生物技术通报 ›› 2021, Vol. 37 ›› Issue (10): 225-233.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1344
迪力热巴·阿不都肉苏力(), 穆耶赛尔·奥斯曼, 祖力胡玛尔·肉孜, 马勤, 雷瑞峰, 安登第()
收稿日期:
2020-11-02
出版日期:
2021-10-26
发布日期:
2021-11-12
作者简介:
迪力热巴·阿不都肉苏力,女,硕士研究生,研究方向:微生物生态;E-mail: 基金资助:
DILIREBA·Abudourousuli (), MUYESAIER·Aosiman , ZULIHUMAER·Rouzi , MA Qin, LEI Rui-feng, AN Deng-di()
Received:
2020-11-02
Published:
2021-10-26
Online:
2021-11-12
摘要:
盐碱土壤是全球生态系统的重要组成部分,其环境健康与可利用性涉及生态安全和人类生存。土壤微生物在土壤形成、能量转移、养分动员与循环、植被重建和生态系统长期稳定中发挥着重要作用,地理环境、土壤组分和理化性质及立地植物等均强烈地影响着土壤微生物的多样性与分布,反过来微生物可被用于盐碱土壤的改良,其中输入有机质对改良效果具有决定性价值,而具有特殊适应性的被长期“驯化”的“本土”微生物成为盐碱土改良的首选。从盐碱土壤微生物多样性与功能、影响其多样性的主要因素及微生物应用于土壤改造等方面的研究进展进行了分析,总结出土壤特性造就微生物类群-微生物改变土壤微环境-微生物与土壤共同演化的生态循环模式,以期为盐碱土壤微生物的生态功能与应用提供参考。
迪力热巴·阿不都肉苏力, 穆耶赛尔·奥斯曼, 祖力胡玛尔·肉孜, 马勤, 雷瑞峰, 安登第. 盐碱土壤微生物多样性与生物改良研究进展[J]. 生物技术通报, 2021, 37(10): 225-233.
DILIREBA·Abudourousuli , MUYESAIER·Aosiman , ZULIHUMAER·Rouzi , MA Qin, LEI Rui-feng, AN Deng-di. Advances on Microbial Diversity and Biological Improvement of Saline-alkali Soil[J]. Biotechnology Bulletin, 2021, 37(10): 225-233.
[1] |
Li H, Zhao Q, Huang H. Current states and challenges of salt-affected soil remediation by cyanobacteria[J]. Sci Total Environ, 2019, 669:258-272.
doi: 10.1016/j.scitotenv.2019.03.104 URL |
[2] |
Manasa MRK, Katukuri NR, Nair SD, et al. Role of biochar and organic substrates in enhancing the functional characteristics and microbial community in a saline soil[J]. J Environ Manage, 2020, 269:110737.
doi: S0301-4797(20)30669-1 pmid: 32425164 |
[3] | Ventosa A, Mellado E, Sanchez-Porro C, et al. Halophilic and halotolerant micro-organisms from soils[M]// Microbiology of extreme soils. Berlin: Springer, 2008:87-115. |
[4] |
Hollister EB, Engledow AS, Hammett AJM, et al. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments[J]. ISME J, 2010, 4(6):829-838.
doi: 10.1038/ismej.2010.3 pmid: 20130657 |
[5] |
Ferris H, Tuomisto H. Unearthing the role of biological diversity in soil health[J]. Soil Biol Biochem, 2015, 85:101-109.
doi: 10.1016/j.soilbio.2015.02.037 URL |
[6] |
Graham EB, Curiel Yuste J. Microbes as engines of ecosystem function:When does community structure enhance predictions of ecosystem processes?[J]. Front Microbiol, 2016, 7:214.
doi: 10.3389/fmicb.2016.00214 pmid: 26941732 |
[7] |
Sorokin DY, Banciu HL, Muyzer G. Functional microbiology of soda lakes[J]. Curr Opin Microbiol, 2015, 25:88-96.
doi: 10.1016/j.mib.2015.05.004 URL |
[8] |
Bao S, Wang Q, Bao X, et al. Biological treatment of saline-alkali soil by sulfur-oxidizing bacteria[J]. Bioengineered, 2016, 7(5):372-375.
doi: 10.1080/21655979.2016.1226664 URL |
[9] |
Gunatilaka AAL. Natural products from plant-associated microorganisms:distribution, structural diversity, bioactivity, and implications of their occurrence[J]. J Nat Prod, 2006, 69(3):509-526.
pmid: 16562864 |
[10] | Rosenberg E, et al. The Prokaryotes-Prokaryotic Communities and Ecophysiology[M]//Oren A. Life at high salt concentrations. Berlin Heidelberg: Springer-Verlag, 2013:421-440. |
[11] |
Zhao Y, Zhang F, Yang L, et al. Response of soil bacterial community structure to different reclamation years of abandoned salinized farmland in arid China[J]. Arch Microbiol, 2019, 201(9):1219-1232.
doi: 10.1007/s00203-019-01689-x URL |
[12] |
Lehmann A, Zheng W, Rillig MC. Soil biota contributions to soil aggregation[J]. Nat Ecol Evol, 2017, 1(12):1828-1835.
doi: 10.1038/s41559-017-0344-y pmid: 29038473 |
[13] |
Wagg C, Schlaeppi K, Banerjee S, et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nat Commun, 2019, 10(1):4841.
doi: 10.1038/s41467-019-12798-y URL |
[14] |
Griffiths RI, Thomson BC, Plassart P, et al. Mapping and validating predictions of soil bacterial biodiversity using European and national scale datasets[J]. Appl Soil Ecol, 2016, 97:61-68.
doi: 10.1016/j.apsoil.2015.06.018 URL |
[15] | Sun R, Zhang XX, Guo X, et al. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J]. Science Foundation in China, 2015, 88(4):9-18. |
[16] | Nacke H, Thrmer A, Wollherr A, et al. Pyrosequencing-based assessment of bacterial community structure along different management types in german forest and grassland soils[J]. PLoS One, 2011, 6(2):1-12. |
[17] | Zhang K, Shi Y, Cui X, et al. Salinity is a key determinant for soil microbial communities in a desert ecosystem[J]. mSystems, 2019, 4(1):e00225-18. |
[18] |
Zhao S, Liu JJ, Banerjee S, et al. Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation[J]. Sci Rep, 2018, 8(1):4550.
doi: 10.1038/s41598-018-22788-7 URL |
[19] |
Siles JA, Margesin R. Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils:What are the driving factors?[J]. Microb Ecol, 2016, 72(1):207-220.
doi: 10.1007/s00248-016-0748-2 pmid: 26961712 |
[20] |
Xie K, Deng Y, Zhang S, et al. Prokaryotic community distribution along an ecological gradient of salinity in surface and subsurface saline soils[J]. Sci Rep, 2017, 7(1):13332.
doi: 10.1038/s41598-017-13608-5 URL |
[21] |
van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority:soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecol Lett, 2008, 11(3):296-310.
pmid: 18047587 |
[22] |
Cowan DA, Makhalanyane TP, Dennis PG. Microbial ecology and biogeochemistry of continental Antarctic soils[J]. Front Microbiol, 2014, 5:154.
doi: 10.3389/fmicb.2014.00154 pmid: 24782842 |
[23] |
Li Z, Tian D, Wang B, et al. Microbes drive global soil nitrogen mineralization and availability[J]. Global Change Biol, 2019, 25(3):1078-1088.
doi: 10.1111/gcb.2019.25.issue-3 URL |
[24] |
Wagner MR, Lundberg DS, Coleman-Derr D, et al. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative[J]. Ecol Lett, 2014, 17(6):717-726.
doi: 10.1111/ele.2014.17.issue-6 URL |
[25] |
Koide RT, Dickie IA. Effects of mycorrhizal fungi on plant populations[J]. Plant Soil, 2002, 244(1-2):307-317.
doi: 10.1023/A:1020204004844 URL |
[26] |
Wolfe BE, Husband BC, Klironomos JN. Effects of a belowground mutualism on an aboveground mutualism[J]. Ecol Lett, 2005, 8(2):218-223.
doi: 10.1111/ele.2005.8.issue-2 URL |
[27] |
Bhatti AA, Haq S, Bhat RA. Actinomycetes benefaction role in soil and plant health[J]. Microb Pathog, 2017, 111:458-467.
doi: 10.1016/j.micpath.2017.09.036 URL |
[28] |
Daniel, Rolf. The metagenomics of soil[J]. Nat Rev Microbiol, 2005, 3(6):470-478.
pmid: 15931165 |
[29] |
Torsvik V, Øvreås L. Microbial diversity and function in soil:from genes to ecosystems[J]. Curr Opin Microbiol, 2002, 5(3):240-245.
pmid: 12057676 |
[30] |
Hanson CA, Fuhrman JA, Horner-Devine MC, et al. Beyond biogeographic patterns:Processes shaping the microbial landscape[J]. Nat Rev Microbiol, 2012, 10(7):497-506.
doi: 10.1038/nrmicro2795 pmid: 22580365 |
[31] |
Ricks KD, Koide RT. The role of inoculum dispersal and plant species identity in the assembly of leaf endophytic fungal communities[J]. PLoS One, 2019, 14(7):e0219832.
doi: 10.1371/journal.pone.0219832 URL |
[32] |
Cowan DA, Chown SL, Convey P, et al. Non-indigenous microorganisms in the Antarctic:assessing the risks[J]. Trends Microbiol, 2011, 19(11):540-548.
doi: 10.1016/j.tim.2011.07.008 pmid: 21893414 |
[33] |
Tindall BJ. Prokaryotic diversity in the Antarctic:The tip of the iceberg[J]. Microb Ecol, 2004, 47(3):271-283.
pmid: 15054676 |
[34] |
Gaston KJ. Global patterns in biodiversity[J]. Nature, 2000, 405(6783):220-227.
doi: 10.1038/35012228 URL |
[35] |
Chan Y, Van Nostrand JD, Zhou J. Functional ecology of an antar-ctic dry valley[J]. Proc Natl Acad Sci USA, 2013, 110(22):8990-8995.
doi: 10.1073/pnas.1300643110 URL |
[36] |
Howard-Williams C, Hawes I, Gordon S. The environmental basis of ecosystem variability in Antarctica:research in the Latitudinal Gradient Project[J]. Antarctic Science, 2010, 22(6):591-602.
doi: 10.1017/S0954102010000829 URL |
[37] | Shivaji S, Reddy GSN, Aduri RP, et al. Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica[J]. Cell Mol Biol(Noisy-le-grand), 2004, 50(5):525-536. |
[38] |
Verde C, Giordano D, Bellas CM, et al. Chapter four-polar marine microorganisms and climate change[J]. Adv Microb Physiol, 2016, 69:187-215.
doi: S0065-2911(16)30023-6 pmid: 27720011 |
[39] |
Pointing SB, Chan Y, Lacap DC, et al. Highly specialized microbial diversity in hyper-arid polar desert[J]. Proc Natl Acad Sci U S A, 2009, 106(47):19964-19969.
doi: 10.1073/pnas.0908274106 pmid: 19850879 |
[40] |
Rao S, Chan Y, Lacap D, et al. Low-diversity fungal assemblage in an Antarctic Dry Valleys soil[J]. Polar Biol, 2012, 35(4):567-574.
doi: 10.1007/s00300-011-1102-2 URL |
[41] |
Babalola OO, Kirby BM, Le Roes-Hill M, et al. Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils[J]. Environ Microbiol, 2009, 11:566-576.
doi: 10.1111/emi.2009.11.issue-3 URL |
[42] |
Makhalanyane TP, Valverde A, Birkeland NK, et al. Evidence for successional development in Antarctic hypolithic bacterial communities[J]. ISME J, 2013, 7(11):2080-2090.
doi: 10.1038/ismej.2013.94 pmid: 23765099 |
[43] |
Goordial J, Davila A, Greer CW, et al. Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert[J]. Environ Microbiol, 2017, 19(2):443-458.
doi: 10.1111/emi.2017.19.issue-2 URL |
[44] |
Rousk J, Baath E, Brookes PC, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. ISME J, 2010, 4(10):1340-1351.
doi: 10.1038/ismej.2010.58 URL |
[45] |
Wang K, Zhang Y, Tang Z, et al. Effects of grassland afforestation on structure and function of soil bacterial and fungal communities[J]. Sci Total Environ, 2019, 676:396-406.
doi: 10.1016/j.scitotenv.2019.04.259 URL |
[46] |
Canfora L, Bacci G, Pinzari F, et al. Salinity and bacterial diversity:To what extent does the concentration of salt affect the bacterial community in a saline soil?[J]. PLoS One, 2014, 9(9):e106662.
doi: 10.1371/journal.pone.0106662 URL |
[47] |
Navarro-Noya YE, Valenzuela-Encinas C, Sandoval-Yuriar A, et al. Archaeal communities in a heterogeneous hypersaline-alkaline soil[J]. Archaea, 2015, 2015:646820.
doi: 10.1155/2015/646820 pmid: 26074731 |
[48] |
Li Y, Kong Y, Teng D, et al. Rhizobacterial communities of five co-occurring desert halophytes[J]. PeerJ, 2018, 6:e5508.
doi: 10.7717/peerj.5508 URL |
[49] |
Chu H, Fierer N, Lauber CL, et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes[J]. Environ Microbiol, 2010, 12(11):2998-3006.
doi: 10.1111/emi.2010.12.issue-11 URL |
[50] |
Zeng Q, An S, Liu Y, et al. Biogeography and the driving factors affecting forest soil bacteria in an arid area[J]. Sci Total Environ, 2019, 680:124-131.
doi: 10.1016/j.scitotenv.2019.04.184 URL |
[51] |
Ren B, Hu Y, Chen B, et al. Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of Northeastern China[J]. Sci Rep, 2018, 8(1):5619.
doi: 10.1038/s41598-018-24040-8 URL |
[52] |
Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities[J]. Proc Natl Acad Sci U S A, 2006, 103:626-631.
pmid: 16407148 |
[53] |
Lozupone CA, Knight R. Global patterns in bacterial diversity[J]. Proc Natl Acad Sci U S A, 2007, 104(27):11436-11440.
doi: 10.1073/pnas.0611525104 URL |
[54] | 王巍琦, 李变变, 张军, 等. 干旱区不同类型盐碱土壤细菌群落多样性[J]. 干旱区研究, 2019, 36(5):1202-1211. |
Wang WQ, Li BB, Zhang J, et al. Diversity of bacterium communities in saline or alkaline soil in arid area[J]. Arid Zone Research, 2019, 36(5):1202-1211. | |
[55] |
Liu K, Ding X, Tang X, et al. Macro and microelements drive diversity and composition of prokaryotic and fungal communities in hypersaline sediments and saline-alkaline soils[J]. Front Microbiol, 2018, 9:352.
doi: 10.3389/fmicb.2018.00352 URL |
[56] |
Steinauer K, Tilman D, Wragg PD, et al. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment[J]. Ecology, 2015, 96(1):99-112.
pmid: 26236895 |
[57] |
Chong CW, Pearce DA, Convey P, et al. High levels of spatial heterogeneity in the biodiversity of soil prokaryotes on Signy Island, Antarctica[J]. Soil Biol Biochem, 2010, 42(4):601-610.
doi: 10.1016/j.soilbio.2009.12.009 URL |
[58] |
Chu H, Neufeld JD, Walker VK, et al. The Influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low arctic tundra landscape[J]. Soil Sci Soc Am J, 2011, 75(5):1756-1765.
doi: 10.2136/sssaj2011.0057 URL |
[59] |
Yergeau E, Bokhorst S, Huiskes AHL, et al. Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient[J]. FEMS Microbiol Ecol, 2007, 59(2):436-451.
doi: 10.1111/j.1574-6941.2006.00200.x URL |
[60] |
Philippot L, Raaijmakers J, Lemanceau P, et al. Going back to the roots:the microbial ecology of the rhizosphere[J]. Nat Rev Microbiol, 2013, 11(11):789-799.
doi: 10.1038/nrmicro3109 pmid: 24056930 |
[61] | Eisenhauer N, Lanoue A, Strecker T, et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass[J]. Scic Rep, 2017, 7:44641. |
[62] |
Lange M, Eisenhauer N, Sierra CA, et al. Plant diversity increases soil microbial activity and soil carbon storage[J]. Nat Commun, 2015, 6:6707.
doi: 10.1038/ncomms7707 URL |
[63] |
Zak DR, Holmes WE, White DC, et al. Plant diversity, soil microbial communities, and ecosystem function:Are there any links?[J]. Ecology, 2003, 84(8):2042-2050.
doi: 10.1890/02-0433 URL |
[64] |
Eisenhauer N, Barnes AD, Cesarz S, et al. Biodiversity-ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems[J]. J Veg Sci, 2016, 27(5):1061-1070.
doi: 10.1111/jvs.12435 URL |
[65] |
Jones DL, Nguyen C, Finlay RD. Carbon flow in the rhizosphere:carbon trading at the soil-root interface[J]. Plant Soil, 2009, 321(1-2):5-33.
doi: 10.1007/s11104-009-9925-0 URL |
[66] |
Boone RD, Nadelhoffer KJ. Roots exert a strong influence on the temperature sensitivityof soil respiration[J]. Nature, 1998, 396(6711):570-572.
doi: 10.1038/25119 URL |
[67] |
Meier IC, Avis PG, Phillips RP. Fungal communities influence root exudation rates in pine seedlings[J]. FEMS Microbiol Ecol, 2013, 83(3):585-595.
doi: 10.1111/1574-6941.12016 pmid: 23013386 |
[68] | Barthlott W, Biedinger N, Braun G, et al. Terminological and methodological aspects of the mapping and analysis of the global biodiversity(Article)[J]. Acta Botanica Fennica, 1999, 162(162):103-110. |
[69] |
Wang J, Wang Y, He N, et al. Plant functional traits regulate soil bacterial diversity across temperate deserts[J]. Sci Total Environ, 2020, 715:136976.
doi: 10.1016/j.scitotenv.2020.136976 URL |
[70] |
Eisenhauer N, Yee K, Johnson EA, et al. Positive relationship between herbaceous layer diversity and the performance of soil biota in a temperate forest[J]. Soil Biol Biochem, 2011, 43(2):462-465.
doi: 10.1016/j.soilbio.2010.10.018 URL |
[71] |
Prober SM, Leff JW, Bates ST. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide[J]. Ecol lett, 2015, 18(1):85-95.
doi: 10.1111/ele.2014.18.issue-1 URL |
[72] |
Grace JB, Anderson TM, Seabloom EW, et al. Integrative modelling reveals mechanisms linking productivity and plant species richness[J]. Nature, 2016, 529(7586):390-393.
doi: 10.1038/nature16524 URL |
[73] |
Grossman JM, O’Neill BE, Tsai SM, et al. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy[J]. Microb Ecol, 2010, 60(1):192-205.
doi: 10.1007/s00248-010-9689-3 pmid: 20574826 |
[74] |
Zhao W, Zhou Q, Tian Z, et al. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain[J]. Sci Total Environ, 2020, 722:137428.
doi: 10.1016/j.scitotenv.2020.137428 URL |
[75] |
Tang J, Zhang S, Zhang X, et al. Effects of pyrolysis temperature on soil-plant-microbe responses to Solidago canadensis L. -derived biochar in coastal saline-alkali soil[J]. Sci Total Environ, 2020, 731:138938.
doi: 10.1016/j.scitotenv.2020.138938 URL |
[76] | 吴丹, 孙萍, 路鹏展, 等. 浒苔生物炭对滨海盐碱土壤改良的效果及途径[J]. 环境科学, 2020(4):1941-1949. |
Wu D, Sun P, Lu PZ, et al. Effect and approach of enteromorpha prolifera biochar to improve coastal saline soil[J]. Environmental Science, 2020(4):1941-1949. | |
[77] |
Zheng H, Wang X, Luo X, et al. Biochar_induced negative carbon mineralization priming effects in a coastal wetland soil:Roles of soil aggregation and microbial modulation[J]. Sci Total Environ, 2018, 610-611:951-960.
doi: 10.1016/j.scitotenv.2017.08.166 URL |
[78] |
Kuzyakov Y. Priming effects:Interactions between living and dead organic matter[J]. Soil Biol Biochem, 2010, 42(9):1363-1371.
doi: 10.1016/j.soilbio.2010.04.003 URL |
[79] |
Hayat R, Ali S, Amara U, et al. Soil beneficial bacteria and their role in plant growth promotion:a review[J]. Ann Microbiol, 2010, 60(4):579-598.
doi: 10.1007/s13213-010-0117-1 URL |
[80] |
Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria[J]. Annu Rev Microbiol, 2009, 63:541-556.
doi: 10.1146/annurev.micro.62.081307.162918 pmid: 19575558 |
[81] |
Tiwari S, Singh P, Tiwari R, et al. Salt-tolerant rhizobacteria-mediated induced tolerance in wheat(Triticum aestivum)and chemical diversity in rhizosphere enhance plant growth[J]. Biol Fert Soils, 2011, 47(8):907-916.
doi: 10.1007/s00374-011-0598-5 URL |
[82] |
Shrivastava P, Kumar R. Soil salinity:A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation[J]. Saudi J Biol Sci, 2015, 22(2):123-131.
doi: 10.1016/j.sjbs.2014.12.001 pmid: 25737642 |
[83] |
Barnawal D, Bharti N, Pandey SS, et al. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression[J]. Physiol Plantarum, 2017, 161(4):502-514.
doi: 10.1111/ppl.2017.161.issue-4 URL |
[84] | 柴晓彤, 顾金凤, 毛亮, 等. 微生物菌肥对盐渍化土壤中盐分离子及有机质含量的影响[J]. 上海交通大学学报:农业科学版, 2017, 35(1):78-84. |
Chai XT, Gu JF, Mao L, et al. Effects of microbial fertilizer on contents of salt ions and organic matter in saline soil[J]. Journal of Shanghai Jiaotong University:Agricultural Science, 2017, 35(1):78-84. | |
[85] | 卢培娜, 刘景辉, 赵宝平, 等. 菌肥对盐碱地土壤特性及燕麦根系分泌物的影响[J]. 作物杂志, 2017(5):85-92. |
Lu PN, Liu JH, Zhao BP, et al. Effects of microbial fertilizer on soil characteristics and root exudates of oats in saline-alkali land[J]. Crops, 2017(5):85-92. | |
[86] | 朱浩, 刘珂欣, 刘维维, 等. 极端耐盐碱菌株的筛选及其菌肥对盐碱条件下小麦生长和土壤环境的影响[J]. 应用生态学报, 2019, 30(7):2338-2344. |
Zhu H, Liu Kx, Liu WW, et al. Screening of extreme salt-alkali tolerant strain and effect of its fertilizer on wheat growth and soil environment under saline-alkali condition[J]. Chinese Journal of Applied Ecology, 2019, 30(7):2338-2344. | |
[87] | 孙雪, 董永华, 王娜, 等. 耐盐碱促生菌的筛选及性能[J]. 生物工程学报, 2020, 36(9):1-9. |
Sun X, Dong YH, Wang N, et al. Screening and evaluation of saline-alkali-tolerant and growth-promoting bacteria[J]. Chinese Journal of Biotechnology, 2020, 36(9):1-9. | |
[88] |
Wang C, Zhao D, Qi G, et al. Effects of Bacillus velezensis FKM10 for promoting the growth of malus hupehensis rehd. and inhibiting Fusarium verticillioides[J]. Front Microbiol, 2020, 10:2889.
doi: 10.3389/fmicb.2019.02889 URL |
[89] | 康贻军, 胡健, 杨小兰, 等. 盐碱地土壤微生物对不同改良方法的响应[J]. 微生物学杂志, 2008(5):102-105. |
Kang YJ, Hu J, Yang XL, et al. Responses of saline-alkali soil microorganisms to different ameliorative methods[J]. Journal of Microbiology, 2008(5):102-105. | |
[90] |
Jiang SQ, Yu YN, Gao RW, et al. High-throughput absolute quantification sequencing reveals the effect of different fertilizer applications on bacterial community in a tomato cultivated coastal saline soil[J]. Science of the Total Environment, 2019, 687:601-609.
doi: 10.1016/j.scitotenv.2019.06.105 URL |
[91] |
Dangi SR, Stahl PD, Wick AF, et al. Soil microbial community recovery in reclaimed soils on a surface coal mine site[J]. Soil Sci Soc Am J, 2012, 76(3):915-924.
doi: 10.2136/sssaj2011.0288 URL |
[92] |
Graham DW, Smith VH. Designed ecosystem services:Application of ecological principles in wastewater treatment engineering[J]. Front Ecol Environ, 2004, 2(4):199-206.
doi: 10.1890/1540-9295(2004)002[0199:DESAOE]2.0.CO;2 URL |
[93] |
Rivett DW, Thomas B. Abundance determines the functional role of bacterial phylotypes in complex communities[J]. Nat Microbiol, 2018, 3(7):767-772.
doi: 10.1038/s41564-018-0180-0 URL |
[1] | 颜珲璘, 芦光新, 邓晔, 顾松松, 颜程良, 马坤, 赵阳安, 张海娟, 王英成, 周学丽, 窦声云. 高寒地区根瘤菌拌种对禾/豆混播土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(10): 204-215. |
[2] | 辛亚芬, 陈晨, 曾泰儒, 杜昭昌, 倪浩然, 钟怡豪, 谭小平, 闫艳红. 青贮添加剂对微生物多样性影响的研究进展[J]. 生物技术通报, 2021, 37(9): 24-30. |
[3] | 王婷, 杨阳, 李金萍, 杜坤. 转基因作物对土壤微生物群落影响的研究进展[J]. 生物技术通报, 2021, 37(9): 255-265. |
[4] | 张颖超, 尹守亮, 王一炜, 王学凯, 杨富裕. 木本饲料青贮研究进展[J]. 生物技术通报, 2021, 37(9): 48-57. |
[5] | 姜富贵, 成海建, 魏晨, 张召坤, 苏文政, 时光, 宋恩亮. 糖蜜添加量对杂交构树青贮发酵品质和微生物多样性的影响[J]. 生物技术通报, 2021, 37(9): 68-76. |
[6] | 李梦凡, 谢云轩, 谢宁栋, 张爱卿, 汪光义. 破囊壶菌生产角鲨烯的研究现状[J]. 生物技术通报, 2021, 37(4): 234-244. |
[7] | 乔自鹏, 王奇志, 杨道茂, 阮丽萍. 真菌介导纳米银生物合成的研究进展[J]. 生物技术通报, 2021, 37(3): 185-197. |
[8] | 黄婷, 方源, 冯舟, 沈和, 聂勇, 郑鑫, 汪家权, 许子牧. 高通量测序技术解析中学校园细菌群落的特征组成[J]. 生物技术通报, 2020, 36(8): 96-103. |
[9] | 张晨, 雷展, 李凯, 商颖, 许文涛. CRISPR/Cas9系统中的脱靶效应及检测技术研究进展[J]. 生物技术通报, 2020, 36(3): 78-87. |
[10] | 谢宪, 梁军, 张铭, 胡瑞瑞, 程元, 张星耀. 赤松枯梢病叶内生真菌多样性研究[J]. 生物技术通报, 2020, 36(2): 119-125. |
[11] | 康捷, 章淑艳, 韩韬, 孙志梅. 麻山药不同生长时期根际土壤微生物多样性及群落结构特征[J]. 生物技术通报, 2019, 35(9): 99-106. |
[12] | 张卓, 刘茂炎, 王培, 黄文坤, 刘二明, 彭焕, 彭德良. 抗草甘膦转基因大豆AG5601对根际微生物群落功能多样性的影响[J]. 生物技术通报, 2019, 35(7): 17-24. |
[13] | 康捷,章淑艳,韩韬,孙志梅,罗同阳. 两种麻山药典型病害根际土壤微生物多样性的研究[J]. 生物技术通报, 2017, 33(7): 107-113. |
[14] | 杨利云, 杨双龙, 李军营, 逄涛, 何彬, 龚明. 烟草高级脂肪酸代谢及影响因素研究进展[J]. 生物技术通报, 2017, 33(12): 51-60. |
[15] | 高秀芝,易欣欣,刘慧,王晓东,崔宗均. 东北传统豆酱发酵过程中微生物的多样性[J]. 生物技术通报, 2016, 32(4): 251-255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||