生物技术通报 ›› 2023, Vol. 39 ›› Issue (9): 183-191.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0043
王贵芳1(), 姚元涛2, 许海峰1, 相昆1, 梁家慧3, 张淑辉3, 王文茹3, 张明娟1,4, 张美勇1(), 陈新1()
收稿日期:
2023-01-18
出版日期:
2023-09-26
发布日期:
2023-10-24
通讯作者:
陈新,男,博士,研究员,研究方向:果树种质资源与育种;E-mail: sdaucx@163.com;作者简介:
王贵芳,女,博士,助理研究员,研究方向:核桃栽培及育种;E-mail: gfwang05@163.com姚元涛为本文共同第一作者
基金资助:
WANG Gui-fang1(), YAO Yuan-tao2, XU Hai-feng1, XIANG Kun1, LIANG Jia-hui3, ZHANG Shu-hui3, WANG Wen-ru3, ZHANG Ming-juan1,4, ZHANG Mei-yong1(), CHEN Xin1()
Received:
2023-01-18
Published:
2023-09-26
Online:
2023-10-24
摘要:
为探讨核桃SnRK1蛋白激酶对种子油脂合成与积累的调控机理,本研究以‘香玲’核桃种仁cDNA为模板,克隆分离得到SnRK1蛋白激酶α亚基的一个编码基因JrSnRK1α1.1,其CDS序列全长为1 539 bp,编码512个氨基酸。构建植物超表达重组载体PBI121- JrSnRK1α1.1,转化并获得了超表达核桃JrSnRK1α1.1基因的拟南芥株系J-1、J-2和J-3。与野生型拟南芥相比,转基因植株表型无明显差异。采用数码显微镜对转基因拟南芥株系种子进行观察,结果显示,相对于野生型,转基因拟南芥株系的种子瘪小、表皮皱缩;株系J-1、J-2和J-3瘪小种子占比分别为43.69%、60.80%和45.87%,显著高于野生型WT(8.43%);种子的千粒重比野生型降低了27.95%-29.32%,差异显著;种子平均粒长和粒宽也显著变小;因此JrSnRK1α1.1可能参与了种子的发育进程。进一步对种子的粗脂肪含量进行测定,结果表明,与野生型相比,转基因拟南芥株系J-1、J-2和J-3的种子粗脂肪含量显著下降,分别比野生型下降9.66%、23.86%和17.61%。荧光双分子试验结果表明,核桃JrSnRK1α1.1与油脂合成关键转录因子JrWRI1互作。综上所述,超表达核桃JrSnRK1α1.1对拟南芥植株生长发育影响不明显,显著影响了拟南芥种子的发育,负调控种子油脂的合成与积累过程。
王贵芳, 姚元涛, 许海峰, 相昆, 梁家慧, 张淑辉, 王文茹, 张明娟, 张美勇, 陈新. 核桃JrSnRK1α1.1调控种子油脂合成与积累[J]. 生物技术通报, 2023, 39(9): 183-191.
WANG Gui-fang, YAO Yuan-tao, XU Hai-feng, XIANG Kun, LIANG Jia-hui, ZHANG Shu-hui, WANG Wen-ru, ZHANG Ming-juan, ZHANG Mei-yong, CHEN Xin. The Gene JrSnRK1α1.1 of Walnut Regulates Seed Oil Synthesis and Accumulation[J]. Biotechnology Bulletin, 2023, 39(9): 183-191.
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 用途 Uses |
---|---|---|
Jr SnRK1α1.1-F Jr SnRK1α1.1-R SNF1-2-BiFC-S SNF1-2-BiFC-A Jr SnRK1α1.1-A Jr SnRK1α1.1-B 18S-F 18S-R | GGGGTACCATGGATGGCTCAACTG CGGAATTCTTAAAGGACTCGGAGC GCGTCGACATGGATGGCTCAACTG GGGGTACCAAGGACTCGGAGCTGG CTTTGGGGATGAACCGACCA GCCAGGAAAGCAGCACAAAG ACAGGACCTCTCACGATCCA | JrSnRK1α1.1基因全长扩增 Full length amplification of the gene JrSnRK1α1.1 荧光双分子互作试验 Fluorescent bimolecular interaction test JrSnRK1α1.1基因表达荧光定量分析 Fluorescence quantitative analysis of JrSnRK1α1.1 expression |
CAGCAAATCCAGCACGCATT |
表1 目的基因JrSnRK1α1.1的引物序列
Table 1 Primer sequence of target gene JrSnRK1α1.1
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 用途 Uses |
---|---|---|
Jr SnRK1α1.1-F Jr SnRK1α1.1-R SNF1-2-BiFC-S SNF1-2-BiFC-A Jr SnRK1α1.1-A Jr SnRK1α1.1-B 18S-F 18S-R | GGGGTACCATGGATGGCTCAACTG CGGAATTCTTAAAGGACTCGGAGC GCGTCGACATGGATGGCTCAACTG GGGGTACCAAGGACTCGGAGCTGG CTTTGGGGATGAACCGACCA GCCAGGAAAGCAGCACAAAG ACAGGACCTCTCACGATCCA | JrSnRK1α1.1基因全长扩增 Full length amplification of the gene JrSnRK1α1.1 荧光双分子互作试验 Fluorescent bimolecular interaction test JrSnRK1α1.1基因表达荧光定量分析 Fluorescence quantitative analysis of JrSnRK1α1.1 expression |
CAGCAAATCCAGCACGCATT |
图2 ‘香玲’核桃种仁不同生长阶段JrSnRK1α1.1基因表达水平 不同小写字母表示差异显著(P<0.05)。下同
Fig. 2 Expressions of the JrSnRK1α1.1 gene in different growth stages of ‘Xiangling’ walnut kernel Different lowercase letters indicate significant difference(P<0.05). The same below
图4 转基因拟南芥株系中JrSnRK1α1.1基因PCR扩增凝胶图谱(A)及基因相对表达水平(B) M:DL2000 Marker;WT:野生型;水:空白对照;J-1-J-3:超表达转基因株系。下同
Fig. 4 Gel map of the JrSnRK1α1.1 gene amplified by PCR(A)and gene relative expressions of JrSnRK1α1.1(B)in transgenic A.thaliana lines M: DL2000 Marker; WT: wild type; Water: blank control; J-1-J-3: JrSnRK1α1.1 overexpressed transgenic A. thaliana lines. The same below
图6 野生型拟南芥(WT)和转基因拟南芥基因株系(J-1、J-2和J-3)瘪小种子百分比、种子大小和种子粗脂肪酸含量 A:瘪小种子百分比;B:种子千粒重;C:种子粒长;D:种子粒宽;E:种子长宽比;F:种子脂肪酸含量
Fig. 6 Percents of shrunken seeds, size of a seed and the contents of crude fatty acid in the seeds of WT and transgenic A. thaliana transgenic lines(J-1, J-2 and J-3) A: Percent of shrunken seeds. B: 1000- seed weight. C: Seed length. D: Seed width. E: Ratio of seed length to width. F: Content of crude fat in dry seeds
图7 核桃JrSnRK1α1.1与油脂合成关键转录因子JrWRI1双分子荧光互补
Fig. 7 Bimolecular fluorescence complementation of walnut JrSnRK1α1.1 with JrWRI1, a key transcription factor for lipid synthesis(Scale bar=10 μm)
[1] | 郗荣庭, 张毅萍. 中国核桃[M]. 北京: 中国林业出版社, 1995. |
Xi RT, Zhang YP. Chinese walnut[M]. Beijing: China Forestry Publishing House,1995. | |
[2] |
Guasch-Ferré M, Hernández-Alonso P, Drouin-Chartier JP, et al. Walnut consumption, plasma metabolomics, and risk of type 2 diabetes and cardiovascular disease[J]. J Nutr, 2021, 151(2): 303-311.
doi: 10.1093/jn/nxaa374 pmid: 33382410 |
[3] |
Cortés B, Núñez I, Cofán M, et al. Acute effects of high-fat meals enriched with walnuts or olive oil on postprandial endothelial function[J]. J Am Coll Cardiol, 2006, 48(8): 1666-1671.
doi: 10.1016/j.jacc.2006.06.057 pmid: 17045905 |
[4] |
Wang LM, Yi Y, Yao YL, et al. Walnut oil improves spatial memory in rats and increases the expression of acid-sensing ion channel genes Asic2a and Asic4[J]. Food Sci Nutr, 2019, 7(1): 293-301.
doi: 10.1002/fsn3.2019.7.issue-1 URL |
[5] |
Simopoulos AP. Omega-6/Omega-3 essential fatty acid ratio and chronic diseases[J]. Food Rev Int, 2004, 20(1): 77-90.
doi: 10.1081/FRI-120028831 URL |
[6] | 冯春艳, 荣瑞芬, 刘雪峥. 核桃仁及内种皮营养与功能成分分析研究进展[J]. 食品工业科技, 2011, 32(2)408-411, 417 |
Feng CY, Rong RF, Liu XZ. Research progress in nutritional and functional compositions analysis of walnut kernel and pellicle[J]. Sci Technol Food Ind, 2011, 32(2)408-411, 417 | |
[7] | 赵翠格, 刘頔, 李凤兰, 等. 植物种子油脂的生物合成及代谢基础研究进展[J]. 种子, 2010, 29(4): 56-62. |
Zhao CG, Liu D, Li FL, et al. Advances in research on seed oil biosynthesis and basal metabolism[J]. Seed, 2010, 29(4): 56-62. | |
[8] | 陈虹, 潘存德, 王蓓, 等. 核桃种子发育主要营养物质积累之间的关系及脂肪酸动态变化[J]. 河北农业大学学报, 2016, 39(1): 57-62, 74. |
Chen H, Pan CD, Wang B, et al. The relationship among nutrients’ accumulation and dynamic changes of fatty acids in seed development of walnut[J]. J Agric Univ Hebei, 2016, 39(1): 57-62, 74. | |
[9] |
Alderson A, Sabelli PA, Dickinson JR, et al. Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA[J]. Proc Natl Acad Sci USA, 1991, 88(19): 8602-8605.
pmid: 1924320 |
[10] |
Halford NG, Hardie DG. SNF1-related protein kinases: global regulators of carbon metabolism in plants?[J]. Plant Mol Biol, 1998, 37(5): 735-748.
doi: 10.1023/a:1006024231305 pmid: 9678569 |
[11] |
Purcell PC, Smith AM, Halford NG. Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves[J]. Plant J, 1998, 14(2): 195-202.
doi: 10.1046/j.1365-313X.1998.00108.x URL |
[12] |
Baena-González E, Rolland F, Thevelein JM, et al. A central integrator of transcription networks in plant stress and energy signalling[J]. Nature, 2007, 448(7156): 938-942.
doi: 10.1038/nature06069 |
[13] |
Delatte TL, Sedijani P, Kondou Y, et al. Growth arrest by trehalose-6-phosphate: an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway[J]. Plant Physiol, 2011, 157(1): 160-174.
doi: 10.1104/pp.111.180422 pmid: 21753116 |
[14] |
Wurzinger B, Nukarinen E, Nägele T, et al. The SnRK1 kinase as central mediator of energy signaling between different organelles[J]. Plant Physiol, 2018, 176(2): 1085-1094.
doi: 10.1104/pp.17.01404 pmid: 29311271 |
[15] |
Geigenberger P, Stitt M, Fernie AR. Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers[J]. Plant Cell Environ, 2004, 27(6): 655-673.
doi: 10.1111/pce.2004.27.issue-6 URL |
[16] |
Schwachtje J, Minchin PEH, Jahnke S, et al. SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots[J]. Proc Natl Acad Sci USA, 2006, 103(34): 12935-12940.
doi: 10.1073/pnas.0602316103 pmid: 16912118 |
[17] | 王贵芳, 彭福田, 张亚飞, 等. 平邑甜茶MhSnRK1在番茄中超表达对植株碳代谢的影响[J]. 园艺学报, 2014, 41(11): 2188-2195. |
Wang GF, Peng FT, Zhang YF, et al. Effects of overexpressing Pingyi Tiancha MhSnRK1 on carbohydrate metabolism in tomato[J]. Acta Hortic Sin, 2014, 41(11): 2188-2195. | |
[18] |
Dubois M. Sugar transport from sheaths to seeds: a role for the kinase SnRK1[J]. Plant Physiol, 2022, 189(3): 1196-1198.
doi: 10.1093/plphys/kiac187 pmid: 35511161 |
[19] |
Jeong EY, Seo PJ, Woo JC, et al. AKIN10 delays flowering by inactivating IDD8 transcription factor through protein phosphorylation in Arabidopsis[J]. BMC Plant Biol, 2015, 15: 110.
doi: 10.1186/s12870-015-0503-8 URL |
[20] |
Gao XQ, Liu CZ, Li DD, et al. The Arabidopsis KINβγ subunit of the SnRK1 complex regulates pollen hydration on the stigma by mediating the level of reactive oxygen species in pollen[J]. PLoS Genet, 2016, 12(7): e1006228.
doi: 10.1371/journal.pgen.1006228 URL |
[21] | 王贵芳, 于雯, 罗静静, 等. 桃PpSnRK1α基因调控植株的生长发育进程[J]. 植物生理学报, 2018, 54(10): 1553-1560. |
Wang GF, Yu W, Luo JJ, et al. Peach PpSnRK1α gene regulates the growth and development processes of plants[J]. Plant Physiol J, 2018, 54(10): 1553-1560. | |
[22] |
Hu YX, Bai JQ, Xia YQ, et al. Increasing SnRK1 activity with the AMPK activator A-769662 accelerates seed germination in rice[J]. Plant Physiol Biochem, 2022, 185: 155-166.
doi: 10.1016/j.plaphy.2022.06.005 URL |
[23] |
Fragoso S, Espíndola L, Páez-Valencia J, et al. SnRK1 isoforms AKIN10 and AKIN11 are differentially regulated in Arabidopsis plants under phosphate starvation[J]. Plant Physiol, 2009, 149(4): 1906-1916.
doi: 10.1104/pp.108.133298 pmid: 19211700 |
[24] |
Coello P, Hirano E, Hey SJ, et al. Evidence that abscisic acid promotes degradation of SNF1-related protein kinase(SnRK)1 in wheat and activation of a putative calcium-dependent SnRK2[J]. J Exp Bot, 2012, 63(2): 913-924.
doi: 10.1093/jxb/err320 URL |
[25] |
Jin HB, Han XY, Wang ZH, et al. Barley GRIK1-SnRK1 kinases subvert a viral virulence protein to upregulate antiviral RNAi and inhibit infection[J]. EMBO J, 2022, 41(18): e110521.
doi: 10.15252/embj.2021110521 URL |
[26] |
Seip J, Jackson R, He HX, et al. Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica[J]. Appl Environ Microbiol, 2013, 79(23): 7360-7370.
doi: 10.1128/AEM.02079-13 URL |
[27] |
Wei H, Wang W, Knoshaug EP, et al. Disruption of the Snf1 gene enhances cell growth and reduces the metabolic burden in cellulase-expressing and lipid-accumulating Yarrowia lipolytica[J]. Front Microbiol, 2021, 12: 757741.
doi: 10.3389/fmicb.2021.757741 URL |
[28] |
Zhai ZY, Liu H, Shanklin J. Phosphorylation of WRINKLED1 by KIN10 results in its proteasomal degradation, providing a link between energy homeostasis and lipid biosynthesis[J]. Plant Cell, 2017, 29(4): 871-889.
doi: 10.1105/tpc.17.00019 URL |
[29] |
王贵芳, 彭福田, 于雯, 等. 桃PpSnRK1β1和PpSnRK1β2在番茄中超表达对光合碳代谢的影响[J]. 园艺学报, 2017, 44(8): 1429-1438.
doi: 10.16420/j.issn.0513-353x.2016-0905 |
Wang GF, Peng FT, Yu W, et al. Effects of over-expression of peach PpSnRK1β1 and PpSnRK1β2 on photosynthetic carbohydrate metabolism in tomato[J]. Acta Hortic Sin, 2017, 44(8): 1429-1438. | |
[30] |
王贵芳, 于雯, 罗静静, 等. 平邑甜茶MhSnRK1在番茄中超表达对种子萌发及幼苗生长的影响[J]. 园艺学报, 2018, 45(6): 1185-1192.
doi: 10.16420/j.issn.0513-353x.2017-0672 |
Wang GF, Yu W, Luo JJ, et al. Effects of overexpression of pingyitiancha MhSnRK1 on tomato seed germination and seedling growth[J]. Acta Hortic Sin, 2018, 45(6): 1185-1192. | |
[31] |
Ghillebert R, Swinnen E, Wen J, et al. The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation[J]. FEBS J, 2011, 278(21): 3978-3990.
doi: 10.1111/j.1742-4658.2011.08315.x pmid: 21883929 |
[32] | 王贵芳, 王文茹, 张淑辉, 等. 核桃油脂合成转录因子JrWRI1基因的克隆及生物信息学分析[J]. 山东农业科学, 2019, 51(2): 1-6. |
Wang GF, Wang WR, Zhang SH, et al. Cloning and bioinformatics analysis of transcription factor JrWRI1 gene related with lipids synthesis of walnut[J]. Shandong Agric Sci, 2019, 51(2): 1-6. | |
[33] |
Wang HL, Han C, Wang JG, et al. Regulatory functions of cellular energy sensor SnRK1 for nitrate signalling through NLP7 repression[J]. Nat Plants, 2022, 8(9): 1094-1107.
doi: 10.1038/s41477-022-01236-5 pmid: 36050463 |
[34] |
Laurie S, McKibbin RS, Halford NG. Antisense SNF1-related(SnRK1)protein kinase gene represses transient activity of an alpha-amylase(alpha-Amy2)gene promoter in cultured wheat embryos[J]. J Exp Bot, 2003, 54(383): 739-747.
doi: 10.1093/jxb/erg085 URL |
[35] |
Radchuk R, Radchuk V, Weschke W, et al. Repressing the expression of the sucrose nonfermenting-1-related protein kinase gene in pea embryo causes pleiotropic defects of maturation similar to an abscisic acid-insensitive phenotype[J]. Plant Physiol, 2006, 140(1): 263-278.
doi: 10.1104/pp.105.071167 pmid: 16361518 |
[36] |
Zhai ZY, Blanford JK, Cai YQ, et al. CYCLIN-DEPENDENT KINASE 8 positively regulates oil synthesis by activating WRINKLED1 transcription[J]. New Phytol, 2023, 238(2): 724-736.
doi: 10.1111/nph.v238.2 URL |
[37] | 张通. 山核桃油脂合成和基因表达变化分析[D]. 杭州: 浙江农林大学, 2015. |
Zhang T. The analysis of lipid synthesis and gene expression changes in Carya cathayensis sarg.[D]. Hangzhou: Zhejiang A & F University, 2015. | |
[38] | 张楠. 核桃胚脂肪积累期转录组分析[D]. 泰安: 山东农业大学, 2014. |
Zhang N. Analysis of transcriptome profiling during lipids accumulation in embryo of walnut(Juglans regia L.)[D]. Tai'an: Shandong Agricultural University, 2014. |
[1] | 刘玉玲, 王梦瑶, 孙琦, 马利花, 朱新霞. 启动子RD29A对转雪莲SikCDPK1基因烟草抗逆性的影响[J]. 生物技术通报, 2023, 39(9): 168-175. |
[2] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[3] | 张道磊, 甘雨军, 乐亮, 普莉. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8): 31-42. |
[4] | 张勇, 徐田军, 吕天放, 邢锦丰, 刘宏伟, 蔡万涛, 刘月娥, 赵久然, 王荣焕. 种植密度对夏播玉米茎秆质量和根系表型性状的影响[J]. 生物技术通报, 2023, 39(8): 70-79. |
[5] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[6] | 朱少喜, 金肇阳, 葛建镕, 王蕊, 王凤格, 路运才. 基于KASP平台的转基因玉米高通量特异性检测方法[J]. 生物技术通报, 2023, 39(6): 133-140. |
[7] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[8] | 马芳芳, 刘冠闻, 庞冰, 蒋春美, 师俊玲. 强化细胞外排提高工程菌类黄酮产量的策略[J]. 生物技术通报, 2023, 39(5): 63-76. |
[9] | 李善家, 雷雨昕, 孙梦格, 刘海锋, 王兴敏. 种子内生细菌多样性与植物互馈作用研究进展[J]. 生物技术通报, 2023, 39(4): 166-175. |
[10] | 孙亚玲, 李瑞平, 王振宝, 张庶, 刘冰江, 霍雨猛. 洋葱种子消毒和无菌苗培养新方法[J]. 生物技术通报, 2023, 39(4): 212-220. |
[11] | 徐小文, 李金仓, 海都, 查玉平, 宋菲, 王义勋. 核桃炭疽菌携带病毒种类鉴定及多样性分析[J]. 生物技术通报, 2023, 39(3): 278-289. |
[12] | 崔吉洁, 蔡文波, 庄庆辉, 高爱平, 黄建峰, 陈亚辉, 宋志忠. 杧果Fe-S簇装配基因MiISU1的生物学功能[J]. 生物技术通报, 2023, 39(2): 139-146. |
[13] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[14] | 李旺宁, 张豪杰, 李亚男, 梁梦静, 季春丽, 张春辉, 李润植, 崔玉琳, 秦松, 崔红利. 莱茵衣藻蓝光受体植物类型隐花色素CRY突变体的表型鉴定[J]. 生物技术通报, 2023, 39(2): 243-253. |
[15] | 蒋铭轩, 李康, 罗亮, 刘建祥, 芦海平. 植物表达外源蛋白研究进展及展望[J]. 生物技术通报, 2023, 39(11): 110-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||