生物技术通报 ›› 2023, Vol. 39 ›› Issue (7): 241-253.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1450
谢东(), 汪流伟, 李宁健, 李泽霖, 徐子航, 张庆华()
收稿日期:
2022-11-25
出版日期:
2023-07-26
发布日期:
2023-08-17
通讯作者:
张庆华,男,博士,教授,研究方向:环境微生物;E-mail: zqh_net@163.com作者简介:
谢东,男,硕士研究生,研究方向:环境微生物;E-mail: 2651553709@qq.com
基金资助:
XIE Dong(), WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua()
Received:
2022-11-25
Published:
2023-07-26
Online:
2023-08-17
摘要:
从菌糠鸡粪堆肥中筛选高效的解磷菌并优化其解磷能力,发掘多功能微生物资源以实现农业废弃物的有效利用。利用无机磷选择培养基从堆肥中筛选高效解磷菌,结合形态学观察、生理生化试验、分子生物学鉴定,对菌株进行鉴定。利用单因素和响应面试验优化菌株的解磷培养条件;通过解磷、解钾和产吲哚乙酸能力的测定确定菌株的堆肥潜力。筛选得到一株高效解磷菌株Pb1,经鉴定发现菌株隶属于Bacillus smithii strain;培养条件为葡萄糖15.0 g/L、硫酸铵3 g/L、磷酸三钙7.0 g/L、无机盐0.48 g/L、温度55.0℃、摇床转速225 r/min、初始pH 7.0、装液量60.0 mL/250 mL、接种量3.0%(V/V)时,菌株Bacillus smithii Pb1的解磷能力最强;进一步通过响应面优化发现,当磷酸三钙6.4 g/L、摇床转速207 r/min、装液量65.0 mL/250 mL时,菌株Pb1培养3 d,发酵液中溶磷量可达534.68 mg/L,是优化前的1.58倍。同时,发现B. smithii Pb1解有机磷、解钾、产吲哚乙酸能力,分别为238.99 mg/L、81.06 mg/L、23.26 mg/L。菌株B. smithii Pb1在高温(55℃)条件下展现出了解无机磷、有机磷、解钾和产吲哚乙酸的能力,为菌株B. smithii Pb1开发成好氧堆肥菌剂奠定基础。
谢东, 汪流伟, 李宁健, 李泽霖, 徐子航, 张庆华. 一株多功能菌株的发掘、鉴定及解磷条件优化[J]. 生物技术通报, 2023, 39(7): 241-253.
XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain[J]. Biotechnology Bulletin, 2023, 39(7): 241-253.
因素Factors | 水平Level | |
---|---|---|
-1 | +1 | |
A: 葡萄糖浓度Glucose concentration/(g·L-1) | 15.0 | 20.0 |
B: 磷酸三钙浓度Concentration of tricalcium phosphate/(g·L-1) | 5.0 | 7.0 |
C: 硫酸铵浓度Ammonium sulfate concentration/(g·L-1) | 1.0 | 2.0 |
D: 无机盐浓度Concentration of inorganic salts/(g·L-1) | 0.48 | 0.96 |
E: 初始pH Initial pH | 6.0 | 7.0 |
F: 温度Temperature/℃ | 50.0 | 55.0 |
G: 接种量Inoculum quantity/% | 2.0 | 3.0 |
H: 装液量Loaded liquid/mL | 60.0 | 80.0 |
J: 转速Rotating speed /(r·min-1) | 200 | 225 |
表1 Plackett-Burman试验设计因素及水平
Table 1 Factors and levels of Plackett-Burman experiment design
因素Factors | 水平Level | |
---|---|---|
-1 | +1 | |
A: 葡萄糖浓度Glucose concentration/(g·L-1) | 15.0 | 20.0 |
B: 磷酸三钙浓度Concentration of tricalcium phosphate/(g·L-1) | 5.0 | 7.0 |
C: 硫酸铵浓度Ammonium sulfate concentration/(g·L-1) | 1.0 | 2.0 |
D: 无机盐浓度Concentration of inorganic salts/(g·L-1) | 0.48 | 0.96 |
E: 初始pH Initial pH | 6.0 | 7.0 |
F: 温度Temperature/℃ | 50.0 | 55.0 |
G: 接种量Inoculum quantity/% | 2.0 | 3.0 |
H: 装液量Loaded liquid/mL | 60.0 | 80.0 |
J: 转速Rotating speed /(r·min-1) | 200 | 225 |
因素Factor | 水平Level | |||
---|---|---|---|---|
-1 | 0 | +1 | ||
B: 磷酸三钙浓度 Concentration of tricalcium phosphate/(g·L-1) | 5.5 | 6.5 | 7.5 | |
H: 装液量Loaded liquid/mL | 55.0 | 60.0 | 75.0 | |
J: 转速Rotating speed/(r·min-1) | 195 | 207 | 219 |
表2 Box-Behnken试验设计因素与水平
Table 2 Factors and levels of Box-Behnken experiment design
因素Factor | 水平Level | |||
---|---|---|---|---|
-1 | 0 | +1 | ||
B: 磷酸三钙浓度 Concentration of tricalcium phosphate/(g·L-1) | 5.5 | 6.5 | 7.5 | |
H: 装液量Loaded liquid/mL | 55.0 | 60.0 | 75.0 | |
J: 转速Rotating speed/(r·min-1) | 195 | 207 | 219 |
图1 耐高温解磷菌株的初筛和复筛 A:耐高温解磷菌的解磷能力比较(Pz、Px1、Px2、Py1、Py2、Py3和Pb1分别表示初筛得到的7株不同解磷菌的解磷曲线,CK表示添加等量无菌水的空白对照组);B:菌株Pb1的解磷曲线
Fig. 1 Primary screening and secondary screening of high temperature resistant phosphorus-solubilizing strain A: Comparison of phosphorus-solubilizing ability of high-temperature resistant phosphorus-solubilizing bacteria.(Pz, Px1, Px2, Py1, Py2, Py3 and Pb1 respectively refers to the phosphorus solubilization curves of 7 strains of different phosphorus solubilizers obtained from the preliminary experiments, and CK refers to the blank control group with equal amount of sterile water added). B: Phosphorus-solubilizing curve of strain Pb1
指标 Index | 结果 Result |
---|---|
接触酶试验 Catalase test | + |
淀粉水解 Amylohydrolysis | + |
明胶液化 Gelatin liquefaction | - |
尿素酶反应 Urease reaction | + |
甲基红(M.R)试验 Methyl red test | - |
柠檬酸盐利用 Utilization of citrate | - |
吲哚试验 Indole test | + |
葡萄糖发酵 Fermentation of glucose | + |
蔗糖发酵反应 Sucrose fermentation reaction | + |
表3 菌株Pb1生理生化特征
Table 3 Physiological and biochemical characteristics of strain Pb1
指标 Index | 结果 Result |
---|---|
接触酶试验 Catalase test | + |
淀粉水解 Amylohydrolysis | + |
明胶液化 Gelatin liquefaction | - |
尿素酶反应 Urease reaction | + |
甲基红(M.R)试验 Methyl red test | - |
柠檬酸盐利用 Utilization of citrate | - |
吲哚试验 Indole test | + |
葡萄糖发酵 Fermentation of glucose | + |
蔗糖发酵反应 Sucrose fermentation reaction | + |
图4 不同培养基成分对B. smithii Pb1解磷能力的影响 不同小写字母表示在P < 0.05水平差异显著,下同
Fig. 4 Effects of different medium components on the phosphorus-solubilizaing ability of B. smithii Pb1 Different lower letters indicate significant differences at P < 0.05 level. The same below
实验序号 Experimen No. | A | B | C | D | E | F | G | H | J | 速效磷浓度 Concentration of available P/(mg·L-1) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 15.0 | 7.0 | 2.0 | 0.96 | 50.0 | 6.0 | 2.0 | 80.0 | 200 | 466.46 |
2 | 15.0 | 7.0 | 2.0 | 0.48 | 55.0 | 7.0 | 3.0 | 60.0 | 200 | 532.56 |
3 | 20.0 | 7.0 | 1.0 | 0.48 | 50.0 | 7.0 | 2.0 | 80.0 | 225 | 430.45 |
4 | 15.0 | 7.0 | 1.0 | 0.96 | 55.0 | 6.0 | 3.0 | 80.0 | 225 | 421.71 |
5 | 20.0 | 5.0 | 2.0 | 0.96 | 50.0 | 7.0 | 3.0 | 80.0 | 200 | 388.76 |
6 | 15.0 | 5.0 | 2.0 | 0.48 | 55.0 | 7.0 | 2.0 | 80.0 | 225 | 416.31 |
7 | 20.0 | 7.0 | 2.0 | 0.48 | 50.0 | 6.0 | 3.0 | 60.0 | 225 | 472.63 |
8 | 20.0 | 5.0 | 2.0 | 0.96 | 55.0 | 6.0 | 2.0 | 60.0 | 225 | 397.27 |
9 | 20.0 | 7.0 | 1.0 | 0.96 | 55.0 | 7.0 | 2.0 | 60.0 | 200 | 500.41 |
10 | 15.0 | 5.0 | 1.0 | 0.96 | 50.0 | 7.0 | 3.0 | 60.0 | 225 | 426.59 |
11 | 20.0 | 5.0 | 1.0 | 0.48 | 55.0 | 6.0 | 3.0 | 80.0 | 200 | 417.08 |
12 | 15.0 | 5.0 | 1.0 | 0.48 | 50.0 | 6.0 | 2.0 | 60.0 | 200 | 530.25 |
表4 Plackett-Burman试验设计与结果
Table 4 Design and results of Plackett-Burman experiments
实验序号 Experimen No. | A | B | C | D | E | F | G | H | J | 速效磷浓度 Concentration of available P/(mg·L-1) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 15.0 | 7.0 | 2.0 | 0.96 | 50.0 | 6.0 | 2.0 | 80.0 | 200 | 466.46 |
2 | 15.0 | 7.0 | 2.0 | 0.48 | 55.0 | 7.0 | 3.0 | 60.0 | 200 | 532.56 |
3 | 20.0 | 7.0 | 1.0 | 0.48 | 50.0 | 7.0 | 2.0 | 80.0 | 225 | 430.45 |
4 | 15.0 | 7.0 | 1.0 | 0.96 | 55.0 | 6.0 | 3.0 | 80.0 | 225 | 421.71 |
5 | 20.0 | 5.0 | 2.0 | 0.96 | 50.0 | 7.0 | 3.0 | 80.0 | 200 | 388.76 |
6 | 15.0 | 5.0 | 2.0 | 0.48 | 55.0 | 7.0 | 2.0 | 80.0 | 225 | 416.31 |
7 | 20.0 | 7.0 | 2.0 | 0.48 | 50.0 | 6.0 | 3.0 | 60.0 | 225 | 472.63 |
8 | 20.0 | 5.0 | 2.0 | 0.96 | 55.0 | 6.0 | 2.0 | 60.0 | 225 | 397.27 |
9 | 20.0 | 7.0 | 1.0 | 0.96 | 55.0 | 7.0 | 2.0 | 60.0 | 200 | 500.41 |
10 | 15.0 | 5.0 | 1.0 | 0.96 | 50.0 | 7.0 | 3.0 | 60.0 | 225 | 426.59 |
11 | 20.0 | 5.0 | 1.0 | 0.48 | 55.0 | 6.0 | 3.0 | 80.0 | 200 | 417.08 |
12 | 15.0 | 5.0 | 1.0 | 0.48 | 50.0 | 6.0 | 2.0 | 60.0 | 200 | 530.25 |
方差来源 Source | 平方和 Sum of squares | 自由度 Freedom | 均方 Mean square | 效应 Stdized effects | 贡献率 Contribution/% | F值 F value | P值 P value | 等级 Rank |
---|---|---|---|---|---|---|---|---|
Model | 26 763.70 | 9 | 2 973.74 | 20.04 | 0.0484* | |||
A | 2 922.82 | 1 | 2 922.82 | -31.21 | 10.80 | 19.70 | 0.0472* | 5 |
B | 5 123.68 | 1 | 5 123.68 | 41.33 | 18.93 | 34.53 | 0.0278* | 3 |
C | 229.69 | 1 | 229.69 | -8.75 | 0.85 | 1.55 | 0.3395 | 7 |
D | 3 269.64 | 1 | 3 269.64 | -33.01 | 12.08 | 22.03 | 0.0425* | 4 |
E | 74.00 | 1 | 74.00 | -4.97 | 0.27 | 0.50 | 0.5333 | 8 |
F | 8.88 | 1 | 8.88 | -1.72 | 0.03 | 0.06 | 0.8296 | 9 |
G | 557.88 | 1 | 557.88 | -13.64 | 2.06 | 3.76 | 0.1921 | 6 |
H | 8 476.89 | 1 | 8 476.89 | -53.16 | 31.33 | 57.12 | 0.0171* | 1 |
J | 6 100.23 | 1 | 6 100.23 | -45.09 | 22.54 | 41.11 | 0.0235* | 2 |
表5 Plackett-Burman试验结果方差分析
Table 5 Variance analysis of Plackett-Burman experiments results
方差来源 Source | 平方和 Sum of squares | 自由度 Freedom | 均方 Mean square | 效应 Stdized effects | 贡献率 Contribution/% | F值 F value | P值 P value | 等级 Rank |
---|---|---|---|---|---|---|---|---|
Model | 26 763.70 | 9 | 2 973.74 | 20.04 | 0.0484* | |||
A | 2 922.82 | 1 | 2 922.82 | -31.21 | 10.80 | 19.70 | 0.0472* | 5 |
B | 5 123.68 | 1 | 5 123.68 | 41.33 | 18.93 | 34.53 | 0.0278* | 3 |
C | 229.69 | 1 | 229.69 | -8.75 | 0.85 | 1.55 | 0.3395 | 7 |
D | 3 269.64 | 1 | 3 269.64 | -33.01 | 12.08 | 22.03 | 0.0425* | 4 |
E | 74.00 | 1 | 74.00 | -4.97 | 0.27 | 0.50 | 0.5333 | 8 |
F | 8.88 | 1 | 8.88 | -1.72 | 0.03 | 0.06 | 0.8296 | 9 |
G | 557.88 | 1 | 557.88 | -13.64 | 2.06 | 3.76 | 0.1921 | 6 |
H | 8 476.89 | 1 | 8 476.89 | -53.16 | 31.33 | 57.12 | 0.0171* | 1 |
J | 6 100.23 | 1 | 6 100.23 | -45.09 | 22.54 | 41.11 | 0.0235* | 2 |
试验序号 Experiment No. | B | H | J | 速效磷浓度 Concentration of available P/(mg·L-1) |
---|---|---|---|---|
1 | 5.0 | 80.0 | 225 | 459.26 |
2 | 5.5 | 75.0 | 219 | 487.29 |
3 | 6.0 | 70.0 | 213 | 516.10 |
4 | 6.5 | 65.0 | 207 | 533.28 |
5 | 7.0 | 60.0 | 200 | 529.48 |
6 | 7.5 | 55.0 | 193 | 508.67 |
表6 最陡爬坡试验设计及结果
Table 6 Design and results of the steepest ascent test
试验序号 Experiment No. | B | H | J | 速效磷浓度 Concentration of available P/(mg·L-1) |
---|---|---|---|---|
1 | 5.0 | 80.0 | 225 | 459.26 |
2 | 5.5 | 75.0 | 219 | 487.29 |
3 | 6.0 | 70.0 | 213 | 516.10 |
4 | 6.5 | 65.0 | 207 | 533.28 |
5 | 7.0 | 60.0 | 200 | 529.48 |
6 | 7.5 | 55.0 | 193 | 508.67 |
方差来源Source | 平方和Sum of squares | 自由度Freedom | 均方Mean square | F值F value | P值P value | 显著性Significance |
---|---|---|---|---|---|---|
Model | 12 744.38 | 9 | 1 416.04 | 29.54 | 0.000 8 | ** |
B | 513.60 | 1 | 513.60 | 10.72 | 0.022 1 | * |
H | 39.60 | 1 | 39.60 | 0.83 | 0.405 0 | |
J | 6.48 | 1 | 6.48 | 0.14 | 0.728 2 | |
BH | 88.17 | 1 | 88.17 | 1.84 | 0.233 0 | |
BJ | 122.99 | 1 | 122.99 | 2.57 | 0.170 1 | |
HJ | 258.24 | 1 | 258.24 | 5.39 | 0.068 0 | |
B2 | 5 892.93 | 1 | 5 892.93 | 122.94 | 0.000 1 | ** |
H2 | 4 762.66 | 1 | 4 762.66 | 99.36 | 0.000 2 | ** |
J2 | 2 787.23 | 1 | 2 787.23 | 58.15 | 0.000 6 | ** |
残差 Residual | 239.66 | 5 | 49.93 | |||
失拟性 Lack of fit | 225.63 | 3 | 75.21 | 10.72 | 0.086 5 | |
净误差 Pure error | 14.03 | 2 | 7.01 | |||
合计 Total | 12 984.04 | 14 | ||||
决定系数 R2 | 0.981 5 | |||||
校正系数R2 adj | 0.948 3 | |||||
Pred R2 | 0.719 5 | |||||
Adeq precision | 16.062 |
表7 回归模型方差分析
Table 7 Variance analysis of regression model
方差来源Source | 平方和Sum of squares | 自由度Freedom | 均方Mean square | F值F value | P值P value | 显著性Significance |
---|---|---|---|---|---|---|
Model | 12 744.38 | 9 | 1 416.04 | 29.54 | 0.000 8 | ** |
B | 513.60 | 1 | 513.60 | 10.72 | 0.022 1 | * |
H | 39.60 | 1 | 39.60 | 0.83 | 0.405 0 | |
J | 6.48 | 1 | 6.48 | 0.14 | 0.728 2 | |
BH | 88.17 | 1 | 88.17 | 1.84 | 0.233 0 | |
BJ | 122.99 | 1 | 122.99 | 2.57 | 0.170 1 | |
HJ | 258.24 | 1 | 258.24 | 5.39 | 0.068 0 | |
B2 | 5 892.93 | 1 | 5 892.93 | 122.94 | 0.000 1 | ** |
H2 | 4 762.66 | 1 | 4 762.66 | 99.36 | 0.000 2 | ** |
J2 | 2 787.23 | 1 | 2 787.23 | 58.15 | 0.000 6 | ** |
残差 Residual | 239.66 | 5 | 49.93 | |||
失拟性 Lack of fit | 225.63 | 3 | 75.21 | 10.72 | 0.086 5 | |
净误差 Pure error | 14.03 | 2 | 7.01 | |||
合计 Total | 12 984.04 | 14 | ||||
决定系数 R2 | 0.981 5 | |||||
校正系数R2 adj | 0.948 3 | |||||
Pred R2 | 0.719 5 | |||||
Adeq precision | 16.062 |
[1] | 马粒雅. 南极企鹅岛土壤中低温解磷菌的筛选及其解磷机制的初步探究[D]. 青岛: 青岛大学, 2021. |
Ma LY. Study on the screening and mechanism of low-temperature phosphorus-releasing bacteria in the soil of penguin island, Antarctica[D]. Qingdao: Qingdao University, 2021. | |
[2] | 李鸣晓, 席北斗, 魏自民, 等. 耐高温解磷菌的筛选及解磷能力研究[J]. 环境科学研究, 2008, 21(3): 165-169. |
Li MX, Xi BD, Wei ZM, et al. Screening and characterization of phosphate-solubilizing microorganisms at high temperature[J]. Res Environ Sci, 2008, 21(3): 165-169. | |
[3] | 侯娇, 李莎. 干旱区1株新欧文氏属菌的分离及溶磷特性[J]. 环境科学与技术, 2021, 44(2): 19-24. |
Hou J, Li S. Isolation and phosphate-solubilizing characteristics of a novel Erwinia sp. bacterium in arid environment[J]. Environ Sci & Technol, 2021, 44(2): 19-24. | |
[4] | 詹亚斌, 张磊, 丁晓艳, 等. 一株堆肥高效解磷菌的筛选、鉴定及其溶磷特性[J]. 科学技术与工程, 2022, 22(3): 960-966. |
Zhan YB, Zhang L, Ding XY, et al. Isolation, identification and its phosphate-solubilizing capacity of phosphate-solubilizing bacterial strain from compost[J]. Sci Technol Eng, 2022, 22(3): 960-966. | |
[5] |
韩蕾, 杨乐, 唐金铭, 等. 解磷菌发酵及溶磷条件的研究[J]. 生物技术通报, 2019, 35(1): 98-104.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0733 URL |
Han L, Yang L, Tang JM, et al. Fermentation condition and phosphate-dissolving capacity of phosphate-solubilizing bacterium[J]. Biotechnol Bull, 2019, 35(1): 98-104.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0733 URL |
|
[6] | 赵秀云, 赵昕宇, 杨津津, 等. 堆肥过程中木质素的降解机理及影响因素研究进展[J]. 环境工程, 2021, 39(6): 128-136. |
Zhao XY, Zhao XY, Yang JJ, et al. Research progress on lignin degradation mechanism and influencing factors during composting[J]. Environ Eng, 2021, 39(6): 128-136. | |
[7] | 严正娟, 陈硕, 王敏锋, 等. 不同动物粪肥的磷素形态特征及有效性分析[J]. 农业资源与环境学报, 2015, 32(1): 31-39. |
Yan ZJ, Chen S, Wang MF, et al. Characteristics and availability of different forms of phosphorus in animal manures[J]. J Agric Resour Environ, 2015, 32(1): 31-39. | |
[8] | 王楠, 刘兰, 王语, 等. 黑木耳菌糠与牛粪共堆腐腐殖质组成的变化[J]. 土壤通报, 2020, 51(1): 171-176. |
Wang N, Liu L, Wang Y, et al. Changes of humus composition during Co-composting of cow dung and black fungus chaff[J]. Chin J Soil Sci, 2020, 51(1): 171-176. | |
[9] | 姜延, 李思达, 马秀兰, 等. 东北黑土区农业废弃物资源化利用研究进展[J]. 吉林农业大学学报, 2022, 44(6): 706-716. |
Jiang Y, Li SD, Ma XL, et al. Research progress of agricultural waste resource utilization in the black soil region of northeast China[J]. J Jilin Agric Univ, 2022, 44(6): 706-716. | |
[10] | 张芮瑞. 耐高温解磷微生物的筛选及解磷机制的初探[D]. 贵阳: 贵州大学, 2020. |
Zhang RR. Screening of high-temperature-reresistant phosphate-solubilizing microorganisms and preliminary discussion on phosphorus-solubilizing mechanism[D]. Guiyang: Guizhou University, 2020. | |
[11] |
沈佳佳, 侯小改, 王二强, 等. 油用牡丹根际解有机磷细菌的筛选及解磷功能研究[J]. 生物技术通报, 2022, 38(6): 157-165.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0942 URL |
Shen JJ, Hou XG, Wang EQ, et al. Organic phosphate-solubilizing bacteria screening in the rhizosphere of Paeonia ostii and study on their phosphate-solubilizing capabilities[J]. Biotechnol Bull, 2022, 38(6): 157-165. | |
[12] |
李思思, 张博源, 符运会, 等. 一株高效溶磷细菌的条件优化及其溶磷特性研究[J]. 生物技术通报, 2022, 38(12): 274-286.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0281 URL |
Li SS, Zhang BY, Fu YH, et al. Condition optimization of an efficient phosphate-dissolving bacterial strain and its phosphate-dissolving characteristics[J]. Biotechnol Bull, 2022, 38(12): 274-286. | |
[13] | 高威, 左振宇, 李凌凌, 等. 一株高效解磷菌的筛选鉴定及溶磷性能[J]. 微生物学通报, 2022, 49(9): 3873-3889. |
Gao W, Zuo ZY, Li LL, et al. Isolation, identification, and characterization of a phosphate-solubilizing bacterial strain[J]. Microbiol China, 2022, 49(9): 3873-3889. | |
[14] | 张淇瑞, 黄恩霞, 刘炳琪. 微生物有机肥料的生产原理及其应用[J]. 畜牧兽医杂志, 2022, 41(4): 32-34. |
Zhang QR, Huang EX, Liu BQ. Production principle and application of on microbial organic fertilizer[J]. J Animal Sci Vet Med, 2022, 41(4): 32-34. | |
[15] | 李季, 王禄山. 堆肥微生物:过去,现在和未来[J]. 生物技术通报, 2022, 38(5): 1-3. |
Li J, Wang LS. Composting microbes: past, present and future[J]. Biotechnol Bull, 2022, 38(5): 1-3. | |
[16] | 刘娜. 解磷解钾促生微生物肥料用菌株的分离[D]. 沈阳: 沈阳农业大学, 2020. |
Liu N. The separation of microbial fertilizer strains was promoted by the hydrolysis of phosphorus and potassium[D]. Shenyang: Shenyang Agricultural University, 2020. | |
[17] | 吴红艳, 于淼, 冯健, 等. 土壤中解钾菌K02的筛选、鉴定及培养条件优化[J]. 微生物学杂志, 2020, 40(4): 60-65. |
Wu HY, Yu M, Feng J, et al. Screening, identification and culture condition optimization of potassium-soluble bacteria K02 in soil[J]. J Microbiol, 2020, 40(4): 60-65. | |
[18] |
李培根, 要雅倩, 宋吉祥, 等. 马铃薯根际产IAA芽孢杆菌的分离鉴定及促生效果研究[J]. 生物技术通报, 2020, 36(9): 109-116.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-1203 URL |
Li PG, Yao YQ, Song JX, et al. Isolation and identification of IAA-producing Bacillus sp on potato rhizosphere and its growth-promoting effect[J]. Biotechnol Bull, 2020, 36(9): 109-116. | |
[19] |
刘广超, 叶青, 车永梅, 等. 烟草根际高效解磷菌的筛选鉴定及促生作用研究[J]. 生物技术通报, 2022, 38(8): 179-187.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1511 URL |
Liu GC, Ye Q, Che YM, et al. Screening and identification of high-efficiency phosphate solubilizing bacteria in tobacco rhizosphere and its growth-promoting effects[J]. Biotechnol Bull, 2022, 38(8): 179-187. | |
[20] | 刘贯锋. 芽胞杆菌分类学特征及其生防功能菌株筛选[D]. 福州: 福建农林大学, 2011. |
Liu GF. Taxonomic characteristics of Bacillus genus and screening of biocontrol strains[D]. Fuzhou: Fujian Agriculture and Forestry University, 2011. | |
[21] | 钟斌, 陶文玲, 倪思毅, 等. 一株纤维素降解菌的筛选、鉴定及产酶条件优化[J]. 江西农业大学学报, 2021, 43(5): 1167-1177. |
Zhong B, Tao WL, Ni SY, et al. Screening and identification of a cellulose-degrading bacterium in the aerobic composting of biogas residues and optimization of enzyme production conditions[J]. Acta Agric Univ Jiangxiensis, 2021, 43(5): 1167-1177. | |
[22] | 张芮瑞, 邱树毅, 周少奇, 等. 一株耐高温解磷真菌溶磷条件的优化[J]. 中国酿造, 2020, 39(6): 31-36. |
Zhang RR, Qiu SY, Zhou SQ, et al. Optimization of phosphorus solubilization conditions for phosphate-solubilizing fungus with high-temperature resistance[J]. China Brew, 2020, 39(6): 31-36. | |
[23] |
Yan LB, Zhang ZL, Zhang Y, et al. Improvement of tacrolimus production in Streptomyces tsukubaensis by mutagenesis and optimization of fermentation medium using Plackett-Burman design combined with response surface methodology[J]. Biotechnol Lett, 2021, 43(9): 1765-1778.
doi: 10.1007/s10529-021-03144-8 |
[24] | 尚晓静, 侯瑞, 徐芳玲, 等. 2株蓝莓溶磷内生真菌的筛选、鉴定及溶磷效果评价[J]. 江苏农业科学, 2022, 50(20): 246-252. |
Shang XJ, Hou R, Xu FL, et al. Screening, identification and evaluation of two phosphate dissolving fungi from blueberry[J]. Jiangsu Agric Sci, 2022, 50(20): 246-252. | |
[25] | 赵越, 赵霞, 侯佳奇, 等. 耐高温解无机磷菌的解磷特性及生长动态研究[J]. 东北农业大学学报, 2013, 44(8): 64-69. |
Zhao Y, Zhao X, Hou JQ, et al. Phosphorus-solubilizing characteristics and growth of biomass by thermostable inorganic phosphorus-solubilizing microorganisms[J]. J Northeast Agric Univ, 2013, 44(8): 64-69. | |
[26] | 杨天学, 唐忠涛, 席北斗, 等. 耐高温解无机磷菌的筛选及初步鉴定[J]. 农业环境科学学报, 2009, 28(2): 393-397. |
Yang TX, Tang ZT, Xi BD, et al. Screen and preliminary appraisal degeneration microorgams of thermostable and inorganic phosphorus[J]. J Agro Environ Sci, 2009, 28(2): 393-397. | |
[27] |
李海云, 姚拓, 张榕, 等. 红三叶根际溶磷菌的筛选与培养基优化[J]. 草业学报, 2019, 28(1): 170-179.
doi: 10.11686/cyxb2018064 |
Li HY, Yao T, Zhang R, et al. Isolation and screening of phosphate-solubilizing bacteria from the rhizosphere of Trifolium pratense and culture medium optimization[J]. Acta Prataculturae Sin, 2019, 28(1): 170-179. | |
[28] | 赵霞. 堆肥中耐高温解无机磷菌的初步研究[D]. 哈尔滨: 东北农业大学, 2012. |
Zhao X. Preliminary study on thermostable and inorganic phosphorus-solubilizing microorganisms in composting[D]. Harbin:Northeast Agricultural University, 2012. | |
[29] | 胡春明, 姚波, 席北斗, 等. 一株耐高温无机磷降解菌解磷能力的研究[J]. 东北农业大学学报, 2010, 41(1): 47-51. |
Hu CM, Yao B, Xi BD, et al. Study on phosphorus-solubilizing abilities of a thermostable inorganic phosphorus-solubilizing strain[J]. J Northeast Agric Univ, 2010, 41(1): 47-51. | |
[30] | 陈言柳, 郭春兰, 吴斐, 等. 油茶根际高效解磷细菌NC285液体发酵培养条件的优化[J]. 江西农业大学学报, 2019, 41(3): 521-528. |
Chen YL, Guo CL, Wu F, et al. Optimization of liquid fermentation conditions for efficient phosphate solubilizing bacteria NC285 in Camellia oleifera rhizosphere[J]. Acta Agric Univ Jiangxiensis, 2019, 41(3): 521-528. | |
[31] | 苏辉兰, 莫雪雪, 余炳锋, 等. 贡柑果园高效解磷菌的筛选及其解磷条件优化[J]. 北方园艺, 2019(5): 101-107. |
Su HL, Mo XX, Yu BF, et al. Isolation and culture condition of phosphate-solubilizing bacteria derived from Gonggan orchard[J]. North Hortic, 2019(5): 101-107. | |
[32] |
Chang CH, Yang SS. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation[J]. Bioresour Technol, 2009, 100(4): 1648-1658.
doi: 10.1016/j.biortech.2008.09.009 URL |
[33] | 尹万伟, 黄本波, 汪凤玲, 等. 土壤调理剂的研究现状与进展[J]. 磷肥与复肥, 2019, 34(2): 19-23. |
Yin WW, Huang BB, Wang FL, et al. Research status and progress of soil conditioner[J]. Phosphate & Compd Fertil, 2019, 34(2): 19-23. | |
[34] | 索雲凯, 刘丽红, 张雷, 等. 解钾菌解钾作用研究进展[J]. 当代化工, 2021, 50(4): 924-929. |
Suo YK, Liu LH, Zhang L, et al. Research progress of potassium solubilization by potassium solubilizing bacteria[J]. Contemp Chem Ind, 2021, 50(4): 924-929. | |
[35] | 强震宇, 朱林, 朱媛媛, 等. 一株兼具秸秆腐解能力玉米促生菌的筛选、鉴定及发酵优化[J]. 微生物学通报, 2023, 50(2): 526-540. |
Qiang ZY, Zhu L, Zhu YY, et al. Isolation and identification of a maize growth-promoting bacterial strain with straw-decomposing capacity and optimization of fermentation conditions[J]. Microbiol China, 2023, 50(2): 526-540. |
[1] | 周璐祺, 崔婷茹, 郝楠, 赵雨薇, 赵斌, 刘颖超. 化学蛋白质组学在天然产物分子靶标鉴定中的应用[J]. 生物技术通报, 2023, 39(9): 12-26. |
[2] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
[3] | 吴巧茵, 施友志, 李林林, 彭政, 谭再钰, 刘利平, 张娟, 潘勇. 类胡萝卜素降解菌株的原位筛选及其在雪茄提质增香中的应用[J]. 生物技术通报, 2023, 39(9): 192-201. |
[4] | 江海溶, 崔若琪, 王玥, 白淼, 张明露, 任连海. NH3和H2S降解功能菌的分离鉴定及降解特性研究[J]. 生物技术通报, 2023, 39(9): 246-254. |
[5] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[6] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[7] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[8] | 马俊秀, 吴皓琼, 姜威, 闫更轩, 胡基华, 张淑梅. 蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究[J]. 生物技术通报, 2023, 39(7): 228-240. |
[9] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[10] | 李典典, 粟元, 李洁, 许文涛, 朱龙佼. 抗菌适配体的筛选与应用进展[J]. 生物技术通报, 2023, 39(6): 126-132. |
[11] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[12] | 董聪, 高庆华, 王玥, 罗同阳, 王庆庆. 基于联合策略提高FAD依赖的葡萄糖脱氢酶的酵母表达[J]. 生物技术通报, 2023, 39(6): 316-324. |
[13] | 王一帆, 候林慧, 常永春, 杨亚杰, 陈天, 赵祝跃, 荣二花, 吴玉香. 陆地棉与拟似棉异源六倍体的合成与性状鉴定[J]. 生物技术通报, 2023, 39(5): 168-176. |
[14] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[15] | 陈晓萌, 张雪静, 张欢, 张宝江, 苏艳. 重组牛乳源金黄色葡萄球菌GapC蛋白优势B细胞抗原表位的预测和筛选[J]. 生物技术通报, 2023, 39(5): 306-313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||