 | 阿根廷Argentina(2018),巴西Brazil(2019) | |
23 | 耐草甘膦和草铵膦 Glyphosate and glufosinate tolerance | 罗萨里奥农业生物技术研究所INDEAR | DBN9004 | cp4 epsps,pat | 阿根廷Argentina(2019),中国China(2020) |
No. | 目标性状Target trait | 研发机构 Developer | 转化事件 Events | 商品名称 Trade name | 转入基因 Gene introduced | 商业化种植批准(年份) Approved for commercial planting(Year) |
---|---|---|---|---|---|---|
1 | 鳞翅目害虫 Lepidopteran insect resistance | 孟山都 Monsanto | MON87701 | Cry1Ac | 加拿大Canada(2010),美国USA(2010),阿根廷Argentina(2016) | |
2 | 抗鳞翅目害虫和耐草甘膦 Lepidopteran insect resistance and glyphosate tolerance | 孟山都 Monsanto | MON87701× MON89788 | IntactaTM Roundup ReadyTM 2 Pro | cry1Ac,cp4 epsps | 巴西Brazil(2010),阿根廷Argentina(2012),乌拉圭Uruguay(2012),巴拉圭Paraguay(2013) |
3 | 鳞翅目害虫Lepidopteran insect resistance | 孟山都 Monsanto | MON87751 | cry1A.105,cry2Ab2 | 加拿大Canada(2014),美国USA(2014),巴西Brazil (2017) | |
4 | 抗鳞翅目害虫和耐草铵膦 Lepidopteran insect resistance and glufosinate tolerance | 陶氏益农 Dow AgroScience | DAS81419 | cry1Ac,cry1F,pat | 美国USA(2014),加拿大Canada(2014),阿根廷Argentina(2016),巴西Brazil(2016) | |
5 | 耐2,4-D、草甘膦、草铵膦和抗鳞翅目害虫 2,4-D,glyphosate andglufosinate tolerance and lepidopteran insect resistance | 陶氏益农Dow AgroScience | DAS81419× DAS44406 | Conkesta Enlist E3TM Soybean | aad-12,2mepsps,Cry1Ac,cry1F,pat | 阿根廷Argentina(2016),巴西Brazil(2017) |
6 | 鳞翅目害虫、耐麦草畏和草甘膦 Lepidopteran insect resistance,dicamba and glyphosate tolerance | 孟山都Monsanto | MON87751× MON87701× MON87708× MON89788 | cry1A.105,cry2Ab2,cry1Ac,dmo,cp4 epsps | 巴西Brazil(2018) | |
7 | 抗虫和耐异噁唑草酮 Nematode resistance and isoxaflutole tolerance | 巴斯夫BASF | GMB151 | cry14Ab-1.b,hppdPf4Pa | 美国USA(2022) |
表2 全球转基因抗虫大豆转化事件及商业化概况
Table 2 Transgenic insect-resistant soybean events and their commercial situation in the world
No. | 目标性状Target trait | 研发机构 Developer | 转化事件 Events | 商品名称 Trade name | 转入基因 Gene introduced | 商业化种植批准(年份) Approved for commercial planting(Year) |
---|---|---|---|---|---|---|
1 | 鳞翅目害虫 Lepidopteran insect resistance | 孟山都 Monsanto | MON87701 | Cry1Ac | 加拿大Canada(2010),美国USA(2010),阿根廷Argentina(2016) | |
2 | 抗鳞翅目害虫和耐草甘膦 Lepidopteran insect resistance and glyphosate tolerance | 孟山都 Monsanto | MON87701× MON89788 | IntactaTM Roundup ReadyTM 2 Pro | cry1Ac,cp4 epsps | 巴西Brazil(2010),阿根廷Argentina(2012),乌拉圭Uruguay(2012),巴拉圭Paraguay(2013) |
3 | 鳞翅目害虫Lepidopteran insect resistance | 孟山都 Monsanto | MON87751 | cry1A.105,cry2Ab2 | 加拿大Canada(2014),美国USA(2014),巴西Brazil (2017) | |
4 | 抗鳞翅目害虫和耐草铵膦 Lepidopteran insect resistance and glufosinate tolerance | 陶氏益农 Dow AgroScience | DAS81419 | cry1Ac,cry1F,pat | 美国USA(2014),加拿大Canada(2014),阿根廷Argentina(2016),巴西Brazil(2016) | |
5 | 耐2,4-D、草甘膦、草铵膦和抗鳞翅目害虫 2,4-D,glyphosate andglufosinate tolerance and lepidopteran insect resistance | 陶氏益农Dow AgroScience | DAS81419× DAS44406 | Conkesta Enlist E3TM Soybean | aad-12,2mepsps,Cry1Ac,cry1F,pat | 阿根廷Argentina(2016),巴西Brazil(2017) |
6 | 鳞翅目害虫、耐麦草畏和草甘膦 Lepidopteran insect resistance,dicamba and glyphosate tolerance | 孟山都Monsanto | MON87751× MON87701× MON87708× MON89788 | cry1A.105,cry2Ab2,cry1Ac,dmo,cp4 epsps | 巴西Brazil(2018) | |
7 | 抗虫和耐异噁唑草酮 Nematode resistance and isoxaflutole tolerance | 巴斯夫BASF | GMB151 | cry14Ab-1.b,hppdPf4Pa | 美国USA(2022) |
No. | 目标性状 Target trait | 研发机构 Developer | 转化事件 Events | 商品名称 Trade name | 转入基因 Gene introduced | 商业化种植批准(年份) Approved for commercial planting(Year) |
---|---|---|---|---|---|---|
1 | 改良油/脂肪酸、抗生素抗性,视觉标记 Modified oil/fatty acid,antibiotic resistance,visual marker | 杜邦DuPont | 260-05(G94-1,G94-19,G168) | gm-fad2-1(silencing locus),bla,uidA | 美国USA(1997),加拿大Canada(2000) | |
2 | 耐草甘膦、磺酰脲类除草剂和改良油/脂肪酸 Glyphosate tolerance,sulfonylurea herbicide tolerance,modified oil/fatty acid | 杜邦DuPont | DP305423× GTS 40-3-2 | cp4 epsps,gm-hra,gm-fad2-1(partial sequence) | 加拿大Canada(2009),日本Japan(2012),阿根廷Argentina(2015) | |
3 | 耐磺酰脲除草剂和改良油/脂肪酸 Sulfonylurea herbicide tolerance and modified oil/fatty acid | 杜邦DuPont | DP305423 | TreusTM,PlenishTM | gm-hra,gm-fad2-1(partial sequence) | 加拿大Canada(2009),美国USA(2010), 日本Japan(2010) |
4 | 改良油/脂肪酸和耐草甘膦 Modified oil/fatty acid and glyphosate tolerance | 孟山都 Monsanto | MON87769 | Pj.D6D,NcFad3,cp4 epsps | 加拿大Canada(2011),美国USA(2012),日本Japan(2014) | |
5 | 改良油/脂肪酸和耐草甘膦 Modified oil/fatty acid and glyphosate tolerance | 孟山都 Monsanto | MON87705 | Vistive GoldTM | fatb1-A(sense and antisense segments),fad2-1A(sense and antisense),cp4 epsps | 美国USA(2011),加拿大Canada(2011), 日本Japan(2013) |
6 | 改良油/脂肪酸和耐草甘膦 Modified oil/fatty acid and glyphosate tolerance | 孟山都 Monsanto | MON87705× MON89788 | fatb1-A(sense and antisense segments),fad2-1A(sense and antisense),cp4 epsps | 日本Japan(2013) | |
7 | 改良油/脂肪酸和耐草甘膦 Modified oil/fatty acid and glyphosate tolerance | 孟山都 Monsanto | MON87769× MON89788 | Pj.D6D,NcFad3,cp4 epsps | 日本Japan(2015) | |
8 | 改良油/脂肪酸、耐草甘膦和麦草畏 Modified oil/fatty acid,glyphosate tolerance and dicamba tolerance | 孟山都 Monsanto | MON87705× MON87708× MON89788 | fatb1-A(sense and antisense segments),fad2-1A(sense and antisense),cp4 epsps,dmo | 加拿大Canada(2015),日本Japan(2017) | |
9 | 耐麦草畏、草甘膦和改良油/脂肪酸 Dicamba tolerance,glyphosate tolerance and modified oil/fatty acid | 杜邦DuPont | DP305423× MON87708× MON89788 | dmo,cp4 epsps,gm-fad2-1(partial sequence) | 日本Japan(2018) |
表3 全球转基因品质改良大豆转化事件及商业化概况
Table 3 Transgenic modified quality soybean events and their commercial situation in the world
No. | 目标性状 Target trait | 研发机构 Developer | 转化事件 Events | 商品名称 Trade name | 转入基因 Gene introduced | 商业化种植批准(年份) Approved for commercial planting(Year) |
---|---|---|---|---|---|---|
1 | 改良油/脂肪酸、抗生素抗性,视觉标记 Modified oil/fatty acid,antibiotic resistance,visual marker | 杜邦DuPont | 260-05(G94-1,G94-19,G168) | gm-fad2-1(silencing locus),bla,uidA | 美国USA(1997),加拿大Canada(2000) | |
2 | 耐草甘膦、磺酰脲类除草剂和改良油/脂肪酸 Glyphosate tolerance,sulfonylurea herbicide tolerance,modified oil/fatty acid | 杜邦DuPont | DP305423× GTS 40-3-2 | cp4 epsps,gm-hra,gm-fad2-1(partial sequence) | 加拿大Canada(2009),日本Japan(2012),阿根廷Argentina(2015) | |
3 | 耐磺酰脲除草剂和改良油/脂肪酸 Sulfonylurea herbicide tolerance and modified oil/fatty acid | 杜邦DuPont | DP305423 | TreusTM,PlenishTM | gm-hra,gm-fad2-1(partial sequence) | 加拿大Canada(2009),美国USA(2010), 日本Japan(2010) |
4 | 改良油/脂肪酸和耐草甘膦 Modified oil/fatty acid and glyphosate tolerance | 孟山都 Monsanto | MON87769 | Pj.D6D,NcFad3,cp4 epsps | 加拿大Canada(2011),美国USA(2012),日本Japan(2014) | |
5 | 改良油/脂肪酸和耐草甘膦 Modified oil/fatty acid and glyphosate tolerance | 孟山都 Monsanto | MON87705 | Vistive GoldTM | fatb1-A(sense and antisense segments),fad2-1A(sense and antisense),cp4 epsps | 美国USA(2011),加拿大Canada(2011), 日本Japan(2013) |
6 | 改良油/脂肪酸和耐草甘膦 Modified oil/fatty acid and glyphosate tolerance | 孟山都 Monsanto | MON87705× MON89788 | fatb1-A(sense and antisense segments),fad2-1A(sense and antisense),cp4 epsps | 日本Japan(2013) | |
7 | 改良油/脂肪酸和耐草甘膦 Modified oil/fatty acid and glyphosate tolerance | 孟山都 Monsanto | MON87769× MON89788 | Pj.D6D,NcFad3,cp4 epsps | 日本Japan(2015) | |
8 | 改良油/脂肪酸、耐草甘膦和麦草畏 Modified oil/fatty acid,glyphosate tolerance and dicamba tolerance | 孟山都 Monsanto | MON87705× MON87708× MON89788 | fatb1-A(sense and antisense segments),fad2-1A(sense and antisense),cp4 epsps,dmo | 加拿大Canada(2015),日本Japan(2017) | |
9 | 耐麦草畏、草甘膦和改良油/脂肪酸 Dicamba tolerance,glyphosate tolerance and modified oil/fatty acid | 杜邦DuPont | DP305423× MON87708× MON89788 | dmo,cp4 epsps,gm-fad2-1(partial sequence) | 日本Japan(2018) |
[1] | United States Department of Agriculture. World agricultural production[R]. Washington DC: United States Department of Agriculture, 2022. |
[2] | World Agricultural Outlook Board. World Agricultural Supply and Demand Estimates[R]. Washington DC: United States Department of Agriculture, 2022. |
[3] | International Service for the Acquisition of Agri-biotech Applications(ISAAA). GM Approval Database[DB]. https://www.isaaa.org/gmapprovaldatabase/, 2022. |
[4] | Picking Beans. A look at the many 2019 herbicide-tolerant soybean options[EB/OL]. https://www.dtnpf.com/agriculture/web/ag/crops/article/2018/10/02/look-many-2019-herbicide-tolerant, 2018-02-10/2022-05-30. |
[5] | Green JM, Castle LA. Transitioning from single to multiple herbicide-resistant crops[M]//Glyphosate Resistance in Crops and Weeds. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010:67-91. |
[6] | Clive James. 2008年全球生物技术/转基因作物商业化发展态势——第一个十三年(1996—2008)[J]. 中国生物工程杂志, 2009, 29(2): 1-10. |
James C. Global status of commercialized biotech/GM Crop:2008- the first thirteenth years, 1996-2009[J]. China Biotechnol, 2009, 29(2): 1-10. | |
[7] | Nandula VK. Herbicide resistance traits in maize and soybean:current status and future outlook[J]. Plants(Basel), 2019, 8(9): 337. |
[8] |
Bernardi O, Malvestiti GS, Dourado PM, et al. Assessment of the high-dose concept and level of control provided by MON 87701 × MON 89788 soybean against Anticarsia gemmatalis and Pseudoplusia includens(Lepidoptera:Noctuidae)in Brazil[J]. Pest Manag Sci, 2012, 68(7): 1083-1091.
doi: 10.1002/ps.3271 pmid: 22407725 |
[9] | Justiniano W, Fernandes MG, Viana CLTP, et al. Intacta RR2 PRO®(MON87701 x MON89788)for management of the main target and non-target insects in soybeans[J]. Global Journal of Biology, Agriculture& Health Sciences, 2014, 3:11-18. |
[10] | Leonardo Gottems. Intacta 2XTend soybean launched in Brazil:Interview with Natália Carvalho from Bayer[EB/OL]. https://news.agropages.com/News/NewsDetail---39432.htm, 2021-06-16/2022-05-30. |
[11] |
Bacalhau FB, Dourado PM, Horikoshi RJ, et al. Performance of genetically modified soybean expressing the Cry1A. 105, Cry2Ab2, and Cry1Ac proteins against key lepidopteran pests in Brazil[J]. J Econ Entomol, 2020, 113(6): 2883-2889.
doi: 10.1093/jee/toaa236 pmid: 33111954 |
[12] | 程浩, 金杭霞, 盖钧镒, 等. 转基因技术与大豆品质改良[J]. 遗传, 2011, 33(5): 431-436. |
Cheng H, Jin HX, Gai JY, et al. Transgenic technology and soybean quality improvement[J]. Hereditas, 2011, 33(5): 431-436. | |
[13] | 李香菊. 转基因大豆[M]. 北京: 中国农业科学技术出版社, 2021. |
Li XJ. Transgenic soybean[M]. Beijing: China Agricultural Science and Technology Press, 2021. | |
[14] | ISAAA. Global status of commercialized botech/GM crops in 2017:biotech crops adoption surges as economic benefits accumulate in 22 years[M]. ISAAA Brief No. 53. Ithaca, NY: ISAAA, 2017. |
[15] | ISAAA. Global status of commercialized botech/GM crops in 2019:biotech crops drive socioeconomic development and sustainable environment in the new frontier[M]. ISAAA Brief No. 55. Ithaca, NY:ISAAA, 2019. |
[16] |
Brookes G. Weed control changes and genetically modified herbicide tolerant crops in the USA 1996-2012[J]. GM Crops Food, 2014, 5(4): 321-332.
doi: 10.4161/21645698.2014.958930 pmid: 25523177 |
[17] |
Brookes G, Barfoot P. GM crop technology use 1996-2018:farm income and production impacts[J]. GM Crops Food, 2020, 11(4): 242-261.
doi: 10.1080/21645698.2020.1779574 pmid: 32706314 |
[18] | Brookes G, Barfoot P. GM crops:global socio-economic and environmental impacts 1996-2018[M]. Dorchester: PG Economics Ltd, UK, 2020. |
[19] | 曹永强, 王昌陵, 王文斌, 等. 国内外大豆产业、科技现状浅析与我国大豆产业发展思考[J]. 辽宁农业科学, 2019(6): 44-48. |
Cao YQ, Wang CL, Wang WB, et al. Analysis of domestic and foreign soybean industry and science and technology and thinking on the development of soybean industry in China[J]. Liaoning Agric Sci, 2019(6): 44-48. | |
[20] | 梁丹辉, 曲春红. 中国大豆产业发展的经济学分析[M]. 北京: 中国农业科学技术出版社, 2020. |
Liang DH, Qu CH. Economic analysis of soybean industry development in China[M]. Beijing: China Agricultural Science and Technology Press, 2020. | |
[21] | 李晓俐. 巴西大豆产业发展的启示[J]. 宁夏农林科技, 2014, 55(4): 44-45, 48. |
Li XL. Enlightenment on the Brazilian soybean industry development[J]. Ningxia J Agric For Sci Technol, 2014, 55(4): 44-45, 48. | |
[22] | 陈慧. 大豆发展现状及对策分析[J]. 南方农业, 2022, 16(2): 179-181. |
Chen H. Analysis of development status and countermeasures in soybean[J]. South China Agric, 2022, 16(2): 179-181. | |
[23] | 中华人民共和国农业农村部. 全国重点农产品市场信息平台[DB/OL]. http://ncpscxx.moa.gov.cn/product-web/#/sing?headingIndex=true&item=1, 2022-05-30. |
Ministry of Agriculture and Rural Affairs of the People's Republic of China. National key agricultural products market information platform[DB/OL]. http://ncpscxx.moa.gov.cn/product-web/#/sing?headingIndex=true&item=1, 2022-05-30. | |
[24] | 陈智勇, 张智, 张云慧. 草地螟的发生为害与监测预警技术研究进展[J]. 应用昆虫学报, 2021, 58(3): 552-564. |
Chen ZY, Zhang Z, Zhang YH. Progress in research on monitoring and forecasting the occurrence of the beet webworm, Loxostege sticticalis[J]. Chin J Appl Entomol, 2021, 58(3): 552-564. | |
[25] | 姜玉英, 张跃进, 杨宝胜, 等. 草地螟2008年越冬虫源分布特点和2009年发生趋势分析[J]. 中国植保导刊, 2009, 29(1): 39-41. |
Jiang YY, Zhang YJ, Yang BS, et al. Distribution characteristics of overwintering insect source of Loxostege sticticalis in 2008 and its occurrence trend in 2009[J]. China Plant Prot, 2009, 29(1): 39-41. | |
[26] | 黑龙江省人民政府办公厅. 黑龙江省人民政府办公厅关于印发2022年黑龙江省扩种大豆工作方案的通知(黑政办发[2022]2号)[EB/OL]. https://new.qq.com/omn/20220214/20220214A00WMO00.html, 2022-02-14. |
General Office of Heilongjiang Province People's Government. General Office of Heilongjiang Province People's Government issued on the notification of work program of expanding Heilongjiang province soybean planting in 2022(Hei zheng ban fa[2022]No. 2)[EB/OL]. https://new.qq.com/omn/20220214/20220214A00WMO00.html, 2022-02-14. | |
[27] | 杨隆华. 乙草胺、氟磺胺草醚对大豆根瘤固氮和碳代谢的影响[D]. 哈尔滨: 东北农业大学, 2010. |
Yang LH. Acetochlor and fomesafen effect on nitrogen fixation and carbon metabolism in soybean[D]. Harbin: Northeast Agricultural University, 2010. | |
[28] | 崔书芳. 黑龙江省大豆田反枝苋对氟磺胺草醚的抗药性研究[D]. 哈尔滨: 东北农业大学, 2016. |
Cui SF. Study on resistance of Amaranthus retroflexus L to fomesafen of soybean field in Heilongjiang Province[D]. Harbin: Northeast Agricultural University, 2016. | |
[29] | 滕春红, 王星茗, 崔书芳, 等. 黑龙江省大豆田反枝苋对氟磺胺草醚的抗药性机制研究[J]. 植物保护, 2019, 45(5): 197-201. |
Teng CH, Wang XM, Cui SF, et al. Resistance mechanisms of Amaranthus retroflexus to fomesafen in soybean fields in Heilongjiang Province[J]. Plant Prot, 2019, 45(5): 197-201. | |
[30] | 冯曦茹. 黑龙江省大豆田反枝苋对咪唑乙烟酸的抗药性机制研究[D]. 哈尔滨: 东北农业大学, 2020. |
Feng XR. Study on resistance mechanism of Amaranthus retroflexus l. to imazethapyr of soybean field in Heilongjiang Province[D]. Harbin: Northeast Agricultural University, 2020. | |
[31] |
Horikoshi RJ, Dourado PM, Berger GU, et al. Large-scale assessment of lepidopteran soybean pests and efficacy of Cry1Ac soybean in Brazil[J]. Sci Rep, 2021, 11(1): 15956.
doi: 10.1038/s41598-021-95483-9 pmid: 34354186 |
[32] | 单大鹏, 王晓云, 洪志鹏, 等. 转Cry1Ia基因抗虫大豆对鳞翅目靶标害虫的抗性分析[J]. 东北农业大学学报, 2021, 52(5): 1-9. |
Shan DP, Wang XY, Hong ZP, et al. Analysis of resistance of transgenic Cry1Ia insect-resistant soybean to lepidopteran target pests[J]. J Northeast Agric Univ, 2021, 52(5): 1-9. | |
[33] | Dourado PM, Bacalhau FB, Amado D, et al. High susceptibility to Cry1Ac and low resistance allele frequency reduce the risk of resistance of Helicoverpa armigers to bt soybean in Brazil[J]. PLoS One, 2016, 11(8): e0161388. |
[34] |
Yu HL, Li YH, Li XJ, et al. Expression of Cry1Ac in transgenic Bt soybean lines and their efficiency in controlling lepidopteran pests[J]. Pest Manag Sci, 2013, 69(12): 1326-1333.
doi: 10.1002/ps.3508 pmid: 23564718 |
[35] |
MacRae TC, Baur ME, Boethel DJ, et al. Laboratory and field evaluations of transgenic soybean exhibiting high-dose expression of a synthetic Bacillus thuringiensis cry1A gene for control of Lepidoptera[J]. J Econ Entomol, 2005, 98(2): 577-587.
doi: 10.1093/jee/98.2.577 pmid: 15889751 |
[36] |
Reddy KN. Glyphosate-resistant soybean as a weed management tool:opportunities and challenges[J]. Weed Biol Manag, 2001, 1(4): 193-202.
doi: 10.1046/j.1445-6664.2001.00032.x URL |
[37] | 于惠林, 贾芳, 全宗华, 等. 施用草甘膦对转基因抗除草剂大豆田杂草防除、大豆安全性及杂草发生的影响[J]. 中国农业科学, 2020, 53(6): 1166-1177. |
Yu HL, Jia F, Quan ZH, et al. Effects of glyphosate on weed control, soybean safety and weed occurrence in transgenic herbicide-resistant soybean[J]. Sci Agric Sin, 2020, 53(6): 1166-1177. | |
[38] | 张可鑫. 5种大豆田除草剂残留的垂直分布及对后茬作物生长的影响[D]. 大庆: 黑龙江八一农垦大学, 2020. |
Zhang KX. Vertical distribution of residues of five soybean herbicides and their effects on the growth of subsequent crops[D]. Daqing: Heilongjiang Bayi Agricultural University, 2020. | |
[39] | 陶波, 郭静, 白杰. 土壤中氟磺胺草醚残留对后茬玉米生长及其酶活性的影响[J]. 植物保护学报, 2020, 47(1): 215-216. |
Tao B, Guo J, Bai J. Effects of fomesafen residues in soil on the growth and enzyme activities of later crop maize[J]. J Plant Prot, 2020, 47(1): 215-216. | |
[40] | 王险峰, 关成宏, 辛明远. 我国长残效除草剂使用概况、问题及对策[J]. 农药, 2003, 42(11): 5-10. |
Wang XF, Guan CH, Xin MY. Long residual herbicides in China-current status, problems and solutions[J]. Pesticides, 2003, 42(11): 5-10. | |
[41] | 陈拓. 油菜施用草铵膦残留及对后茬作物水稻的影响研究[D]. 长沙: 湖南农业大学, 2018. |
Chen T. Study on application of glufosinate residues in rape and the effect on rice of later crops[D]. Changsha: Hunan Agricultural University, 2018. | |
[42] | Kanissery R, Gairhe B, Kadyampakeni D, et al. Glyphosate:its environmental persistence and impact on crop health and nutrition[J]. Plants(Basel), 2019, 8(11): 499. |
[43] |
Brookes G, Barfoot P. Environmental impacts of genetically modified(GM)crop use 1996-2013:impacts on pesticide use and carbon emissions[J]. GM Crops Food, 2015, 6(2): 103-133.
doi: 10.1080/21645698.2015.1025193 pmid: 25760405 |
[44] | 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望[J]. 中国生态农业学报, 2016, 24(4): 403-415. |
Li L. Intercropping enhances agroecosystem services and functioning:current knowledge and perspectives[J]. Chin J Eco Agric, 2016, 24(4): 403-415. | |
[45] | 杨文钰. 玉米-大豆带状复合种植技术[M]. 北京: 科学出版社, 2021. |
Yang WY. Planting technology of maize-soybean strip intercropping[M]. Beijing: Science Press, 2021. | |
[46] | 王田. 走大豆玉米兼容发展之路—大豆玉米带状复合种植模式观察[N]. 农民日报. 2022-01-23. |
Wang T. Taking the road of compatible development of soybean and corn -- observation of planting mode of soybean and corn strip intercropping[N]. Farmers’Daily. 2022-01-23. | |
[47] | United States Department of Agriculture. Commodity costs and returns[EB/OL]. https://www.ers.usda.gov/data-products/commodity-costs-and-returns, 2022-03-02. |
[48] | Buysse D. Organic data-national agricultural statistics service[J]. Crop Manag, 2013, 12(1): 1-2. |
[49] | Conrow J. New study:GMO crops reduce pesticide use, greenhouse gas emissions[EB/OL]. https://allianceforscience.cornell.edu/blog/2020/07/new-study-gmo-crops-reduce-pesticide-use-greenhouse-gas-emissions/, 2020-07-27. |
[50] | Ates MA, Bukowski M. Oil Crops Outlook:December 2021. USDA, Economic Research Service, December 13, 2021[R]. https://www.ers.usda.gov/publications/pub-details/?pubid=102820. |
[51] | 马玉龙. 浅议大豆后熟期对出油率的影响[J]. 农村实用科技信息, 2012(6): 18. |
Ma YL. The effect of soybean store maturation period on oil yield[J]. NongCun ShiYong KeJi XinXi, 2012(6): 18. | |
[52] | 于文静. 重科学严监管, 打好种业翻身仗——权威专家谈推进生物育种产业化应用[EB/OL]. 新华社, 2021-12-23. https://xhpfmapi.xinhuaxmt.com/vh512/share/10482302?channel=weixin. |
Yu WJ. Attach importance to science and strict supervision, and fight to create a turnaround in the seed industry—Authoritative experts talk about promoting the industrialization of biological breeding[EB/OL]. Xinhua News Agency, 2021-12-23. https://xhpfmapi.xinhuaxmt.com/vh512/share/10482302?channel=weixin. | |
[53] |
Guo BF, Hong HL, Sun LP, et al. Transcriptome analysis reveals differing response and tolerance mechanism of EPSPS and GAT genes among transgenic soybeans[J]. Mol Biol Rep, 2021, 48(11): 7351-7360.
doi: 10.1007/s11033-021-06742-x URL |
[54] |
Qin D, Liu XY, Miceli C, et al. Soybean plants expressing the Bacillus thuringiensis cry8-like gene show resistance to Holotrichia parallela[J]. BMC Biotechnol, 2019, 19(1): 66.
doi: 10.1186/s12896-019-0563-1 pmid: 31615488 |
[55] |
Xiao PY, Liu Y, Cao YP. Overexpression of G10-EPSPS in soybean provides high glyphosate tolerance[J]. J Integr Agric, 2019, 18(8): 1851-1858.
doi: 10.1016/S2095-3119(18)62124-0 URL |
[56] |
Guo BF, Guo Y, Hong HL, et al. Identification of genomic insertion and flanking sequence of G2-EPSPS and GAT transgenes in soybean using whole genome sequencing method[J]. Front Plant Sci, 2016, 7:1009.
doi: 10.3389/fpls.2016.01009 pmid: 27462336 |
[57] | 中华人民共和国农业农村部. 转基因权威关注[EB/OL]. http://www.moa.gov.cn/ztzl/zjyqwgz/spxx/. |
Ministry of Agriculture and Rural Affairs of the People's Republic of China. Transgenosis authority concerned[EB/OL]. http://www.moa.gov.cn/ztzl/zjyqwgz/spxx/. | |
[58] | 韩超, 于彩虹, 谢香庭, 等. 用于检测大豆植物DBN8007的核酸序列及其检测方法:CN111247255A[P]. 2020-06-05. |
Han C, Yu CH, Xie XT, et al. Nucleotide sequence for detecting soybean plant DBN8007 and detecting method thereof:CN111247255A[P]. 2020-06-05. | |
[59] | 韩超, 于彩虹, 谢香庭, 等. 用于检测大豆植物DBN8002的核酸序列及其检测方法:CN111406117A[P]. 2020-07-10. |
Han C, Yu CH, Xie XT, et al. Nucleotide sequence for detecting soybean plant DBN8002 and detecting method thereof:CN111406117A[P]. 2020-07-10. | |
[60] | 钱雪艳, 苏颖, 姚瑶, 等. 农杆菌介导抗虫基因Cry1Ac/Ab转化大豆的研究[J]. 吉林农业大学学报, 2017, 39(5): 527-533. |
Qian XY, Su Y, Yao Y, et al. Soybean transformation with insect-resistant Cry1Ac/ab mediated by Agrobacterium tumefaciens[J]. J Jilin Agric Univ, 2017, 39(5): 527-533. | |
[61] | 陈秀华, 柏锡, 潘欣, 等. 转cry 1Iem基因大豆的培育及抗虫性检测[J]. 大豆科学, 2009, 28(6): 959-963. |
Chen XH, Bai X, Pan X, et al. Cultivation of cry 1Iem gene transformed soybean and insect resistant assay[J]. Soybean Sci, 2009, 28(6): 959-963. | |
[62] | 贾芳. 玉米田主要阔叶杂草对草甘膦耐受水平及耐受机理研究[D]. 北京: 中国农业科学院, 2020. |
Jia F. Sensitivity of main broadleaf weeds to glyphosate in maize fields and the mechanism of tolerance to glyphosate[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. | |
[63] | 刘小龙. 铁苋菜(Acalypha australis L.)对草甘膦的耐受性机理研究[D]. 北京: 中国农业科学院, 2016. |
Liu XL. Study on the tolerant mechanism of Acalypha australis L. to glyphosate[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. | |
[64] | 刘延. 田旋花和打碗花对草甘膦的耐药性研究[D]. 北京: 中国农业科学院, 2008. |
Liu Y. Investigating glyphosate tolerance in field bindweed(Convolvulus arvensis L.)and ivy glorybind(Calystegia hederacea walL.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. | |
[65] | 张宏军. 问荆(Equisetum arvense)的生物学特性和化学防除[D]. 哈尔滨: 东北农业大学, 2000. |
Zhang HJ. Biology and chemical control of Equisetum arvense[D]. Harbin: Northeast Agricultural University, 2000. | |
[66] | 张宏军, 金岩, 杨卫东, 等. 草甘膦抗性杂草的田间监测[J]. 杂草科学, 2010, 28(1): 30-32. |
Zhang HJ, Jin Y, Yang WD, et al. Field testing of glyphosate-resistant weeds[J]. Weed Sci, 2010, 28(1): 30-32. | |
[67] | 杨彩宏, 田兴山, 冯莉, 等. 牛筋草对草甘膦的抗药性[J]. 中国农业科学, 2012, 45(10): 2093-2098. |
Yang CH, Tian XS, Feng L, et al. Resistance of Eleusine indica gaertn to glyphosate[J]. Sci Agric Sin, 2012, 45(10): 2093-2098. | |
[68] | 刘慧雄, 戴良英. 生物测定法测定棉田牛筋草对草甘膦的抗药性[J]. 现代农业科技, 2015(2): 133, 144. |
Liu HX, Dai LY. Determination of resistance of Eleusine indica to glyphosate with bioassay[J]. Mod Agric Sci Technol, 2015(2): 133, 144. | |
[69] | 胡奎. 湖北省柑橘园杂草发生特点、抗草甘膦监测及化防技术研究[D]. 荆州: 长江大学, 2015. |
Hu K. Study on the occurrence characteristic, glyphosate-resistance level and chemical control technology of weeds in the Citrus orchard in Hubei Province[D]. Jingzhou: Yangtze University, 2015. | |
[70] |
Byker HP, Soltani N, Robinson DE, et al. Control of glyphosate-resistant horseweed(Conyza canadensis)with dicamba applied preplant and postemergence in dicamba-resistant soybean[J]. Weed Technol, 2013, 27(3): 492-496.
doi: 10.1614/WT-D-13-00023.1 URL |
[71] |
Eubank TW, Poston DH, Nandula VK, et al. Glyphosate-resistant horseweed(Conyza canadensis)control using glyphosate-, paraquat-, and glufosinate-based herbicide programs[J]. Weed Technol, 2008, 22(1): 16-21.
doi: 10.1614/WT-07-038.1 URL |
[72] | Houston MM, Barber LT, Norsworthy JK, et al. Evaluation of preemergence herbicide programs for control of protoporphyrinogen oxidase-resistant Amaranthus palmeri in soybean[J]. Int J Agron, 2021, 2021:6652382. |
[73] |
Mausbach J, Irmak S, Sarangi D, et al. Control of acetolactate synthase inhibitor/glyphosate-resistant palmer amaranth(Amaranthus palmeri)in isoxaflutole/glufosinate/glyphosate-resistant soybean[J]. Weed Technol, 2021, 35(5): 779-785.
doi: 10.1017/wet.2021.49 URL |
[74] |
Shyam C, Chahal PS, Jhala AJ, et al. Management of glyphosate-resistant palmer amaranth(Amaranthus palmeri)in 2,4-D-,glufosinate-, and glyphosate-resistant soybean[J]. Weed Technol, 2021, 35(1): 136-143.
doi: 10.1017/wet.2020.91 URL |
[75] | Scruggs E, Flessner M, Holshouser D. Palmer amaranth(Amaranthus palmeri)control in soybeans[M]. Blacksburg: Virginia Tech. Virginia Cooperative Extension, 2020. |
[76] |
Braz GBP, Oliveira RS Jr, Zobiole LHS, et al. Sumatran fleabane(Conyza sumatrensis)control in no-tillage soybean with diclosulam plus halauxifen-methyl[J]. Weed Technol, 2017, 31(2): 184-192.
doi: 10.1017/wet.2016.28 URL |
[77] | Adegasa FS, Correia NM, da Silva AF, et al. Glyphosate-resistant(GR)soybean and corn in Brazil:past, present, and future[J]. Adv Weed Sci, 2022, 40(spe1): e0202200102. |
[78] |
Marques LH, Santos AC, Castro BA, et al. Field evaluation of soybean transgenic event DAS-81419-2 expressing Cry1F and Cry1Ac proteins for the control of secondary lepidopteran pests in Brazil[J]. Crop Prot, 2017, 96:109-115.
doi: 10.1016/j.cropro.2017.02.014 URL |
[79] | 李国平, 吴孔明. 中国转基因抗虫玉米的商业化策略[J]. 植物保护学报, 2022, 49(1): 17-32. |
Li GP, Wu KM. Commercial strategy of transgenic insect-resistant maize in China[J]. J Plant Prot, 2022, 49(1): 17-32. | |
[80] |
Li YH, Zhou GY, Ma JX, et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits[J]. Nat Biotechnol, 2014, 32(10): 1045-1052.
doi: 10.1038/nbt.2979 |
[81] | Li RF, Wang D, Li Z, et al. Research progress on the genetic diversity of wild soybean in China[J]. Agric Sci Technol, 2017, 18(12): 2326-2330, 2334. |
[82] |
Liu YC, Du HL, Li PC, et al. Pan-genome of wild and cultivated soybeans[J]. Cell, 2020, 182(1): 162-176. e13.
doi: S0092-8674(20)30618-8 pmid: 32553274 |
[83] |
Chen J, Li Q, Zhang PM, et al. Cloning and functional characterization of two GsSnRK1 gene promoters from wild soybean[J]. Plant Biotechnol Rep, 2021, 15(5): 627-639.
doi: 10.1007/s11816-021-00700-6 URL |
[84] |
Jiang BJ, Chen L, Yang CY, et al. The cloning and CRISPR/Cas9-mediated mutagenesis of a male sterility gene MS1 of soybean[J]. Plant Biotechnol J, 2021, 19(6): 1098-1100.
doi: 10.1111/pbi.13601 URL |
[85] | 徐豹. 中国野生大豆(G. soja)研究十年[J]. 吉林农业科学, 1989, 14(1): 5-13. |
Xu B. A decade of wild soybean(G. soja)research in China[J]. J Jilin Agric Sci, 1989, 14(1): 5-13. | |
[86] | 庄炳昌. 中国野生大豆研究二十年[J]. 吉林农业科学, 1999, 24(5): 3-10. |
Zhuang BC. Researches on wild soybean(Glycine soja)in China for twenty years[J]. Jilin Agric Sci, 1999, 24(5): 3-10. | |
[87] | 刘标, 薛堃, 刘来盘, 等. 转基因大豆向野生大豆基因漂移研究进展[J]. 生态与农村环境学报, 2020, 36(7): 833-841. |
Liu B, Xue K, Liu LP, et al. Progress on the gene flow from genetically modified soybeans to wild soybeans[J]. J Ecol Rural Environ, 2020, 36(7): 833-841. | |
[88] | 刘标, 薛堃, 刘来盘, 等. 转EPSPS+PAT基因大豆向非转基因大豆的基因漂移研究[J]. 生态与农村环境学报, 2020, 36(3): 367-373. |
Liu B, Xue K, Liu LP, et al. Research on the gene flow from transgenic EPSPS+PAT soybean S4003. 14 to non-transgenic soybeans[J]. J Ecol Rural Environ, 2020, 36(3): 367-373. | |
[89] | 李向华, 王克晶. 半野生大豆起源及野生大豆稀有性状来源的形态学证据[J]. 植物遗传资源学报, 2020, 21(6): 1357-1371. |
Li XH, Wang KJ. Morphological evidence of the origin of semi-wild soybean and the rare traits in wild soybean[J]. J Plant Genet Resour, 2020, 21(6): 1357-1371. | |
[90] | 陈新, 严继勇, 高兵. 野生大豆抗草甘膦基因漂移的初步研究[J]. 中国油料作物学报, 2004, 26(2): 89-91. |
Chen X, Yan JY, Gao B. Preliminary study on roundup ready soybean's round-up ready gene move to wild soybean[J]. Chin J Oil Crop Scieves, 2004, 26(2): 89-91. | |
[91] |
Kim HJ, Kim DY, Moon YS, et al. Gene flow from herbicide resistant transgenic soybean to conventional soybean and wild soybean[J]. Appl Biol Chem, 2019, 62:54.
doi: 10.1186/s13765-019-0461-1 URL |
[92] | 陈新, 王长永, 朱成松, 等. 转基因抗草甘膦大豆安全性评价及对环境影响的检测[J]. 江苏农业科学, 2003, 31(6): 36-40. |
Chen X, Wang CY, Zhu CS, et al. Safety evaluation and environmental impact detection of transgenic glyphosate-resistant soybean[J]. Jiangsu Agric Sci, 2003, 31(6): 36-40. | |
[93] |
Mizuguti A, Yoshimura Y, Matsuo K. Flowering phenologies and natural hybridization of genetically modified and wild soybeans under field conditions[J]. Weed Biol Manag, 2009, 9(1): 93-96.
doi: 10.1111/j.1445-6664.2008.00324.x URL |
[94] |
Mizuguti A, Ohigashi K, Yoshimura Y, et al. Hybridization between GM soybean(Glycine max(L.) Merr.)and wild soybean(Glycine soja Sieb. et Zucc.)under field conditions in Japan[J]. Environ Biosafety Res, 2010, 9(1): 13-23.
doi: 10.1051/ebr/2010004 pmid: 21122483 |
[95] |
Abud S, de Souza PIM, Vianna GR, et al. Gene flow from transgenic to nontransgenic soybean plants in the Cerrado region of Brazil[J]. Genet Mol Res, 2007, 6(2): 445-452.
pmid: 17952868 |
[96] |
Yook MJ, Park HR, Zhang CJ, et al. Environmental risk assessment of glufosinate-resistant soybean by pollen-mediated gene flow under field conditions in the region of the genetic origin[J]. Sci Total Environ, 2021, 762:143073.
doi: 10.1016/j.scitotenv.2020.143073 URL |
[97] | 王栋, 丁汉凤, 王效睦, 等. 山东省野生大豆种质资源保护利用现状分析[J]. 农学学报, 2016, 6(12): 23-29. |
Wang D, Ding HF, Wang XM, et al. Protection and utilization of wild soybean germplasm resources in Shandong Province[J]. J Agric, 2016, 6(12): 23-29.
doi: 10.3923/aj.2011.23.27 URL |
|
[98] | 韩天富, 周新安, 关荣霞, 等. 大豆种业的昨天、今天和明天[J]. 中国畜牧业, 2021(12): 29-34. |
Han TF, Zhou XN, Guan RX, et al. Past, now and future of soybean seed industry[J]. China Animal Ind, 2021(12): 29-34. | |
[99] | 王有福, 朱飞宇, 罗佳, 等. 野生大豆资源利用研究进展[J]. 现代农业科技, 2021(23): 30-32. |
Wang YF, Zhu FY, Luo J, et al. The research progress in utilization of wild soybean resources[J]. Mod Agric Sci Technol, 2021(23): 30-32. | |
[100] | 许智宏. 我国转基因生物产业化亟待突破[EB/OL]. 科学网, 2021-03-26. https://news.sciencenet.cn/htmlnews/2021/3/455088.shtm. |
Xu ZH. Urgent breakthrough in the industrialization of genetically modified organisms in China[EB/OL]. Science Net. cn, 2021-03-26. https://news.sciencenet.cn/htmlnews/2021/3/455088.shtm。 |
[1] | 解伟, 刘春明. 生物育种产业化面临的机遇与政策保障[J]. 生物技术通报, 2023, 39(1): 16-20. |
[2] | 李圣彦, 李香银, 李鹏程, 张明俊, 张杰, 郎志宏. 转基因玉米2HVB5的性状鉴定及遗传稳定性分析[J]. 生物技术通报, 2023, 39(1): 21-30. |
[3] | 李鹏程, 张明俊, 王银晓, 李香银, 李圣彦, 郎志宏. 转基因玉米HGK60在不同遗传背景下抗虫性鉴定及农艺性状分析[J]. 生物技术通报, 2023, 39(1): 40-47. |
[4] | 孙德权, 陆新华, 李伟明, 胡玉林, 段雅婕, 庞振才, 胡会刚. 介孔二氧化硅纳米粒在农业中的应用[J]. 生物技术通报, 2022, 38(5): 228-239. |
[5] | 赵洋, 孙慧明, 林浩澎, 罗娉婷, 朱雅婷, 陈琼华, 舒琥. 一株安全高效的好氧反硝化菌Pseudomonas stutzeri DZ11的生物安全性及脱氮性能研究[J]. 生物技术通报, 2022, 38(10): 226-234. |
[6] | 杨镇州, 刘刚, 梁文. 转基因大豆MON89788芯片式数字PCR定量方法的建立[J]. 生物技术通报, 2020, 36(5): 68-73. |
[7] | 兰青阔, 赵新, 沈晓玲, 魏静娜, 刘双, 陈锐, 檀建新, 王永. 基于代谢组学的转基因水稻生物安全评价方法研究[J]. 生物技术通报, 2020, 36(11): 222-229. |
[8] | 张卓, 刘茂炎, 王培, 黄文坤, 刘二明, 彭焕, 彭德良. 抗草甘膦转基因大豆AG5601对根际微生物群落功能多样性的影响[J]. 生物技术通报, 2019, 35(7): 17-24. |
[9] | 窦雯, 李尤, 逯欣宇, 钱雪梅, 沈丹宇. 转基因大豆RPA检测技术的建立及应用[J]. 生物技术通报, 2019, 35(5): 170-175. |
[10] | 姜敏,李魏,董铮,李利华,戴良英. 光敏色素对植物抗逆反应的调控研究进展[J]. 生物技术通报, 2017, 33(7): 15-21. |
[11] | 柳晓丹, 许文涛, 黄昆仑, 梅晓宏. 复合性状转基因植物安全性评价的研究进展[J]. 生物技术通报, 2016, 32(6): 1-6. |
[12] | 王文治,杨本鹏,蔡文伟,熊国如,冯翠莲,王俊刚,武媛丽,沈林波,张树珍. 抗除草剂bar基因与EPSPS基因在转基因甘蔗中的应用研究[J]. 生物技术通报, 2016, 32(3): 73-78. |
[13] | 卢宝荣. 适合度分析对转基因逃逸潜在环境风险评价的意义[J]. 生物技术通报, 2015, 31(4): 7-16. |
[14] | 王建军,杨慧珍,刘佼. cryIAc基因在转基因玉米中的遗传规律及对抗虫性影响[J]. 生物技术通报, 2015, 31(1): 122-130. |
[15] | 陈虞超,张丽,巩檑,甘晓燕,石磊,宋玉霞. 抗虫转基因银河杨的生长特性和抗虫性[J]. 生物技术通报, 2014, 0(11): 138-141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||