生物技术通报 ›› 2023, Vol. 39 ›› Issue (8): 262-271.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1574
褚睿1,2(), 李昭轩1,2, 张学青1,2, 杨东亚1,2, 曹行行1,2, 张雪艳1,2()
收稿日期:
2023-01-02
出版日期:
2023-08-26
发布日期:
2023-09-05
通讯作者:
张雪艳,女,博士,教授,研究方向:设施蔬菜栽培与生理;E-mail: zhangxueyan123@sina.com作者简介:
褚睿,女,硕士研究生,研究方向:设施蔬菜栽培与生理;E-mail: churui0314@163.com
基金资助:
CHU Rui1,2(), LI Zhao-xuan1,2, ZHANG Xue-qing1,2, YANG Dong-ya1,2, CAO Hang-hang1,2, ZHANG Xue-yan1,2()
Received:
2023-01-02
Published:
2023-08-26
Online:
2023-09-05
摘要:
尖镰孢菌黄瓜专化型(Fusarium oxysporum f. sp. cucumerinum)引起的枯萎病严重影响黄瓜产业可持续发展,为获得高效拮抗黄瓜枯萎病的芽孢杆菌并明确其促生效果,从具有一定抗性的芽孢杆菌中,筛选出高抗尖镰孢菌的生防菌株,并对其进行形态、生理生化、遗传特性及植株促生特性的评价。结果表明,菌株N1、N3和N6抑制尖镰孢菌效果显著,抑菌率分别为77.71%、75.94%、74.76%。鉴定3个菌株均为贝莱斯芽孢杆菌(Bacillus velezensis),且具解钾、分泌蛋白酶、几丁质酶、果胶酶和产铁载体的能力。黄瓜幼苗防病促生盆栽试验表明,接种菌株N1、N3和N6病情指数均显著降低,在接种18 d后防病效果分别为41.93%、20.97%、66.13%。与单一接种病原菌处理相比,N1、N3和N6接种显著促进了黄瓜幼苗生长,包括株高、茎粗、叶面积、叶绿素含量、地上和地下部鲜重,其中N6处理增加效果最显著,分别增加21.56%、56.13%、47.95%、76.18%、229.89%、70%。与对照相比,处理植株长势特性除地下部鲜重外均显著降低;病原菌接种条件下,添加N6菌显著增加茎粗和地上部鲜重。N6可作为防控黄瓜枯萎病、促进幼苗生长有潜力的生物防治资源,用于黄瓜可持续高效生产。
褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271.
CHU Rui, LI Zhao-xuan, ZHANG Xue-qing, YANG Dong-ya, CAO Hang-hang, ZHANG Xue-yan. Screening and Identification of Antagonistic Bacillus spp. Against Cucumber Fusarium wilt and Its Biocontrol Effect[J]. Biotechnology Bulletin, 2023, 39(8): 262-271.
菌株Strain | 菌落直径Colony diameter/cm | 抑菌率Inhibition rate/% | 菌株Strain | 菌落直径Colony diameter/cm | 抑菌率Inhibition rate/% | |
---|---|---|---|---|---|---|
N1 | 2.30 | 72.18 | N26 | 3.03 | 60.84 | |
N2 | 2.40 | 70.63 | N27 | 3.17 | 58.78 | |
N3 | 2.40 | 70.63 | N28 | 2.79 | 58.48 | |
N4 | 2.42 | 70.38 | N29 | 2.80 | 58.33 | |
N5 | 2.43 | 70.12 | N30 | 2.84 | 57.58 | |
N6 | 2.47 | 69.60 | N31 | 2.84 | 57.58 | |
N7 | 2.50 | 69.09 | N32 | 3.28 | 56.98 | |
N8 | 2.58 | 68.81 | N33 | 2.88 | 56.82 | |
N9 | 2.53 | 68.57 | N34 | 2.93 | 55.92 | |
N10 | 2.53 | 68.57 | N35 | 2.95 | 55.62 | |
N11 | 2.53 | 68.57 | N36 | 3.85 | 48.22 | |
N12 | 2.55 | 68.32 | N37 | 4.11 | 44.26 | |
N13 | 2.55 | 68.32 | N38 | 4.16 | 43.48 | |
N14 | 2.60 | 67.54 | N39 | 4.69 | 35.24 | |
N15 | 2.63 | 67.03 | N40 | 4.27 | 31.76 | |
N16 | 2.65 | 66.77 | N41 | 4.38 | 29.65 | |
N17 | 2.68 | 66.25 | N42 | 5.02 | 18.18 | |
N18 | 2.73 | 65.48 | N43 | 5.40 | 11.23 | |
N19 | 2.77 | 64.97 | N44 | 5.50 | 9.42 | |
N20 | 2.80 | 64.45 | N45 | 5.80 | 3.99 | |
N21 | 2.80 | 64.45 | N46 | 5.80 | 3.99 | |
N22 | 2.85 | 63.68 | N47 | 5.82 | 3.68 | |
N23 | 2.87 | 63.42 | N48 | 5.88 | 2.48 | |
N24 | 2.88 | 63.16 | N49 | 7.10 | 1.95 | |
N25 | 2.97 | 61.88 | N50 | 6.97 | 0.00 |
表1 拮抗抗性芽孢杆菌菌株对尖镰孢菌的抑菌作用
Table 1 Inhibition of antagonist Bacillus strain against Fusarium oxysporum f. sp. cucumerinum(FOC)
菌株Strain | 菌落直径Colony diameter/cm | 抑菌率Inhibition rate/% | 菌株Strain | 菌落直径Colony diameter/cm | 抑菌率Inhibition rate/% | |
---|---|---|---|---|---|---|
N1 | 2.30 | 72.18 | N26 | 3.03 | 60.84 | |
N2 | 2.40 | 70.63 | N27 | 3.17 | 58.78 | |
N3 | 2.40 | 70.63 | N28 | 2.79 | 58.48 | |
N4 | 2.42 | 70.38 | N29 | 2.80 | 58.33 | |
N5 | 2.43 | 70.12 | N30 | 2.84 | 57.58 | |
N6 | 2.47 | 69.60 | N31 | 2.84 | 57.58 | |
N7 | 2.50 | 69.09 | N32 | 3.28 | 56.98 | |
N8 | 2.58 | 68.81 | N33 | 2.88 | 56.82 | |
N9 | 2.53 | 68.57 | N34 | 2.93 | 55.92 | |
N10 | 2.53 | 68.57 | N35 | 2.95 | 55.62 | |
N11 | 2.53 | 68.57 | N36 | 3.85 | 48.22 | |
N12 | 2.55 | 68.32 | N37 | 4.11 | 44.26 | |
N13 | 2.55 | 68.32 | N38 | 4.16 | 43.48 | |
N14 | 2.60 | 67.54 | N39 | 4.69 | 35.24 | |
N15 | 2.63 | 67.03 | N40 | 4.27 | 31.76 | |
N16 | 2.65 | 66.77 | N41 | 4.38 | 29.65 | |
N17 | 2.68 | 66.25 | N42 | 5.02 | 18.18 | |
N18 | 2.73 | 65.48 | N43 | 5.40 | 11.23 | |
N19 | 2.77 | 64.97 | N44 | 5.50 | 9.42 | |
N20 | 2.80 | 64.45 | N45 | 5.80 | 3.99 | |
N21 | 2.80 | 64.45 | N46 | 5.80 | 3.99 | |
N22 | 2.85 | 63.68 | N47 | 5.82 | 3.68 | |
N23 | 2.87 | 63.42 | N48 | 5.88 | 2.48 | |
N24 | 2.88 | 63.16 | N49 | 7.10 | 1.95 | |
N25 | 2.97 | 61.88 | N50 | 6.97 | 0.00 |
菌株 Strain | 菌落直径 Colony diameter/cm | 抑菌率 Inhibition rate/% |
---|---|---|
N1 | 2.08 | 77.71 |
N3 | 2.20 | 75.94 |
N6 | 2.28 | 74.76 |
N7 | 2.30 | 74.53 |
N2 | 2.32 | 74.29 |
N4 | 2.49 | 71.82 |
表2 尖镰孢菌抗性芽孢杆菌复筛抑菌率
Table 2 Inhibition rate of Bacillus spp. re-screening on FOC
菌株 Strain | 菌落直径 Colony diameter/cm | 抑菌率 Inhibition rate/% |
---|---|---|
N1 | 2.08 | 77.71 |
N3 | 2.20 | 75.94 |
N6 | 2.28 | 74.76 |
N7 | 2.30 | 74.53 |
N2 | 2.32 | 74.29 |
N4 | 2.49 | 71.82 |
试验项目 Test project | 结果 Result | |||
---|---|---|---|---|
N1 | N3 | N6 | ||
甲基红(M-R)Methyl red | - | - | - | |
接触酶Catalase | - | - | - | |
氧化酶Oxidase | + | + | + | |
淀粉水解Amylum hydrolysis | - | - | - | |
纤维素酶Cellulase | - | - | - | |
明胶液化Gelatin experiment | + | - | + | |
乙酰甲基甲醇(V-P)Voges-Proskauer | - | - | - | |
葡萄糖氧化发酵Oxidation-fermentation of glucose | + | + | + |
表3 N1、N3和N6菌株的生理生化结果
Table 3 Physiological and biochemical results of N1, N3, and N6 strains
试验项目 Test project | 结果 Result | |||
---|---|---|---|---|
N1 | N3 | N6 | ||
甲基红(M-R)Methyl red | - | - | - | |
接触酶Catalase | - | - | - | |
氧化酶Oxidase | + | + | + | |
淀粉水解Amylum hydrolysis | - | - | - | |
纤维素酶Cellulase | - | - | - | |
明胶液化Gelatin experiment | + | - | + | |
乙酰甲基甲醇(V-P)Voges-Proskauer | - | - | - | |
葡萄糖氧化发酵Oxidation-fermentation of glucose | + | + | + |
试验项目 Test project | 结果 Result | ||
---|---|---|---|
N1 | N3 | N6 | |
铁载体Siderophore | + | + | + |
解钾 Releasing potassium | + | + | + |
溶磷Releasing phosphorus | - | - | - |
固氮Nitrogen-fixing ability | - | - | - |
蛋白酶 Protease | + | + | + |
几丁质酶Chitinase | + | + | + |
果胶酶Pectinase | + | + | + |
ACC脱氨酶活性ACC deaminase efficiency | - | - | - |
表4 N1、N3和N6菌株的抗病促生特性鉴定
Table 4 Identification of disease resistance of N1, N3, and N6 strains and growth- promoting characteristics
试验项目 Test project | 结果 Result | ||
---|---|---|---|
N1 | N3 | N6 | |
铁载体Siderophore | + | + | + |
解钾 Releasing potassium | + | + | + |
溶磷Releasing phosphorus | - | - | - |
固氮Nitrogen-fixing ability | - | - | - |
蛋白酶 Protease | + | + | + |
几丁质酶Chitinase | + | + | + |
果胶酶Pectinase | + | + | + |
ACC脱氨酶活性ACC deaminase efficiency | - | - | - |
处理 Treatment | 接种尖镰孢菌后的时间Time after inoculation with FOC/d | |||||||
---|---|---|---|---|---|---|---|---|
10 | 14 | 18 | 22 | |||||
病情指数 Disease index | 防病效果 Control efficiency/% | 病情指数 Disease index | 防病效果 Control efficiency/% | 病情指数 Disease index | 防病效果 Control efficiency/% | 病情指数 Disease index | 防病效果 Control efficiency/% | |
CK2 | 12.50 | 33.33 | 69.44 | 86.11 | ||||
N1 | 9.72 | 22.22 | 8.33 | 75.00 | 22.22 | 68.00 | 50.00 | 41.93 |
N3 | 9.72 | 22.22 | 20.83 | 37.49 | 34.72 | 50.00 | 68.06 | 20.97 |
N6 | 5.56 | 55.56 | 8.33 | 75.00 | 12.50 | 82.00 | 29.17 | 66.13 |
表5 菌株对黄瓜枯萎病的防病效果
Table 5 Disease-prevention effect of the strain on cucumber wilt
处理 Treatment | 接种尖镰孢菌后的时间Time after inoculation with FOC/d | |||||||
---|---|---|---|---|---|---|---|---|
10 | 14 | 18 | 22 | |||||
病情指数 Disease index | 防病效果 Control efficiency/% | 病情指数 Disease index | 防病效果 Control efficiency/% | 病情指数 Disease index | 防病效果 Control efficiency/% | 病情指数 Disease index | 防病效果 Control efficiency/% | |
CK2 | 12.50 | 33.33 | 69.44 | 86.11 | ||||
N1 | 9.72 | 22.22 | 8.33 | 75.00 | 22.22 | 68.00 | 50.00 | 41.93 |
N3 | 9.72 | 22.22 | 20.83 | 37.49 | 34.72 | 50.00 | 68.06 | 20.97 |
N6 | 5.56 | 55.56 | 8.33 | 75.00 | 12.50 | 82.00 | 29.17 | 66.13 |
处理 Treatment | 株高 Stem length/cm | 茎粗 Stem diameter/mm | 叶面积 Leaf area/cm2 | 叶绿素含量Chlorophyll content/SPAD | 地上部鲜重 Fresh weight of above ground/g | 地下部鲜重Fresh weight of below ground/g |
---|---|---|---|---|---|---|
CK1 | 17.66±0.73a | 3.9±0.11b | 32.65±0.87a | 39.50±0.72b | 5.55±0.13b | 1.67±0.23ab |
CK2 | 13.84±0.95b | 2.77±0.06c | 23.21±2.42b | 24.35±1.21c | 2.54±0.46c | 1.03±0.14b |
N1 | 15.68±0.52ab | 4.17±0.07ab | 35.80±2.79a | 45.85±1.30a | 7.15±0.4ab | 1.44±0.08ab |
N3 | 14.46±0.25b | 4.24±0.15a | 32.49±2.18a | 44.68±1.45a | 6.45±0.86b | 1.47±0.25ab |
N6 | 16.83±0.37a | 4.33±0.09a | 34.34±1.78a | 42.9±0.81ab | 8.39±0.45a | 1.76±0.19a |
表6 菌株对黄瓜幼苗的促生效果
Table 6 Growth-promoting effect of strains on cucumber seedlings
处理 Treatment | 株高 Stem length/cm | 茎粗 Stem diameter/mm | 叶面积 Leaf area/cm2 | 叶绿素含量Chlorophyll content/SPAD | 地上部鲜重 Fresh weight of above ground/g | 地下部鲜重Fresh weight of below ground/g |
---|---|---|---|---|---|---|
CK1 | 17.66±0.73a | 3.9±0.11b | 32.65±0.87a | 39.50±0.72b | 5.55±0.13b | 1.67±0.23ab |
CK2 | 13.84±0.95b | 2.77±0.06c | 23.21±2.42b | 24.35±1.21c | 2.54±0.46c | 1.03±0.14b |
N1 | 15.68±0.52ab | 4.17±0.07ab | 35.80±2.79a | 45.85±1.30a | 7.15±0.4ab | 1.44±0.08ab |
N3 | 14.46±0.25b | 4.24±0.15a | 32.49±2.18a | 44.68±1.45a | 6.45±0.86b | 1.47±0.25ab |
N6 | 16.83±0.37a | 4.33±0.09a | 34.34±1.78a | 42.9±0.81ab | 8.39±0.45a | 1.76±0.19a |
[1] | 马晓凤. 黄瓜枯萎病综合防控[J]. 西北园艺: 综合, 2019(5): 51-52. |
Ma XF. Integrated control of cucumber Fusarium wilt[J]. Northwest Hortic, 2019(5): 51-52. | |
[2] | 王英姿, 纪明山, 祁之秋, 等. 利用木霉菌生物防治黄瓜枯萎病研究进展[J]. 北方园艺, 2008(10): 81-82. |
Wang YZ, Ji MS, Qi ZQ, et al. Research progress on biological control of cucumber Fusarium wilt by Trichoderma spp[J]. North Hortic, 2008(10): 81-82. | |
[3] | 梁瑶. 棘孢木霉防治黄瓜枯萎病的土壤微生态研究[D]. 北京: 中国农业科学院, 2021. |
Liang Y. Study of Trichoderma asperellum against cucumber Fusarium wilt on soil microecosystem[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. | |
[4] |
Sun YM, Wang M, Li YR, et al. Wilted cucumber plants infected by Fusarium oxysporum f. sp. cucumerinum do not suffer from water shortage[J]. Ann Bot, 2017, 120(3): 427-436.
doi: 10.1093/aob/mcx065 URL |
[5] | 杨侃侃, 刘晓虹, 陈宸, 等. 黄瓜枯萎病研究进展[J]. 湖南农业科学, 2019(6): 121-124. |
Yang KK, Liu XH, Chen C, et al. Research progress of cucumber Fusarium wilt[J]. Hunan Agric Sci, 2019(6): 121-124. | |
[6] | 陈海龙. 黄瓜枯萎病生物防治研究进展[J]. 现代农业科技, 2014(18): 160. |
Chen HL. Research progress on biological control of cucumber Fusarium wilt[J]. Mod Agric Sci Technol, 2014(18): 160. | |
[7] | 农业农村部. 中华人民共和国农业农村部公告第351号[J]. 湖北植保, 2021(1): 1-2. |
Ministry of Agriculture and Rural Affairs. Announcement No.351 of the ministry of Agriculture and Rural Affairs of the people's republic of China[J]. Hubei Plant Prot, 2021(1): 1-2. | |
[8] | 冉新炎, 齐素敏, 韩广泉, 等. 产表面活性素野生菌株的筛选、鉴定及其发酵条件研究[J]. 山东农业科学, 2021, 53(6): 77-83. |
Ran XY, Qi SM, Han GQ, et al. Study of screening, identification and fermentation conditions of wild strains producing surfactin[J]. Shandong Agric Sci, 2021, 53(6): 77-83. | |
[9] | 刘雪娇, 李红亚, 李术娜, 等. 贝莱斯芽孢杆菌3A3-15生防和促生机制[J]. 河北大学学报: 自然科学版, 2019, 39(3): 302-310. |
Liu XJ, Li HY, Li SN, et al. Biocontrol and growth promotion mechanisms of Bacillus velezensis 3A3-15[J]. J Hebei Univ Nat Sci Ed, 2019, 39(3): 302-310. | |
[10] | 张德锋, 高艳侠, 王亚军, 等. 贝莱斯芽孢杆菌的分类、拮抗功能及其应用研究进展[J]. 微生物学通报, 2020, 47(11): 3634-3649. |
Zhang DF, Gao YX, Wang YJ, et al. Advances in taxonomy, antagonistic function and application of Bacillus velezensis[J]. Microbiol China, 2020, 47(11): 3634-3649. | |
[11] |
Han LJ, Wang ZY, Li N, et al. Bacillus amyloliquefaciens B1408 suppresses Fusarium wilt in cucumber by regulating the rhizosphere microbial community[J]. Applied Soil Ecology, 2019, 136: 55-66.
doi: 10.1016/j.apsoil.2018.12.011 URL |
[12] |
Liang LQ, Fu YJ, Deng SS, et al. Genomic, antimicrobial, and aphicidal traits of Bacillus velezensis ATR2, and its biocontrol potential against ginger rhizome rot disease caused by Bacillus pumilus[J]. Microorganisms, 2021, 10(1): 63.
doi: 10.3390/microorganisms10010063 URL |
[13] | 杨革. 微生物学实验教程[M]. 2版. 北京: 科学出版社, 2010. |
Yang G. Microbiology experiment[M]. 2nd ed. Beijing: Science Press, 2010. | |
[14] | 蒋凯丽, 周新丽, 高海燕. 一株具有拮抗作用的解淀粉芽孢杆菌的筛选、鉴定及生物学特性研究[J]. 工业微生物, 2020, 50(1): 8-13. |
Jiang KL, Zhou XL, Gao HY. Screening, identification and biological characteristics of an antagonistic Bacillus amyloliquefaciens[J]. Ind Microbiol, 2020, 50(1): 8-13. | |
[15] |
Yu XM, Ai CX, Xin L, et al. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper[J]. Eur J Soil Biol, 2011, 47(2): 138-145.
doi: 10.1016/j.ejsobi.2010.11.001 URL |
[16] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Handbook of identification of common bacterial systems[M]. Beijing: Science Press, 2001. | |
[17] |
Wu X, Xie Y, Qiao J, et al. Rhizobacteria strain from a hypersaline environment promotes plant growth of Kengyilia thoroldiana[J]. Microbiology, 2019, 88(2): 220-231.
doi: 10.1134/S0026261719020127 |
[18] |
Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms[J]. FEMS Microbiol Lett, 1999, 170(1): 265-270.
doi: 10.1111/j.1574-6968.1999.tb13383.x pmid: 9919677 |
[19] | 韩泽宇. 黄瓜高效耐盐促生菌株筛选鉴定及复合菌剂的制备[D]. 银川: 宁夏大学, 2019. |
Han ZY. The screening and identification of effective salt-tolerant and growth-promoting bacteria strains of cucumber and the preparation of the bacterial compound[D]. Yinchuan: Ningxia University, 2019. | |
[20] |
Milagres AM, Machuca A, Napoleão D. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S(CAS)agar plate assay[J]. J Microbiol Methods, 1999, 37(1): 1-6.
pmid: 10395458 |
[21] |
要雅倩, 成娜娜, 李培根, 等. 解淀粉芽胞杆菌Bacillus amyloliquefaciens T-6的分离鉴定及抗病促生潜力[J]. 生物技术通报, 2020, 36(9): 202-210.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0847 |
Yao YQ, Cheng NN, Li PG, et al. Isolation and identification of Bacillus amyloliquefaciens T-6 and its potential of resisting disease and promoting growth[J]. Biotechnol Bull, 2020, 36(9): 202-210.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0847 |
|
[22] | 中华人民共和国农业部. 黄瓜主要病害抗病性鉴定技术规程第3部分:黄瓜抗枯萎病鉴定技术规程: NY/T 1857.3—2010[J]. 北京: 中国农业出版社, 2010. |
Ministry of Agriculture of the People's Republic of China. Rules for evaluation of cucumber for resistance to diseases—part 3: rule for evaluation of cucumber for resistance to fusarium wilt: NY/T 1857.3—2010[J]. Beijing: China Agriculture Press, 2010. | |
[23] | 韦巧婕, 郑新艳, 邓开英, 等. 黄瓜枯萎病拮抗菌的筛选鉴定及其生物防效[J]. 南京农业大学学报, 2013, 36(1): 40-46. |
Wei QJ, Zheng XY, Deng KY, et al. Screening and identification of antagonistic Bacillus vallismortis B against cucumber Fusarium wilt and its biological effect[J]. J Nanjing Agric Univ, 2013, 36(1): 40-46. | |
[24] |
Banat IM, Makkar RS, Cameotra SS. Potential commercial applications of microbial surfactants[J]. Appl Microbiol Biotechnol, 2000, 53(5): 495-508.
doi: 10.1007/s002530051648 pmid: 10855707 |
[25] |
Durairaj K, Velmurugan P, Park JH, et al. Characterization and assessment of two biocontrol bacteria against Pseudomonas syringae wilt in Solanum lycopersicum and its genetic responses[J]. Microbiol Res, 2018, 206: 43-49.
doi: 10.1016/j.micres.2017.09.003 URL |
[26] | 勾宇春, 王宗抗, 张志鹏, 等. 植物根际促生菌作用机制研究进展[J]. 应用与环境生物学报, 2023, 29(2):495-506. |
Gou YC, Wang ZK, Zhang ZP, et al. Advance in role mechanisms of plant growth promoting rhizobacteria[J]. Chin J Appl Environ Biol, 2023, 29(2):495-506. | |
[27] | Agbodjato NA, Noumavo PA, Adjanohoun A, et al. Synergistic effects of plant growth promoting rhizobacteria and chitosan on in vitro seeds germination, greenhouse growth, and nutrient uptake of maize(Zea mays L.)[J]. Biotechnol Res Int, 2016, 2016: 7830182. |
[28] | 马兴. 黄瓜枯萎病生防菌的筛选与鉴定及其生物有机肥的作用效果[D]. 兰州: 甘肃农业大学, 2017. |
Ma X. Screening and identification of the biocontrol strains about cucumber Fusarium wilt and effects of its bio-organic fertilizer[D]. Lanzhou: Gansu Agricultural University, 2017. | |
[29] | 杨茉. 辣椒根际促生菌的分离筛选及抗病促生特性研究[D]. 沈阳: 沈阳师范大学, 2020. |
Yang M. Isolation and screening of rhizosphere growth-promoting bacteria in pepper and disease resistance[D]. Shenyang: Shenyang Normal University, 2020. | |
[30] |
Huang R, Feng HC, Xu ZH, et al. Identification of adhesins in plant beneficial rhizobacteria Bacillus velezensis SQR9 and their effect on root colonization[J]. Mol Plant Microbe Interact, 2022, 35(1): 64-72.
doi: 10.1094/MPMI-09-21-0234-R URL |
[1] | 马俊秀, 吴皓琼, 姜威, 闫更轩, 胡基华, 张淑梅. 蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究[J]. 生物技术通报, 2023, 39(7): 228-240. |
[2] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[3] | 章乐乐, 王冠, 柳凤, 胡汉桥, 任磊. 芒果炭疽病拮抗菌分离、鉴定及生防机制研究[J]. 生物技术通报, 2023, 39(4): 277-287. |
[4] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[5] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[6] | 杨东亚, 祁瑞雪, 李昭轩, 林薇, 马慧, 张雪艳. 黄瓜茄病镰刀菌拮抗芽孢杆菌的筛选、鉴定及促生效果[J]. 生物技术通报, 2023, 39(2): 211-220. |
[7] | 罗宁, 焦阳, 茆振川, 李惠霞, 谢丙炎. 木霉菌对根结线虫和孢囊线虫防治机理研究进展[J]. 生物技术通报, 2023, 39(2): 35-50. |
[8] | 马赛买, 李同源, 马燕军, 韩富军, 彭海, 孔维宝. 几丁质酶在农作物病虫害生物防治中的研究进展[J]. 生物技术通报, 2023, 39(10): 29-40. |
[9] | 李霁虹, 荆玉玲, 马桂珍, 郭荣君, 李世东. 无色杆菌77的基因组构成及其趋化和耐药特性[J]. 生物技术通报, 2022, 38(9): 136-146. |
[10] | 祖雪, 周瑚, 朱华珺, 任佐华, 刘二明. 枯草芽孢杆菌K-268的分离鉴定及对水稻稻瘟病的防病效果[J]. 生物技术通报, 2022, 38(6): 136-146. |
[11] | 严聪文, 苏代发, 代庆忠, 张振荣, 田云霞, 董琼娥, 周文星, 陈杉艳, 童江云, 崔晓龙. 草莓病害的生物防治研究进展[J]. 生物技术通报, 2022, 38(12): 73-87. |
[12] | 舒洁, 张仁军, 梁应冲, 陈雅琼, 张娟, 郭建, 陈穗云. 植物源与微生物源生物制剂复配防治根结线虫病[J]. 生物技术通报, 2021, 37(7): 164-174. |
[13] | 张洁, 夏明聪, 朱文倩, 梁娟, 孙润红, 徐文, 武超, 杨丽荣. 蔬菜根结线虫生防芽胞杆菌的筛选及作用机理研究[J]. 生物技术通报, 2021, 37(7): 175-182. |
[14] | 陈立杰, 杨帆, 范海燕, 赵迪, 王媛媛, 朱晓峰, 刘晓宇, 段玉玺. 非编码RNA在生防菌-植物线虫-寄主互作中的研究进展[J]. 生物技术通报, 2021, 37(7): 65-70. |
[15] | 李瑾, 彭可为, 潘求一, 朱哲远, 彭迪. 解淀粉芽胞杆菌HR-2的分离鉴定及对水稻稻瘟病菌的拮抗效果[J]. 生物技术通报, 2021, 37(3): 27-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||