生物技术通报 ›› 2023, Vol. 39 ›› Issue (8): 106-113.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1561
展艳1,2(), 周利斌2,3, 金文杰2, 杜艳2,3, 余丽霞2,3, 曲颖2,3, 马永贵1(), 刘瑞媛2,3()
收稿日期:
2022-12-27
出版日期:
2023-08-26
发布日期:
2023-09-05
通讯作者:
马永贵,男,博士,教授,研究方向:青藏高原药用动植物资源;E-mail: 2025041@qhnu.edu.cn;作者简介:
展艳,女,硕士,研究方向:辐射诱变对植物叶色突变;E-mail: zy2676968108@163.com
基金资助:
ZHAN Yan1,2(), ZHOU Li-bin2,3, JIN Wen-jie2, DU Yan2,3, YU Li-xia2,3, QU Ying2,3, MA Yong-gui1(), LIU Rui-yuan2,3()
Received:
2022-12-27
Published:
2023-08-26
Online:
2023-09-05
摘要:
叶色突变体是研究高等植物光合系统结构、叶绿素代谢、叶绿体发育、光合作用及激素生理等一系列生理代谢过程的理想材料,也是遗传和育种研究的重要材料。辐射作为植物叶色诱变的重要手段,培育出的叶色突变体具有理论研究和实际应用价值。本文介绍了不同辐射源诱导下植物叶色突变的类型,并对叶色突变的生理与分子机制研究进行了概述,最后探讨了辐射诱导叶色突变研究存在的问题并进行了展望,以期为提高植物辐射诱变育种效率和促进叶色突变体的利用提供参考。
展艳, 周利斌, 金文杰, 杜艳, 余丽霞, 曲颖, 马永贵, 刘瑞媛. 辐射诱导植物叶色突变的研究进展[J]. 生物技术通报, 2023, 39(8): 106-113.
ZHAN Yan, ZHOU Li-bin, JIN Wen-jie, DU Yan, YU Li-xia, QU Ying, MA Yong-gui, LIU Rui-yuan. Research Progress in Plant Leaf Color Mutation Induced by Radiation[J]. Biotechnology Bulletin, 2023, 39(8): 106-113.
图2 辐射诱变叶色突变的类型 a:60Co辐照下的水稻斑点叶色突变体[21];b:碳离子辐照下的水稻冷敏型白化突变体[24];c:60Co辐照下的水稻光诱导黄叶突变体[25];d:γ2下的水稻光诱两对隐性核基因的控制的白化突变体[27]
Fig. 2 Types of radiation-induced leaf color mutations a: Rice speckled leaf color mutant under 60Co irradiation[21]. b: Rice cold sensitive white leaf color mutant under carbon ion irradiation[24]. c: Rice Light-induced yellow leaf color mutant under 60Co irradiation[25]. d: Rice white leaf color mutant under γ irradiation is controlled by albino mutants of two pairs of recessive nuclear genes[27]
[1] |
Tanaka A, Shikazono N, Hase Y. Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants[J]. J Radiat Res, 2010, 51(3): 223-233.
pmid: 20505261 |
[2] |
Chen X, Feng H, Du Y, et al. Genetic polymorphisms in mutagenesis progeny of Arabidopsis thaliana irradiated by carbon-ion beams and γ-rays irradiations[J]. Int J Radiat Biol, 2020, 96(2): 267-275.
doi: 10.1080/09553002.2020.1688412 pmid: 31692404 |
[3] |
Stadler LJ. Mutations in barley induced by x-rays and radium[J]. Science, 1928, 68(1756): 186-187.
doi: 10.1126/science.68.1756.186 pmid: 17774921 |
[4] |
Muller HJ. The production of mutations by X-rays[J]. PNAS, 1928, 14(9): 714-726.
pmid: 16587397 |
[5] |
Stadler LJ. Genetic effects of X-rays in maize[J]. PNAS, 1928, 14(1): 69-75.
pmid: 16587308 |
[6] | 杨震, 彭选明, 彭伟正. 作物诱变育种研究进展[J]. 激光生物学报, 2016, 25(4): 302-308. |
Yang Z, Peng XM, Peng WZ. Progress of study on crop mutation breeding[J]. Acta Laser Biol Sin, 2016, 25(4): 302-308. | |
[7] |
Mu HX, Sun J, Li LW, et al. Ionizing radiation exposure: hazards, prevention, and biomarker screening[J]. Environ Sci Pollut Res Int, 2018, 25(16): 15294-15306.
doi: 10.1007/s11356-018-2097-9 |
[8] |
王亚玲, 李小寒, 宫方林, 等. 一个新的番茄黄绿叶突变体表型鉴定与遗传分析[J]. 植物遗传资源学报, 2019, 20(1): 215-220.
doi: 10.13430/j.cnki.jpgr.20180518001 |
Wang YL, Li XH, Gong FL, et al. Phenotypic identification and genetic analysis of a novel tomato yellow green leaf mutant[J]. J Plant Genet Resour, 2019, 20(1): 215-220. | |
[9] | 贺治洲, 尹明, 谢振宇, 等. 水稻转绿型新叶黄化不育系特征特性对比研究[J]. 种子, 2014, 33(11): 1-4. |
He ZZ, Yin M, Xie ZY, et al. Comparative studies on characteristics of rice CMS line with yellow green-revertible leaf[J]. Seed, 2014, 33(11): 1-4. | |
[10] | 闵可怜. 小苍兰、 唐菖蒲辐射诱变后代生物学效应及小苍兰M1代辐射保护技术研究[D]. 绵阳: 西南科技大学, 2020. |
Min KL. Study on biological effects of radiation-induced offspring of freesia and gladiolus and radiation protection technology of freesia M1 generation[D]. Mianyang: Southwest University of Science and Technology, 2020. | |
[11] | 孙叶, 刘春贵, 李风童, 等. 60Coγ射线辐照对春兰‘雪山’的诱变效应[J]. 分子植物育种, 2016, 14(10): 2762-2768. |
Sun Y, Liu CG, Li FT, et al. Mutagenic effects of 60co-γ irradiation on Cymbidium goeringii ‘Xueshan’[J]. Mol Plant Breed, 2016, 14(10): 2762-2768. | |
[12] | 刘忠祥, 徐大鹏, 连晓荣, 等. 快中子辐照玉米自交系的细胞学效应及后代变异[J]. 辐射研究与辐射工艺学报, 2017, 35(6): 33-40. |
Liu ZX, Xu DP, Lian XR, et al. Cytological effects and offspring variation of maize inbred lines irradiated by fast neutron[J]. J Radiat Res Radiat Process, 2017, 35(6): 33-40. | |
[13] | 崔涛. 中能碳离子束辐射诱变百脉根叶片黄化突变体基因组重测序分析[D]. 兰州: 中国科学院大学(中国科学院近代物理研究所), 2018. |
Cui T. The genome-wide resequencing analysis of a yellow-leaf lotus japonicus mutant induced by intermediate-energy carbon ion beam irradiation[D]. Lanzhou: Institute of Modern Physics, Chinese Academy of Sciences, 2018. | |
[14] | 包建忠, 李风童, 孙叶, 等. 辐射诱变技术在花卉育种中的研究与应用[J]. 南方农业, 2020, 14(14): 183-186. |
Bao JZ, Li FT, Sun Y, et al. Research and application of radiation mutation technology in flower breeding[J]. South China Agric, 2020, 14(14): 183-186. | |
[15] | 陈睿, 鲜小林, 万斌, 等. 60Co-γ辐射对两个杜鹃品种主要性状的影响[J]. 北方园艺, 2015(2): 46-50. |
Chen R, Xian XL, Wan B, et al. Effect of 60Co-γ ray on traits of two Azalea varieties[J]. North Hortic, 2015(2): 46-50. | |
[16] |
耿兴敏, 王良桂, 李娜, 等. 60Co-γ辐射对桂花种子萌发及幼苗生长的影响[J]. 核农学报, 2016, 30(2): 216-223.
doi: 10.11869/j.issn.100-8551.2016.02.0216 |
Geng XM, Wang LG, Li N, et al. Study on the seed germination and seedling growth of Osmanthus fragrans under 60Co-γ irradiation[J]. J Nucl Agric Sci, 2016, 30(2): 216-223. | |
[17] |
Kiani D, Borzouei A, Ramezanpour S, et al. Application of gamma irradiation on morphological, biochemical, and molecular aspects of wheat(Triticum aestivum L.) under different seed moisture contents[J]. Sci Rep, 2022, 12(1): 11082.
doi: 10.1038/s41598-022-14949-6 |
[18] | Mohd A, Baharun A, Juraimi A, et al. Morphological traits alteration of mutant common turf grass(Cynodon dactylon)induced by gamma ray irradiation[J]. Res J Biotechnol, 2016, 11(12): 93-105. |
[19] | 李春盈, 张建周, 齐建双, 等. 小麦辐射育种过程中辐射剂量的研究[J]. 种子, 2021, 40(12): 102-106. |
Li CY, Zhang JZ, Qi JS, et al. Study on radiation dose in wheat radiation breeding[J]. Seed, 2021, 40(12): 102-106. | |
[20] |
Awan MA, Konzak CF, Rutger JN, et al. Mutagenic effects of sodium azide in rice[J]. Crop Sci, 1980, 20(5): 663-668.
doi: 10.2135/cropsci1980.0011183X002000050030x URL |
[21] |
Sun LT, Wang YH, Liu LL, et al. Isolation and characterization of a spotted leaf 32 mutant with early leaf senescence and enhanced defense response in rice[J]. Sci Rep, 2017, 7: 41846.
doi: 10.1038/srep41846 pmid: 28139777 |
[22] |
刘艳霞, 林冬枝, 董彦君. 水稻温敏感叶色突变体研究进展[J]. 中国水稻科学, 2015, 29(4): 439-446.
doi: 10.3969/j.issn.1001G7216.2015.04.014 |
Liu YX, Lin DZ, Dong YJ. Research advances in thermo-sensitive leaf coloration mutants in rice[J]. Chin J Rice Sci, 2015, 29(4): 439-446. | |
[23] |
Kusumi J, Tsumura Y, Yoshimaru H, et al. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL gene, trnL-trnF IGS region, and trnL intron sequences[J]. Am J Bot, 2000, 87(10): 1480-1488.
pmid: 11034923 |
[24] |
Morita R, Nakagawa M, Takehisa H, et al. Heavy-ion beam mutagenesis identified an essential gene for chloroplast development under cold stress conditions during both early growth and tillering stages in rice[J]. Biosci Biotechnol Biochem, 2017, 81(2): 271-282.
doi: 10.1080/09168451.2016.1249452 URL |
[25] |
Zhou Y, Gong ZY, Yang ZF, et al. Mutation of the light-induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice[J]. PLoS One, 2013, 8(9): e75299.
doi: 10.1371/journal.pone.0075299 URL |
[26] |
Nakamura H, Muramatsu M, Hakata M, et al. Ectopic overexpression of the transcription factor OsGLK1 induces chloroplast development in non-green rice cells[J]. Plant Cell Physiol, 2009, 50(11): 1933-1949.
doi: 10.1093/pcp/pcp138 pmid: 19808806 |
[27] |
Abe T, Matsuyama T, Sekido S, et al. Chlorophyll-deficient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation[J]. J Radiat Res, 2002, 43 Suppl: S157-S161.
doi: 10.1269/jrr.43.s157 pmid: 12793751 |
[28] |
Gong XD, Jiang Q, Xu JL, et al. Disruption of the rice plastid ribosomal protein s20 leads to chloroplast developmental defects and seedling lethality[J]. G3, 2013, 3(10): 1769-1777.
doi: 10.1534/g3.113.007856 URL |
[29] |
Xia M, Xu QY, Liu Y, et al. Mutagenic effect of 60Co γ-irradiation on Rosa multiflora ‘Libellula’ and the mechanism underlying the associated leaf changes[J]. Plants, 2022, 11(11): 1438.
doi: 10.3390/plants11111438 URL |
[30] |
Li N, Jia JZ, Xia C, et al. Characterization and mapping of novel chlorophyll deficient mutant genes in durum wheat[J]. Breed Sci, 2013, 63(2): 169-175.
doi: 10.1270/jsbbs.63.169 URL |
[31] |
Bali S, Lawrence AD, Lobo SA, et al. Molecular hijacking of siroheme for the synthesis of heme and d1 heme[J]. PNAS, 2011, 108(45): 18260-18265.
doi: 10.1073/pnas.1108228108 URL |
[32] |
Terry MJ, Kendrick RE. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato[J]. Plant Physiol, 1999, 119(1): 143-152.
pmid: 9880355 |
[33] |
Beale SI. Green genes gleaned[J]. Trends Plant Sci, 2005, 10(7): 309-312.
pmid: 15951223 |
[34] |
Wu ZM, Zhang X, He B, et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis[J]. Plant Physiol, 2007, 145(1): 29-40.
doi: 10.1104/pp.107.100321 pmid: 17535821 |
[35] |
Chen H, Cheng ZJ, Ma XD, et al. A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice[J]. Plant Cell Rep, 2013, 32(12): 1855-1867.
doi: 10.1007/s00299-013-1498-y URL |
[36] |
Shi JQ, Wang YQ, Guo S, et al. Molecular mapping and candidate gene analysis of a Yellow-green leaf 6(ygl6)mutant in rice[J]. Crop Sci, 2015, 55(2): 669-680.
doi: 10.2135/cropsci2014.07.0483 URL |
[37] |
Deng XJ, Zhang HQ, Wang Y, et al. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid(Oryza sativa L. ssp. indica)[J]. PLoS One, 2014, 9(6): e99564.
doi: 10.1371/journal.pone.0099564 URL |
[38] |
Zhu XY, Guo S, Wang ZW, et al. Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice(Oryza sativa)[J]. BMC Plant Biol, 2016, 16(1): 134.
doi: 10.1186/s12870-016-0821-5 URL |
[39] |
Zhang HT, Li JJ, Yoo JH, et al. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development[J]. Plant Mol Biol, 2006, 62(3): 325-337.
doi: 10.1007/s11103-006-9024-z pmid: 16915519 |
[40] |
Gan Y, Kou YP, Yan F, et al. Comparative transcriptome profiling analysis reveals the adaptive molecular mechanism of yellow-green leaf in Rosa beggeriana ‘Aurea’[J]. Front Plant Sci, 2022, 13: 845662.
doi: 10.3389/fpls.2022.845662 URL |
[41] |
Zhou KN, Ren YL, Lv J, et al. Young Leaf Chlorosis 1, a chloroplast-localized gene required for chlorophyll and lutein accumulation during early leaf development in rice[J]. Planta, 2013, 237(1): 279-292.
doi: 10.1007/s00425-012-1756-1 pmid: 23053539 |
[42] |
Kuai BK, Chen JY, Hörtensteiner S. The biochemistry and molecular biology of chlorophyll breakdown[J]. J Exp Bot, 2018, 69(4): 751-767.
doi: 10.1093/jxb/erx322 pmid: 28992212 |
[43] | 徐明远, 何鹏, 赖伟, 等. 植物叶色变异分子机制研究进展[J]. 分子植物育种, 2021, 19(10): 3448-3455. |
Xu MY, He P, Lai W, et al. Advances in molecular mechanism of plant leaf color variation[J]. Mol Plant Breed, 2021, 19(10): 3448-3455. | |
[44] |
Jiang HW, Li MR, Liang NT, et al. Molecular cloning and function analysis of the stay green gene in rice[J]. Plant J, 2007, 52(2): 197-209.
doi: 10.1111/j.1365-313X.2007.03221.x pmid: 17714430 |
[45] |
Yamatani H, Sato Y, Masuda Y, et al. NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll-protein complexes during leaf senescence[J]. Plant J, 2013, 74(4): 652-662.
doi: 10.1111/tpj.2013.74.issue-4 URL |
[46] |
Wang WJ, Zheng KL, Gong XD, et al. The rice TCD11 encoding plastid ribosomal protein S6 is essential for chloroplast development at low temperature[J]. Plant Sci, 2017, 259: 1-11.
doi: 10.1016/j.plantsci.2017.02.007 URL |
[47] |
Wu QF, Zhang C, Chen Y, et al. OsCpn60β1 is essential for chloroplast development in rice(Oryza sativa L.)[J]. Int J Mol Sci, 2020, 21(11): 4023.
doi: 10.3390/ijms21114023 URL |
[48] |
Wang YF, Zhang JH, Shi XL, et al. Temperature-sensitive albino gene TCD5, encoding a monooxygenase, affects chloroplast development at low temperatures[J]. J Exp Bot, 2016, 67(17): 5187-5202.
doi: 10.1093/jxb/erw287 URL |
[49] |
Lin DZ, Jiang Q, Ma XJ, et al. Rice TSV3 encoding obg-like GTPase protein is essential for chloroplast development during the early leaf stage under cold stress[J]. G3, 2018, 8(1): 253-263.
doi: 10.1534/g3.117.300249 URL |
[50] |
Xu J, Deng YW, Li Q, et al. STRIPE2 encodes a putative dCMP deaminase that plays an important role in chloroplast development in rice[J]. J Genet Genomics, 2014, 41(10): 539-548.
doi: 10.1016/j.jgg.2014.05.008 URL |
[51] |
Zhou KN, Ren YL, Zhou F, et al. Young Seedling Stripe1 encodes a chloroplast nucleoid-associated protein required for chloroplast development in rice seedlings[J]. Planta, 2017, 245(1): 45-60.
doi: 10.1007/s00425-016-2590-7 pmid: 27578095 |
[52] |
Jiang DY, Tang RJ, Shi YF, et al. Arabidopsis seedling lethal 1 interacting with plastid-encoded RNA polymerase complex proteins is essential for chloroplast development[J]. Front Plant Sci, 2020, 11: 602782.
doi: 10.3389/fpls.2020.602782 URL |
[53] |
Wang SH, Lim JH, Kim SS, et al. Mutation of SPOTTED LEAF3(SPL3)impairs abscisic acid-responsive signalling and delays leaf senescence in rice[J]. J Exp Bot, 2015, 66(22): 7045-7059.
doi: 10.1093/jxb/erv401 URL |
[54] |
Wang R, Yang F, Zhang XQ, et al. Characterization of a thermo-inducible chlorophyll-deficient mutant in barley[J]. Front Plant Sci, 2017, 8: 1936.
doi: 10.3389/fpls.2017.01936 pmid: 29184561 |
[55] |
Li QZ, Zhu FY, Gao XL, et al. Young Leaf Chlorosis 2 encodes the stroma-localized heme oxygenase 2 which is required for normal tetrapyrrole biosynthesis in rice[J]. Planta, 2014, 240(4): 701-712.
doi: 10.1007/s00425-014-2116-0 pmid: 25037719 |
[56] |
Yamaguchi H. Mutation breeding of ornamental plants using ion beams[J]. Breed Sci, 2018, 68(1): 71-78.
doi: 10.1270/jsbbs.17086 URL |
[1] | 李玉岭, 毛欣, 张元帅, 董元夫, 刘翠兰, 段春华, 毛秀红. 辐射诱变技术在木本植物育种中的应用及展望[J]. 生物技术通报, 2023, 39(6): 12-30. |
[2] | 雷彩荣, 郭晓鹏, 柴冉, 张苗苗, 任军乐, 陆栋. 组学技术在重离子辐射微生物诱变育种中的应用[J]. 生物技术通报, 2023, 39(5): 54-62. |
[3] | 赵明明, 唐殷, 郭磊周, 韩佳慧, 葛佳茗, 孟勇, 平淑珍, 周正富, 王劲. Lon1蛋白酶参与耐辐射异常球菌高温胁迫及细胞分裂的功能研究[J]. 生物技术通报, 2022, 38(5): 149-158. |
[4] | 郭磊周, 韩佳慧, 唐殷, 李江, 黄程, 代其林, 王劲, 平淑珍, 江世杰. DrwH类信号肽序列对其抗氧化功能的影响[J]. 生物技术通报, 2019, 35(5): 125-132. |
[5] | 梁东雨, 王禹佳, 苏敖纯, 徐洪伟, 周晓馥. 外源茉莉酸对牛皮杜鹃UV-B辐射缓解作用研究[J]. 生物技术通报, 2019, 35(10): 64-70. |
[6] | 贾蓉, 苏锋涛, 胡步荣. 重离子的辐射生物效应及其在生命科学中的应用[J]. 生物技术通报, 2018, 34(1): 67-78. |
[7] | 陈晓飞,宁萌,冯菲,向凌云,周伏忠. 耐辐射球菌辐射耐受机制的研究进展[J]. 生物技术通报, 2017, 33(5): 9-18. |
[8] | 刘小利, 江世杰, 薛冬, 刘盈盈, 吴小丽, 冯帅, 韩佳慧, 汪雨舟, 平淑珍, 王劲. 耐辐射异常球菌dlp基因缺失突变株构建及其生物学功能研究[J]. 生物技术通报, 2017, 33(2): 155-163. |
[9] | 吴小丽, 刘盈盈, 江世杰, 陈云, 刘小利, 汪雨舟, 平淑珍, 王劲. 铁蛋白DrfE对耐辐射异常球菌抗氧化酶活性的影响[J]. 生物技术通报, 2017, 33(2): 164-171. |
[10] | 王以斌, 张爱军, 刘芳明, 郑洲, 缪锦来. 南极冰藻对南极极端环境的适应性研究进展[J]. 生物技术通报, 2016, 32(10): 128-134. |
[11] | 齐婷婷,段江燕. UV-B辐射对小麦叶片蛋白的影响[J]. 生物技术通报, 2013, 0(3): 53-59. |
[12] | 李苗;高丽美;李永锋;韩榕;. 增强UV-B辐射对小麦幼苗基因组DNA的影响及RAPD分析体系的建立[J]. , 2010, 0(05): 87-92. |
[13] | 师生波;韩发;. 紫外光源及太阳UV-B辐射的模拟实验[J]. , 2006, 0(S1): 161-166. |
[14] | 叶香尘;兰干球;蒋和生;郭亚芬;王爱德;. 猪电压依赖性阴离子通道1基因的分离及物理定位[J]. , 2006, 0(03): 93-94. |
[15] | 王艳丽;陈婉华;谢应先;徐晶;王瑾;熊国林;罗庆良. 螺旋藻多糖的药理作用研究[J]. , 1999, 0(05): 26-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||