生物技术通报 ›› 2022, Vol. 38 ›› Issue (8): 150-158.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1414
收稿日期:
2021-11-12
出版日期:
2022-08-26
发布日期:
2022-09-14
作者简介:
郭宾会,男,博士,研究方向:植物代谢调控与天然产物;E-mail: 基金资助:
Received:
2021-11-12
Published:
2022-08-26
Online:
2022-09-14
摘要:
乙烯是一种重要的植物激素,其合成和信号传导相关基因参与调控植物生长发育及防御反应。为阐明大豆孢囊线虫侵染和定殖对寄主植物乙烯合成及信号传导途径的影响,本研究以8个抗病品种和2个感病品种为材料,利用荧光定量PCR方法对比接种与未接种孢囊线虫大豆根中乙烯合成基因GmACS和信号传导基因GmEIN的表达水平。实验结果表明,与感病品种相比,抗病品种中乙烯的生物合成受到显著调控,其中PI 548316中GmACS显著上调,而在PI 437654和PI 88788中GmACS显著下调。同时,GmEIN在4个抗病品种中轻微上调,但在其它抗病品种和2个感病品种中均未受到显著调控。研究表明GmACS和GmEIN 的表达受到孢囊线虫侵染与定殖调控,其中被显著调控的GmACS基因可以作为提高大豆抗病育种的候选基因。
郭宾会, 宋丽. 大豆孢囊线虫侵染对乙烯合成及信号传导基因表达调控的研究[J]. 生物技术通报, 2022, 38(8): 150-158.
GUO Bin-hui, SONG Li. Transcription of Ethylene Biosynthesis and Signaling Associated Genes in Response to Heterodera glycine Infection[J]. Biotechnology Bulletin, 2022, 38(8): 150-158.
基因名称Gene name | 基因 ID Gene ID | 正向引物Forward primer | 反向引物Reverse primer |
---|---|---|---|
GmACS#009 | Glyma.07G065700 | ATGTGAGCGTTGCTGAAGTG | AAGCCAGGGTACCCCATATC |
GmACS#018 | Glyma.16G032200 | TAAGGACATGGGGTTTCCTG | TCCGAAACTCGACATTTTCC |
GmACS#014 | Glyma.09G255000 | CTTGAAGGGTTTGCTGAAGG | CTGACCCTGGTGACACATTG |
GmACS#021 | Glyma.18G238100 | TCATGGATTGCCAGAGTTCA | CCCCACTCATCAAAATACGG |
GmACS#007 | Glyma.05G211700 | GGGTGGTTTAGGGTGTGCTA | GGCACCATGATCTCCTTGTT |
GmACS#011 | Glyma.08G018000 | CTGGCTCTTCTTTCCATTGC | CGAAGGTTCGAATTCTTTGC |
GmACS#015 | Glyma.11G021500 | GCGACGAAATATACGCTGGT | ATAAGGTCGCGGTCACATTC |
GmACS#005 | Glyma.05G108900 | CGTATCGGGGCTATTGAAAA | GAACGTGTTCGAATGCAAAA |
GmACS#020 | Glyma.17G158100 | TACCTCCTCTCTGCCATGCT | CCGAAACGAGCATTTTCTGT |
GmEIN#001 | Glyma.02G274600 | CAAAGCCCTCCACCTTACAA | TTGGCAATATCAGGGGACAT |
GmEIN#005 | Glyma.13G076800 | TTGGGATGGAAAGAGTGAGG | CCTCTTCCGAATGAAATCCA |
GmEIN#006 | Glyma.13G076700 | CAAAATTTGCAAGCTCGTGA | TGCCAAGTCCTCCTCTTGAT |
GmEIN#008 | Glyma.14G041500 | TATGATGTTGATGGGGCTGA | CATTCTCTCCATCCCAAGG |
GmEIN#010 | Glyma.20G051500 | CAGAGAAGGGAAAGCCAGTG | GTTATGGCAGCAGGACCATT |
GmEIN#007 | Glyma.13G145100 | GGCATCATTGATCTGGCTTT | GGAGGTGAGCCTGACTTCTG |
GmACT11 | Glyma.18G290800 | ATCTTGACTGAGCGTGGTTATTCC | GCTGGTCCTGGCTGTCTCC |
表1 乙烯相关基因及其RT-qPCR引物序列
Table 1 Ethylene related genes and their RT-qPCR primer sequences
基因名称Gene name | 基因 ID Gene ID | 正向引物Forward primer | 反向引物Reverse primer |
---|---|---|---|
GmACS#009 | Glyma.07G065700 | ATGTGAGCGTTGCTGAAGTG | AAGCCAGGGTACCCCATATC |
GmACS#018 | Glyma.16G032200 | TAAGGACATGGGGTTTCCTG | TCCGAAACTCGACATTTTCC |
GmACS#014 | Glyma.09G255000 | CTTGAAGGGTTTGCTGAAGG | CTGACCCTGGTGACACATTG |
GmACS#021 | Glyma.18G238100 | TCATGGATTGCCAGAGTTCA | CCCCACTCATCAAAATACGG |
GmACS#007 | Glyma.05G211700 | GGGTGGTTTAGGGTGTGCTA | GGCACCATGATCTCCTTGTT |
GmACS#011 | Glyma.08G018000 | CTGGCTCTTCTTTCCATTGC | CGAAGGTTCGAATTCTTTGC |
GmACS#015 | Glyma.11G021500 | GCGACGAAATATACGCTGGT | ATAAGGTCGCGGTCACATTC |
GmACS#005 | Glyma.05G108900 | CGTATCGGGGCTATTGAAAA | GAACGTGTTCGAATGCAAAA |
GmACS#020 | Glyma.17G158100 | TACCTCCTCTCTGCCATGCT | CCGAAACGAGCATTTTCTGT |
GmEIN#001 | Glyma.02G274600 | CAAAGCCCTCCACCTTACAA | TTGGCAATATCAGGGGACAT |
GmEIN#005 | Glyma.13G076800 | TTGGGATGGAAAGAGTGAGG | CCTCTTCCGAATGAAATCCA |
GmEIN#006 | Glyma.13G076700 | CAAAATTTGCAAGCTCGTGA | TGCCAAGTCCTCCTCTTGAT |
GmEIN#008 | Glyma.14G041500 | TATGATGTTGATGGGGCTGA | CATTCTCTCCATCCCAAGG |
GmEIN#010 | Glyma.20G051500 | CAGAGAAGGGAAAGCCAGTG | GTTATGGCAGCAGGACCATT |
GmEIN#007 | Glyma.13G145100 | GGCATCATTGATCTGGCTTT | GGAGGTGAGCCTGACTTCTG |
GmACT11 | Glyma.18G290800 | ATCTTGACTGAGCGTGGTTATTCC | GCTGGTCCTGGCTGTCTCC |
图1 GmACS和GmEIN基因家族的组织表达模式 A:GmACS基因家族,B:GmEIN基因家族
Fig. 1 Tissue expression patterns of GmACS and GmEIN gene families A:GmACS gene family. B:GmEIN gene family
图2 SCN(race 3)侵染大豆Magellan品种后根组织染色 A:接种后2 d;B:接种后4 d;C:接种后6 d;D和E:接种后8 d。比例尺:A-D:0.5 mm,E:1 mm
Fig.2 Root staining after SCN(race 3)infecting soybean Magellan variety A:2 d after inoculation;B:4 d after inoculation;C:6 d after inoculation;D and E:8 d after inoculation. Scal bar:A-D:0.5 mm, E:1 mm
图3 GmEIN基因在SCN侵染10 d后与未侵染对照的相对表达水平
Fig.3 Relative expressions of GmEIN genes in SCN infected root 10 d after inoculation compared with uninfected control
图4 GmACS#007、GmACS#011和GmACS#015在SCN侵染10 d后与未侵染对照的相对表达水平
Fig.4 Relative expressions of GmACS#007,GmACS#011and GmACS#015 in SCN infected root 10 d after inoculation compared with uninfected control
图5 6个GmACS基因在SCN侵染10 d后与未侵染对照的相对表达水平
Fig.5 Relative expressions of 6 GmACS genes in SCN infected root 10 d after inoculation compared with uninfected control
[1] |
Gheysen G, Mitchum MG. How Nematodes manipulate plant development pathways for infection[J]. Curr Opin Plant Biol, 2011, 14(4):415-421.
doi: 10.1016/j.pbi.2011.03.012 URL |
[2] |
Studham ME, MacIntosh GC. Phytohormone signaling pathway analysis method for comparing hormone responses in plant-pest interactions[J]. BMC Res Notes, 2012, 5:392.
doi: 10.1186/1756-0500-5-392 URL |
[3] |
Dyer S, Weir R, Cox D, et al. Ethylene Response Factor(ERF)genes modulate plant root exudate composition and the attraction of plant parasitic Nematodes[J]. Int J Parasitol, 2019, 49(13/14):999-1003.
doi: 10.1016/j.ijpara.2019.09.001 URL |
[4] |
Dahl CC, Baldwin IT. Deciphering the role of ethylene in plant-herbivore interactions[J]. J Plant Growth Regul, 2007, 26(2):201-209.
doi: 10.1007/s00344-007-0014-4 URL |
[5] |
Glazer I, Apelbaum A, Orion D. Effect of inhibitors and stimulators of ethylene production on gall development in Meloidogyne javanica-infected tomato roots[J]. J Nematol, 1985, 17(2):145-149.
pmid: 19294073 |
[6] |
Tucker ML, Xue P, Yang RH. 1-Aminocyclopropane-1-carboxylic acid(ACC)concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode(Heterodera glycines)-infected roots[J]. J Exp Bot, 2010, 61(2):463-472.
doi: 10.1093/jxb/erp317 pmid: 19861652 |
[7] |
Fudali SL, Wang CL, Williamson VM. Ethylene signaling pathway modulates attractiveness of host roots to the root-knot nematode Meloidogyne hapla[J]. Mol Plant Microbe Interact, 2013, 26(1):75-86.
doi: 10.1094/MPMI-05-12-0107-R URL |
[8] |
Hu YF, You J, Li CJ, et al. Ethylene response pathway modulates attractiveness of plant roots to soybean cyst nematode Heterodera glycines[J]. Sci Rep, 2017, 7:41282.
doi: 10.1038/srep41282 URL |
[9] |
Wubben MJ 2nd, Su H, Rodermel SR, et al. Susceptibility to the sugar beet cyst nematode is modulated by ethylene signal transduction in Arabidopsis thaliana[J]. Mol Plant Microbe Interact, 2001, 14(10):1206-1212.
doi: 10.1094/MPMI.2001.14.10.1206 URL |
[10] |
Wubben MJEI, Rodermel SR, Baum TJ. Mutation of a UDP-glucose-4-epimerase alters nematode susceptibility and ethylene responses in Arabidopsis roots[J]. Plant J, 2004, 40(5):712-724.
doi: 10.1111/j.1365-313X.2004.02257.x URL |
[11] |
Bent AF, Hoffman TK, Schmidt JS, et al. Disease- and performance-related traits of ethylene-insensitive soybean[J]. Crop Sci, 2006, 46(2):893-901.
doi: 10.2135/cropsci2005.08-0235 URL |
[12] |
Kammerhofer N, Radakovic Z, Regis JMA, et al. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis[J]. New Phytol, 2015, 207(3):778-789.
doi: 10.1111/nph.13395 pmid: 25825039 |
[13] |
Puthoff DP, Ehrenfried ML, Vinyard BT, et al. GeneChip profiling of transcriptional responses to soybean cyst nematode, Heterodera glycines, colonization of soybean roots[J]. J Exp Bot, 2007, 58(12):3407-3418.
pmid: 17977850 |
[14] |
Wan JR, Vuong T, Jiao YQ, et al. Whole-genome gene expression profiling revealed genes and pathways potentially involved in regulating interactions of soybean with cyst nematode(Heterodera glycines Ichinohe)[J]. BMC Genomics, 2015, 16(1):148.
doi: 10.1186/s12864-015-1316-8 URL |
[15] |
Mazarei M, Puthoff DP, Hart JK, et al. Identification and characterization of a soybean ethylene-responsive element-binding protein gene whose mRNA expression changes during soybean cyst nematode infection[J]. Mol Plant Microbe Interact, 2002, 15(6):577-586.
doi: 10.1094/MPMI.2002.15.6.577 URL |
[16] |
Li S, Chen Y, Zhu XF, et al. The transcriptomic changes of Huipizhi Heidou(Glycine max), a nematode-resistant black soybean during Heterodera glycines race 3 infection[J]. J Plant Physiol, 2018, 220:96-104.
doi: 10.1016/j.jplph.2017.11.001 URL |
[17] |
孙梦婷, 范晓蕾, 郭荣波, 等. 生物乙烯研究进展[J]. 生物技术通报, 2016, 32(2):38-45.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.02.004 |
Sun MT, Fan XL, Guo RB, et al. Research progress on bio-ethylene[J]. Biotechnol Bull, 2016, 32(2):38-45. | |
[18] | 史庆玲, 李忠峰, 董永彬, 等. 植物乙烯信号转导通路及其相关基因的研究进展[J]. 生物技术进展, 2019, 9(5):449-454. |
Shi QL, Li ZF, Dong YB, et al. Progress on ethylene signal transduction pathway and related genes in plants[J]. Curr Biotechnol, 2019, 9(5):449-454. | |
[19] |
Bybd DW, Kirkpatrick T, Barker KR. An improved technique for clearing and staining plant tissues for detection of Nematodes[J]. J Nematol, 1983, 15(1):142-143.
pmid: 19295781 |
[20] |
Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers[J]. Methods Mol Biol, 2000, 132:365-386.
pmid: 10547847 |
[21] |
Arraes FBM, Beneventi MA, Lisei de Sa ME, et al. Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance[J]. BMC Plant Biol, 2015, 15:213.
doi: 10.1186/s12870-015-0597-z URL |
[22] |
Mitchum MG. Soybean resistance to the soybean cyst nematode Heterodera glycines:an update[J]. Phytopathology, 2016, 106(12):1444-1450.
doi: 10.1094/PHYTO-06-16-0227-RVW URL |
[23] |
Ithal N, Recknor J, Nettleton D, et al. Developmental transcript profiling of cyst nematode feeding cells in soybean roots[J]. Mol Plant Microbe Interact, 2007, 20(5):510-525.
doi: 10.1094/MPMI-20-5-0510 URL |
[24] |
Miraeiz E, Chaiprom U, Afsharifar A, et al. Early transcriptional responses to soybean cyst nematode HG Type 0 show genetic differences among resistant and susceptible soybeans[J]. Theor Appl Genet, 2020, 133(1):87-102.
doi: 10.1007/s00122-019-03442-w URL |
[25] |
Ali MA, Abbas A, Kreil DP, et al. Overexpression of the transcription factor RAP2. 6 leads to enhanced callose deposition in syncytia and enhanced resistance against the beet cyst nematode Heterodera schachtii in Arabidopsis roots[J]. BMC Plant Biol, 2013, 13:47.
doi: 10.1186/1471-2229-13-47 URL |
[26] | Zhao YL, Chang X, Qi DY, et al. A novel soybean ERF transcription factor, GmERF113, increases resistance to Phytophthora sojae infection in soybean[J]. Front Plant Sci, 2017, 8:299. |
[27] |
Sun F, Liu PQ, Xu J, et al. Mutation in RAP2. 6L, a transactivator of the ERF transcription factor family, enhances Arabidopsis resistance to Pseudomonas syringae[J]. Physiol Mol Plant Pathol, 2010, 74(5/6):295-302.
doi: 10.1016/j.pmpp.2010.04.004 URL |
[28] |
练云, 王金社, 李海朝, 等. 黄淮大豆主产区大豆胞囊线虫生理小种分布调查[J]. 作物学报, 2016, 42(10):1479-1486.
doi: 10.3724/SP.J.1006.2016.01479 |
Lian Y, Wang JS, Li HC, et al. Race distribution of soybean cyst nematode in the main soybean producing area of Huang-Huai rivers valley[J]. Acta Agron Sin, 2016, 42(10):1479-1486.
doi: 10.3724/SP.J.1006.2016.01479 URL |
|
[29] | 王从丽, 李春杰. 大豆孢囊线虫抗性遗传标记研究进展[J]. 土壤与作物, 2018, 7(2):229-235. |
Wang CL, Li CJ. Research advance of genetic resistance mapping in soybean cyst Nematodes[J]. Soils Crops, 2018, 7(2):229-235. |
[1] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[2] | 李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150. |
[3] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[4] | 侯筱媛, 车郑郑, 李姮静, 杜崇玉, 胥倩, 王群青. 大豆膜系统cDNA文库的构建及大豆疫霉效应子PsAvr3a互作蛋白的筛选[J]. 生物技术通报, 2023, 39(4): 268-276. |
[5] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[6] | 陈奕博, 杨万明, 岳爱琴, 王利祥, 杜维俊, 王敏. 基于SLAF标记的大豆遗传图谱构建及苗期耐盐性QTL定位[J]. 生物技术通报, 2023, 39(2): 70-79. |
[7] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[8] | 白苗, 田雯青, 武帅, 王敏, 王利祥, 岳爱琴, 牛景萍, 张永坡, 高春艳, 张武霞, 郭数进, 杜维俊, 赵晋忠. 激素和逆境胁迫对大豆维生素E和γ-TMT表达的影响[J]. 生物技术通报, 2023, 39(10): 148-162. |
[9] | 于惠林, 吴孔明. 中国转基因大豆的产业化策略[J]. 生物技术通报, 2023, 39(1): 1-15. |
[10] | 石广成, 杨万明, 杜维俊, 王敏. 大豆耐盐种质的筛选及其耐盐生理特性分析[J]. 生物技术通报, 2022, 38(4): 174-183. |
[11] | 郑向, 段左平, 张杰, 潘素君, 戴良英, 刘世名, 李魏. 大豆疫霉菌效应子研究进展[J]. 生物技术通报, 2022, 38(11): 10-20. |
[12] | 陈倩, 张露源, 陈伯昌, 吴海燕. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136. |
[13] | 韩少杰, 郑经武. 寄主对大豆孢囊线虫抗性相关基因功能研究进展[J]. 生物技术通报, 2021, 37(7): 14-24. |
[14] | 李春杰, 王从丽. 植物寄生线虫对化感信号的识别及机制[J]. 生物技术通报, 2021, 37(7): 35-44. |
[15] | 王惠, 张顺斌, 金贺, 王晗, 张耕华, 夏诗宁, 陈井生, 段玉玺. 4-香豆酸辅酶A连接酶响应大豆孢囊线虫胁迫的潜在功能[J]. 生物技术通报, 2021, 37(7): 71-80. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||