生物技术通报 ›› 2023, Vol. 39 ›› Issue (10): 41-49.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0655
收稿日期:
2023-07-10
出版日期:
2023-10-26
发布日期:
2023-11-28
通讯作者:
李善仁,男,博士,副教授,研究方向:微生物天然产物;E-mail: srli@fjnu.edu.cn作者简介:
周闪闪,女,硕士研究生,研究方向:微生物天然产物;E-mail: zhou119020@163.com
基金资助:
ZHOU Shan-shan HUANG Yuan-long HUANG Jian-zhong LI Shan-ren()
Received:
2023-07-10
Published:
2023-10-26
Online:
2023-11-28
摘要:
微生物次级代谢产物是天然药物的重要来源,广泛应用于医药和农业生产。放线菌和真菌是产生抗生素的主要微生物,但经过长期大量的筛选,从中发现新抗生素越来越困难。随着基因测序技术的进步,越来越多的微生物基因组被测序,许多以前被忽视的微生物发现也具有产生新抗生素的潜力。溶杆菌是新型生防细菌,对植物病原真菌、细菌、卵菌和线虫等具有拮抗作用,从溶杆菌中已经发现大量结构新颖和活性显著的次级代谢产物,在生防制剂和前体药物方面具有应用前景。本文对溶杆菌资源分布、次级代谢产物种类和应用进行综述,希望为进一步从环境中筛选分离溶杆菌和发现更多具有新颖活性的天然产物提供参考。
周闪闪, 黄远龙, 黄建忠, 李善仁. 溶杆菌中活性天然产物的研究进展[J]. 生物技术通报, 2023, 39(10): 41-49.
ZHOU Shan-shan HUANG Yuan-long HUANG Jian-zhong LI Shan-ren. Research Progress in Bioactive Natural Products from Lysobacter[J]. Biotechnology Bulletin, 2023, 39(10): 41-49.
[25] |
Wirtz DA, Ludwig KC, Arts M, et al. Biosynthesis and mechanism of action of the cell wall targeting antibiotic hypeptin[J]. Angew Chem Int Ed Engl, 2021, 60(24): 13579-13586.
doi: 10.1002/anie.v60.24 URL |
[26] |
Lee W, Schaefer K, Qiao Y, et al. The mechanism of action of lysobactin[J]. J Am Chem Soc, 2016, 138(1): 100-103.
doi: 10.1021/jacs.5b11807 pmid: 26683668 |
[27] |
Sullivan JR, Yao J, Courtine C, et al. Natural products lysobactin and sorangicin A show in vitro activity against Mycobacterium abscessus complex[J]. Microbiol Spectr, 2022, 10(6): e0267222.
doi: 10.1128/spectrum.02672-22 URL |
[28] |
Sang ML, Wang HX, Shen YM, et al. Identification of an anti-MRSA cyclic lipodepsipeptide, WBP-29479A1, by genome mining of Lysobacter antibioticus[J]. Org Lett, 2019, 21(16): 6432-6436.
doi: 10.1021/acs.orglett.9b02333 URL |
[29] |
Itoh H, Tokumoto K, Kaji T, et al. Total synthesis and biological mode of action of WAP-8294A2: a menaquinone-targeting antibiotic[J]. J Org Chem, 2018, 83(13): 6924-6935.
doi: 10.1021/acs.joc.7b02318 pmid: 29019678 |
[30] |
Itoh H, Tokumoto K, Kaji T, et al. Development of a high-throughput strategy for discovery of potent analogues of antibiotic lysocin E[J]. Nat Commun, 2019, 10(1): 2992.
doi: 10.1038/s41467-019-10754-4 pmid: 31278250 |
[31] |
Geberetsadik G, Inaizumi A, Nishiyama A, et al. Lysocin E targeting menaquinone in the membrane of Mycobacterium tuberculosis is a promising lead compound for antituberculosis drugs[J]. Antimicrob Agents Chemother, 2022, 66(9): e0017122.
doi: 10.1128/aac.00171-22 URL |
[32] |
Li YY, Chen HT, Ding YJ, et al. Iterative assembly of two separate polyketide chains by the same single-module bacterial polyketide synthase in the biosynthesis of HSAF[J]. Angew Chem Int Ed Engl, 2014, 53(29): 7524-7530.
doi: 10.1002/anie.v53.29 URL |
[33] |
Li SJ, Calvo AM, Yuen GY, et al. Induction of cell wall thickening by the antifungal compound dihydromaltophilin disrupts fungal growth and is mediated by sphingolipid biosynthesis[J]. J Eukaryot Microbiol, 2009, 56(2): 182-187.
doi: 10.1111/j.1550-7408.2008.00384.x pmid: 21462551 |
[34] |
Ding YJ, Li ZY, Li YY, et al. HSAF-induced antifungal effects in Candida albicans through ROS-mediated apoptosis[J]. RSC Adv, 2016, 6(37): 30895-30904.
doi: 10.1039/C5RA26092B URL |
[35] |
Demirev AV, Lee CH, Jaishy BP, et al. Substrate specificity of nonribosomal peptide synthetase modules responsible for the biosynthesis of the oligopeptide moiety of cephabacin in Lysobacter lactamgenus[J]. FEMS Microbiol Lett, 2006, 255(1): 121-128.
doi: 10.1111/fml.2006.255.issue-1 URL |
[36] | Xu QS, Zou HC, Pan C, et al. Lysohexaenetides A and B, linear lipopeptides from Lysobacter sp. DSM 3655 identified by heterologous expression in Streptomyces[J]. Chin J Nat Med, 2023, 21(6): 454-458. |
[37] |
Macheboeuf P, Fischer DS, Brown T Jr, et al. Structural and mechanistic basis of penicillin-binding protein inhibition by lactivicins[J]. Nat Chem Biol, 2007, 3(9): 565-569.
pmid: 17676039 |
[38] |
Cimmino A, Bejarano A, Masi M, et al. Isolation of 2, 5-diketopiperazines from Lysobacter capsici AZ78 with activity against Rhodococcus fascians[J]. Nat Prod Res, 2021, 35(23): 4969-4977.
doi: 10.1080/14786419.2020.1756803 URL |
[39] |
Zhao YY, Qian GL, Ye YH, et al. Heterocyclic aromatic N-oxidation in the biosynthesis of phenazine antibiotics from Lysobacter antibioticus[J]. Org Lett, 2016, 18(10): 2495-2498.
doi: 10.1021/acs.orglett.6b01089 URL |
[40] |
Laborda P, Zhao YY, Ling J, et al. Production of antifungal p-aminobenzoic acid in Lysobacter antibioticus OH13[J]. J Agric Food Chem, 2018, 66(3): 630-636.
doi: 10.1021/acs.jafc.7b05084 URL |
[41] |
Li SR, Wu XL, Zhang LM, et al. Activation of a cryptic gene cluster in Lysobacter enzymogenes reveals a module/domain portable mechanism of nonribosomal peptide synthetases in the biosynthesis of pyrrolopyrazines[J]. Org Lett, 2017, 19(19): 5010-5013.
doi: 10.1021/acs.orglett.7b01611 URL |
[42] |
Miller AL, Li SR, Eichhorn CD, et al. Identification and biosynthetic study of the siderophore lysochelin in the biocontrol agent Lysobacter enzymogenes[J]. J Agric Food Chem, 2023, 71(19): 7418-7426.
doi: 10.1021/acs.jafc.3c01250 URL |
[43] |
Santoyo G, del Carmen Orozco-Mosqueda M, Govindappa M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species ofBacillusandPseudomonas: a review[J]. Biocontrol Sci Technol, 2012, 22(8): 855-872.
doi: 10.1080/09583157.2012.694413 URL |
[44] |
Seccareccia I, Kost C, Nett M. Quantitative analysis of Lysobacter predation[J]. Appl Environ Microbiol, 2015, 81(20): 7098-7105.
doi: 10.1128/AEM.01781-15 URL |
[1] |
Atanasov AG, Zotchev SB, Dirsch VM, et al. Natural products in drug discovery: advances and opportunities[J]. Nat Rev Drug Discov, 2021, 20(3): 200-216.
doi: 10.1038/s41573-020-00114-z pmid: 33510482 |
[2] |
Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future[J]. Curr Opin Microbiol, 2019, 51: 72-80.
doi: S1369-5274(19)30019-0 pmid: 31733401 |
[3] |
Panthee S, Hamamoto H, Paudel A, et al. Lysobacter species: a potential source of novel antibiotics[J]. Arch Microbiol, 2016, 198(9): 839-845.
doi: 10.1007/s00203-016-1278-5 pmid: 27541998 |
[4] |
Christensen P, Cook FD. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio[J]. Int J Syst Bacteriol, 1978, 28(3): 367-393.
doi: 10.1099/00207713-28-3-367 URL |
[5] |
Yue H, Miller AL, Khetrapal V, et al. Biosynthesis, regulation, and engineering of natural products from Lysobacter[J]. Nat Prod Rep, 2022, 39(4): 842-874.
doi: 10.1039/D1NP00063B URL |
[6] |
Naushad S, Adeolu M, Wong S, et al. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives[J]. Antonie Van Leeuwenhoek, 2015, 107(2): 467-485.
doi: 10.1007/s10482-014-0344-8 URL |
[7] |
Park JH, Kim R, Aslam Z, et al. Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter[J]. Int J Syst Evol Microbiol, 2008, 58(Pt 2): 387-392.
doi: 10.1099/ijs.0.65290-0 URL |
[8] |
Xu JY, Sheng MY, Yang Z, et al. Lysobacter gilvus sp. nov., isolated from activated sludge[J]. Arch Microbiol, 2021, 203(1): 7-11.
doi: 10.1007/s00203-020-01943-7 |
[9] | Liu ZY, Jiang PQ, Niu GJ, et al. Lysobacter antarcticus sp. nov., an SUF-system-containing bacterium from Antarctic coastal sediment[J]. Int J Syst Evol Microbiol, 2022, 72(2): 10.1099/ijsem.0.005250. |
[10] |
Lin SY, Hameed A, Wen CZ, et al. Lysobacter lycopersici sp. nov., isolated from tomato plant Solanum lycopersicum[J]. Antonie Van Leeuwenhoek, 2015, 107(5): 1261-1270.
doi: 10.1007/s10482-015-0419-1 URL |
[45] | 姬广海. 溶杆菌属及其在植物病害防治中的研究进展[J]. 云南农业大学学报: 自然科学版, 2011, 26(1): 124-130. |
Ji GH. Advances in the study on Lysobacter spp. bacteria and their effects on biological control of plant diseases[J]. J Yunnan Agric Univ Nat Sci Ed, 2011, 26(1): 124-130. | |
[46] |
Zhao YY, Jiang TP, Xu HY, et al. Characterization of Lysobacter spp. strains and their potential use as biocontrol agents against pear anthracnose[J]. Microbiol Res, 2021, 242: 126624.
doi: 10.1016/j.micres.2020.126624 URL |
[47] |
Lin L, Yang ZX, Tao M, et al. Lysobacter enzymogenes prevents Phytophthora infection by inhibiting pathogen growth and eliciting plant immune responses[J]. Front Plant Sci, 2023, 14: 1116147.
doi: 10.3389/fpls.2023.1116147 URL |
[48] |
Lin L, Xu KW, Shen DY, et al. Antifungal weapons of Lysobacter, a mighty biocontrol agent[J]. Environ Microbiol, 2021, 23(10): 5704-5715.
doi: 10.1111/emi.v23.10 URL |
[49] |
Yang MM, Ren SS, Shen DY, et al. An intrinsic mechanism for coordinated production of the contact-dependent and contact-independent weapon systems in a soil bacterium[J]. PLoS Pathog, 2020, 16(10): e1008967.
doi: 10.1371/journal.ppat.1008967 URL |
[50] |
Shen X, Wang BX, Yang ND, et al. Lysobacter enzymogenes antagonizes soilborne bacteria using the type IV secretion system[J]. Environ Microbiol, 2021, 23(8): 4673-4688.
doi: 10.1111/1462-2920.15662 pmid: 34227200 |
[51] |
Kilic-Ekici O, Yuen GY. Induced resistance as a mechanism of biological control by Lysobacter enzymogenes strain C3[J]. Phytopathology, 2003, 93(9): 1103-1110.
doi: 10.1094/PHYTO.2003.93.9.1103 pmid: 18944093 |
[52] |
Folman LB, Postma J, van Veen JA. Characterisation of Lysobacter enzymogenes(Christensen and Cook 1978)strain 3.1T8, a powerful antagonist of fungal diseases of cucumber[J]. Microbiol Res, 2003, 158(2): 107-115.
doi: 10.1078/0944-5013-00185 URL |
[53] |
Qian GL, Hu BS, Jiang YH, et al. Identification and characterization of Lysobacter enzymogenes as a biological control agent against some fungal pathogens[J]. Agric Sci China, 2009, 8(1): 68-75.
doi: 10.1016/S1671-2927(09)60010-9 URL |
[11] |
Choi H, Im WT, Park JS. Lysobacter spongiae sp. nov., isolated from spongin[J]. J Microbiol, 2018, 56(2): 97-103.
doi: 10.1007/s12275-018-7462-3 |
[12] |
Pereira JQ, Lopes FC, Petry MV, et al. Isolation of three novel Antarctic psychrotolerant feather-degrading bacteria and partial purification of keratinolytic enzyme from Lysobacter sp. A03[J]. Int Biodeterior Biodegrad, 2014, 88: 1-7.
doi: 10.1016/j.ibiod.2013.11.012 URL |
[13] |
Wen CF, Xi LX, She R, et al. Lysobacter chengduensis sp. nov. isolated from the air of captive Ailuropoda melanoleuca enclosures in Chengdu, China[J]. Curr Microbiol, 2016, 72(1): 88-93.
doi: 10.1007/s00284-015-0921-8 URL |
[14] | Xu SS, Li AZ, Zhang MX, et al. Lysobacter penaei sp. nov., isolated from intestinal content of a Pacific white shrimp(Penaeus vannamei)[J]. Int J Syst Evol Microbiol, 2021, 71(3): 004593. |
[15] |
Busse HJ, Huptas C, Baumgardt S, et al. Proposal of Lysobacter pythonis sp. nov. isolated from royal pythons(Python regius)[J]. Syst Appl Microbiol, 2019, 42(3): 326-333.
doi: 10.1016/j.syapm.2019.02.002 URL |
[16] |
Bai H, Lv HB, Deng AH, et al. Lysobacter oculi sp. nov., isolated from human Meibomian gland secretions[J]. Antonie Van Leeuwenhoek, 2020, 113(1): 13-20.
doi: 10.1007/s10482-019-01289-1 |
[17] |
Lee SY, Kim PS, Sung H, et al. Lysobacter ciconiae sp. nov., and Lysobacter avium sp. nov., isolated from the faeces of an Oriental stork[J]. J Microbiol, 2022, 60(5): 469-477.
doi: 10.1007/s12275-022-1647-5 |
[18] |
Liu YY, Zhou LY, Yang XP, et al. Lysobacter chinensis sp. nov., a cellulose-degrading strain isolated from cow dung compost[J]. Antonie Van Leeuwenhoek, 2022, 115(8): 1031-1040.
doi: 10.1007/s10482-022-01755-3 |
[19] |
Brucker RM, Baylor CM, Walters RL, et al. The identification of 2, 4-diacetylphloroglucinol as an antifungal metabolite produced by cutaneous bacteria of the salamander Plethodon cinereus[J]. J Chem Ecol, 2008, 34(1): 39-43.
doi: 10.1007/s10886-007-9352-8 pmid: 18058176 |
[20] |
de Bruijn I, Cheng X, de Jager V, et al. Comparative genomics and metabolic profiling of the genus Lysobacter[J]. BMC Genomics, 2015, 16: 991.
doi: 10.1186/s12864-015-2191-z pmid: 26597042 |
[21] |
Maki H, Miura K, Yamano Y. Katanosin B and plusbacin a(3), inhibitors of peptidoglycan synthesis in methicillin-resistant Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2001, 45(6): 1823-1827.
pmid: 11353632 |
[22] |
Miess H, van Trappen S, Cleenwerck I, et al. Reclassification of Pseudomonas sp. PB-6250T as Lysobacter firmicutimachus sp. nov[J]. Int J Syst Evol Microbiol, 2016, 66(10): 4162-4166.
doi: 10.1099/ijsem.0.001329 URL |
[23] |
Hashizume H, Hattori S, Igarashi M, et al. Tripropeptin E, a new tripropeptin group antibiotic produced by Lysobacter sp. BMK333-48F3[J]. J Antibiot, 2004, 57(6): 394-399.
pmid: 15323129 |
[24] |
Hashizume H, Sawa R, Harada S, et al. Tripropeptin C blocks the lipid cycle of cell wall biosynthesis by complex formation with undecaprenyl pyrophosphate[J]. Antimicrob Agents Chemother, 2011, 55(8): 3821-3828.
doi: 10.1128/AAC.00443-11 pmid: 21628543 |
[54] |
Brescia F, Vlassi A, Bejarano A, et al. Characterisation of the antibiotic profile of Lysobacter capsici AZ78, an effective biological control agent of plant pathogenic microorganisms[J]. Microorganisms, 2021, 9(6): 1320.
doi: 10.3390/microorganisms9061320 URL |
[55] |
Ko HS, Jin RD, Krishnan HB, et al. Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes[J]. Curr Microbiol, 2009, 59(6): 608-615.
doi: 10.1007/s00284-009-9481-0 URL |
[56] |
Li S, Jochum CC, Yu F, et al. An antibiotic complex from Lysobacter enzymogenes strain C3: antimicrobial activity and role in plant disease control[J]. Phytopathology, 2008, 98(6): 695-701.
doi: 10.1094/PHYTO-98-6-0695 pmid: 18944294 |
[57] |
Nian J, Yu MH, Bradley CA, et al. Lysobacter enzymogenes strain C3 suppresses mycelium growth and spore germination of eight soybean fungal and oomycete pathogens and decreases disease incidences[J]. Biol Contr, 2021, 152: 104424.
doi: 10.1016/j.biocontrol.2020.104424 URL |
[58] | Ding YJ, Li YY, Li ZY, et al. Alteramide B is a microtubule antagonist of inhibiting Candida albicans[J]. Biochim Biophys Acta, 2016, 1860(10): 2097-2106. |
[59] |
Ji GH, Wei LF, He YQ, et al. Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1[J]. Biol Contr, 2008, 45(3): 288-296.
doi: 10.1016/j.biocontrol.2008.01.004 URL |
[60] | Jiang YH, Liu T, Shi XC, et al. P-Aminobenzoic acid inhibits the growth of soybean pathogen Xanthomonas axonopodis pv. glycines by altering outer membrane integrity[J]. Pest Manag Sci, 2023. |
[61] |
Chen J, Moore WH, Yuen GY, et al. Influence of Lysobacter enzymogenes strain C3 on nematodes[J]. J Nematol, 2006, 38(2): 233-239.
pmid: 19259452 |
[62] |
Lee Y, Anees M, Hyun H, et al. Biocontrol potential of Lysobacter antibioticus HS124 against the root-knot nematode, Meloidogyne incognita, causing disease in tomato[J]. Nematology, 2013, 15(5): 545-555.
doi: 10.1163/15685411-00002700 URL |
[63] |
Lee YS, Naning KW, Nguyen XH, et al. Ovicidal activity of lactic acid produced by Lysobacter capsici YS1215 on eggs of root-knot nematode, Meloidogyne incognita[J]. J Microbiol Biotechnol, 2014, 24(11): 1510-1515.
doi: 10.4014/jmb.1405.05014 URL |
[64] |
Martínez-Servat S, Pinyol-Escala L, Daura-Pich O, et al. Characterization of Lysobacter enzymogenes B25, a potential biological control agent of plant-parasitic nematodes, and its mode of action[J]. AIMS Microbiol, 2023, 9(1): 151-176.
doi: 10.3934/microbiol.2023010 pmid: 36891531 |
[1] | 石广成, 杨万明, 杜维俊, 王敏. 大豆耐盐种质的筛选及其耐盐生理特性分析[J]. 生物技术通报, 2022, 38(4): 174-183. |
[2] | 游玲, 周荣清, 谭壹, 王涛, 乔宗伟, 赵东. Kazachstania属酵母在浓香型白酒糟醅中的分布特征及发酵功能[J]. 生物技术通报, 2021, 37(6): 108-116. |
[3] | 陈鹏. 活性天然产物蛋白靶点的快速筛选策略[J]. 生物技术通报, 2020, 36(11): 180-187. |
[4] | 刘震,张树林,史莹慧,彭仁海. 四倍体海岛棉LTR反转录转座子的数量与分布[J]. 生物技术通报, 2018, 34(5): 124-130. |
[5] | 李涛,许瑾,吴华莲,王铭,向文洲. 不同氮浓度对一株产油绿球藻生长、脂类积累及脂肪酸分布的影响[J]. 生物技术通报, 2018, 34(5): 154-162. |
[6] | 肖海兵, 王鹏军, 李先锋, 董红强, 杨明禄,. 转Bt棉主茎叶Cry1Ab/c蛋白含量的时空分布分析[J]. 生物技术通报, 2017, 33(12): 108-111. |
[7] | 张鑫涛,唐红萍,赵亮,范里,刘旭平,缪仕伟,谭文松. 金属离子对CHO细胞抗体表达及抗体电荷分布的影响[J]. 生物技术通报, 2016, 32(8): 233-241. |
[8] | 蔡磊, 余露军, 陈小曲, 叶惠欣, 陈琳, 李建军. 诸氏鲻虾虎鱼转录组序列中微卫星标记的初步筛选及特征分析[J]. 生物技术通报, 2015, 31(9): 146-151. |
[9] | 刘新星, 余响华, 刘学端. 红豆杉分布与培育技术研究进展[J]. 生物技术通报, 2015, 31(7): 51-57. |
[10] | 李洁, 钟杰, 黄军, 赵晓, 朱宏建. 植物病原细菌链霉素抗性研究进展[J]. 生物技术通报, 2013, 0(9): 18-26. |
[11] | 王斐斐 武坤毅 郭玲 崔浪军 任靖. 溶杆菌属Lysobacter yanansis sp. nov. 胞内外蛋白双向电泳条件优化及图谱建立[J]. 生物技术通报, 2013, 0(4): 140-146. |
[12] | 徐娜;李宝玉;柳纪省;. 假基因的发现与研究[J]. , 2009, 0(12): 27-29. |
[13] | 左珂菁;张祥斌;冀君;陈峰;杨小梅;梁梓森;谢青梅;. 禽抗微生物肽的结构、分布及活性研究进展[J]. , 2008, 0(04): 38-46. |
[14] | 卢长明;. 转基因作物田间试验的频次分析[J]. , 2008, 0(03): 153-161. |
[15] | 胡汝晓;李珊;谭周进;赵武能;谢丙炎;谢达平;肖冰梅;伍参荣;. 鱼腥草内生微生物的分布特征初探[J]. , 2008, 0(02): 155-157. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||