生物技术通报 ›› 2023, Vol. 39 ›› Issue (12): 276-286.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0710
涂晓媛1(), 褚路路1, 王冕1, 陈炳智1,2(), 江玉姬1,2()
收稿日期:
2023-07-24
出版日期:
2023-12-26
发布日期:
2024-01-11
通讯作者:
陈炳智,男,博士,副教授,研究方向:食用菌的加工、保鲜和分子生物学;E-mail: cbz_2006@163.com;作者简介:
涂晓媛,女,硕士研究生,研究方向:食品加工技术;E-mail: a2693050400@163.com
基金资助:
TU Xiao-yuan1(), CHU Lu-lu1, WANG Mian1, CHEN Bing-zhi1,2(), JIANG Yu-ji1,2()
Received:
2023-07-24
Published:
2023-12-26
Online:
2024-01-11
摘要:
珊瑚状猴头菇是近几年栽培驯化成功的新品种,珊瑚状猴头菇多糖具有抗氧化等生理活性。以多糖提取率为指标,利用响应面法优化热水浸提珊瑚状猴头菇多糖的提取工艺,并通过紫外吸收光谱、傅里叶变换红外光谱、X-衍射初步表征珊瑚状猴头菇多糖,同时测定其体外抗氧化活性。珊瑚状猴头菇多糖最佳工艺参数为提取温度93℃、提取时间2.0 h、料液比1∶33(g/mL)、颗粒大小80目;表征结果显示珊瑚状猴头菇多糖含有少量蛋白质和核酸,具有多糖化合物的典型吸收峰和吡喃糖环结构,同时可能存在晶体和非晶体结构;体外抗氧化试验表明,珊瑚状猴头菇多糖对DPPH、ABTS+、·OH自由基有良好的清除效果,其EC50值分别为0.663 mg/mL、0.767 mg/mL和0.952 mg/mL。珊瑚状猴头菇多糖具有良好的体外抗氧化活性,研究结果为进一步探究珊瑚状猴头菇多糖体内抗氧化活性及其他功效奠定研究基础。
涂晓媛, 褚路路, 王冕, 陈炳智, 江玉姬. 珊瑚状猴头菇多糖的提取及其体外抗氧化活性分析[J]. 生物技术通报, 2023, 39(12): 276-286.
TU Xiao-yuan, CHU Lu-lu, WANG Mian, CHEN Bing-zhi, JIANG Yu-ji. Extraction of Polysaccharide from Hericium corallinum and Analysis on Its in vitro Antioxidant Activity[J]. Biotechnology Bulletin, 2023, 39(12): 276-286.
因素 Factor | 水平Level | |||
---|---|---|---|---|
-1 | 0 | 1 | ||
A温度 Temperature/℃ | 80 | 90 | 100 | |
B时间Time/h | 1.5 | 2.0 | 2.5 | |
C料液比 Solid-liquid ratio/(g·mL-1) | 1∶20 | 1∶30 | 1∶40 | |
D颗粒大小 Particle size/(mesh) | 60 | 80 | 100 |
表1 响应面试验设计因素与水平
Table 1 Factors and levels of Box-Behnken design
因素 Factor | 水平Level | |||
---|---|---|---|---|
-1 | 0 | 1 | ||
A温度 Temperature/℃ | 80 | 90 | 100 | |
B时间Time/h | 1.5 | 2.0 | 2.5 | |
C料液比 Solid-liquid ratio/(g·mL-1) | 1∶20 | 1∶30 | 1∶40 | |
D颗粒大小 Particle size/(mesh) | 60 | 80 | 100 |
图1 不同提取条件对多糖提取率的影响 图中误差线表示标准偏差,小写字母是代表显著性不同P<0.05,下同
Fig. 1 Effects of different extraction conditions on the extraction rates of polysaccharides The error line in the figure represents the standard deviation, and the lowercase letter represents a significant difference P < 0.05. The same below
试验号 Test No. | A | B | C | D | 提取率 Extraction rate Y/% |
---|---|---|---|---|---|
1 | -1 | 1 | 0 | 0 | 9.86 |
2 | 1 | 1 | 0 | 0 | 10.41 |
3 | -1 | -1 | 0 | 0 | 8.79 |
4 | 1 | -1 | 0 | 0 | 10.17 |
5 | 0 | 0 | -1 | -1 | 6.77 |
6 | 0 | 0 | 1 | -1 | 9.96 |
7 | 0 | 0 | -1 | 1 | 7.62 |
8 | 0 | 0 | 1 | 1 | 9.35 |
9 | -1 | 0 | 0 | -1 | 9.00 |
10 | 1 | 0 | 0 | -1 | 9.88 |
11 | -1 | 0 | 0 | 1 | 8.98 |
12 | 1 | 0 | 0 | 1 | 10.42 |
13 | 0 | 1 | -1 | 0 | 8.05 |
14 | 0 | -1 | -1 | 0 | 6.87 |
15 | 0 | 1 | 1 | 0 | 9.84 |
16 | 0 | -1 | 1 | 0 | 10.18 |
17 | -1 | 0 | -1 | 0 | 6.90 |
18 | 1 | 0 | -1 | 0 | 8.05 |
19 | -1 | 0 | 1 | 0 | 10.02 |
20 | 1 | 0 | 1 | 0 | 10.13 |
21 | 0 | 1 | 0 | -1 | 10.12 |
22 | 0 | -1 | 0 | -1 | 9.27 |
23 | 0 | 1 | 0 | 1 | 10.19 |
24 | 0 | -1 | 0 | 1 | 9.64 |
25 | 0 | 0 | 0 | 0 | 10.91 |
26 | 0 | 0 | 0 | 0 | 10.93 |
27 | 0 | 0 | 0 | 0 | 10.64 |
28 | 0 | 0 | 0 | 0 | 10.68 |
29 | 0 | 0 | 0 | 0 | 10.98 |
表2 Box-Behnken试验设计及结果
Table 2 Box-Behnken experimental design and results
试验号 Test No. | A | B | C | D | 提取率 Extraction rate Y/% |
---|---|---|---|---|---|
1 | -1 | 1 | 0 | 0 | 9.86 |
2 | 1 | 1 | 0 | 0 | 10.41 |
3 | -1 | -1 | 0 | 0 | 8.79 |
4 | 1 | -1 | 0 | 0 | 10.17 |
5 | 0 | 0 | -1 | -1 | 6.77 |
6 | 0 | 0 | 1 | -1 | 9.96 |
7 | 0 | 0 | -1 | 1 | 7.62 |
8 | 0 | 0 | 1 | 1 | 9.35 |
9 | -1 | 0 | 0 | -1 | 9.00 |
10 | 1 | 0 | 0 | -1 | 9.88 |
11 | -1 | 0 | 0 | 1 | 8.98 |
12 | 1 | 0 | 0 | 1 | 10.42 |
13 | 0 | 1 | -1 | 0 | 8.05 |
14 | 0 | -1 | -1 | 0 | 6.87 |
15 | 0 | 1 | 1 | 0 | 9.84 |
16 | 0 | -1 | 1 | 0 | 10.18 |
17 | -1 | 0 | -1 | 0 | 6.90 |
18 | 1 | 0 | -1 | 0 | 8.05 |
19 | -1 | 0 | 1 | 0 | 10.02 |
20 | 1 | 0 | 1 | 0 | 10.13 |
21 | 0 | 1 | 0 | -1 | 10.12 |
22 | 0 | -1 | 0 | -1 | 9.27 |
23 | 0 | 1 | 0 | 1 | 10.19 |
24 | 0 | -1 | 0 | 1 | 9.64 |
25 | 0 | 0 | 0 | 0 | 10.91 |
26 | 0 | 0 | 0 | 0 | 10.93 |
27 | 0 | 0 | 0 | 0 | 10.64 |
28 | 0 | 0 | 0 | 0 | 10.68 |
29 | 0 | 0 | 0 | 0 | 10.98 |
来源Source | 平方和Sum of squares | 自由度df | 均方Mean square | F值F-value | P值P-value | 显著性Significance |
---|---|---|---|---|---|---|
模型 Model | 43.150 | 14 | 3.080 | 97.78 | <0.000 1 | ** |
A | 2.530 | 1 | 2.530 | 80.26 | <0.000 1 | ** |
B | 1.050 | 1 | 1.050 | 33.32 | <0.000 1 | ** |
C | 19.300 | 1 | 19.30 | 612.40 | <0.000 1 | ** |
D | 0.120 | 1 | 0.120 | 3.81 | 0.071 3 | |
AB | 0.170 | 1 | 0.170 | 5.46 | 0.034 8 | * |
AC | 0.270 | 1 | 0.270 | 8.58 | 0.011 0 | * |
AD | 0.078 | 1 | 0.078 | 2.49 | 0.137 1 | |
BC | 0.580 | 1 | 0.580 | 18.32 | 0.000 8 | ** |
BD | 0.023 | 1 | 0.023 | 0.71 | 0.412 4 | |
CD | 0.530 | 1 | 0.530 | 16.91 | 0.001 1 | ** |
A2 | 1.780 | 1 | 1.780 | 32.73 | <0.000 1 | ** |
B2 | 1.180 | 1 | 1.180 | 31.39 | <0.000 1 | ** |
C2 | 17.290 | 1 | 17.290 | 496.43 | <0.000 1 | ** |
D2 | 3.180 | 1 | 3.180 | 117.00 | <0.000 1 | ** |
残差 Residual error | 0.440 | 14 | 0.032 | |||
失拟项 Lack of error | 0.340 | 10 | 0.034 | 1.41 | 0.395 9 | |
净误差 Pure error | 0.097 | 4 | 0.024 | |||
总误差 Cor total | 43.590 | 28 | ||||
R2=0.989 9 | R2adj=0.979 8 |
表3 回归模型的方差分析表
Table 3 Variance analysis table of regression model
来源Source | 平方和Sum of squares | 自由度df | 均方Mean square | F值F-value | P值P-value | 显著性Significance |
---|---|---|---|---|---|---|
模型 Model | 43.150 | 14 | 3.080 | 97.78 | <0.000 1 | ** |
A | 2.530 | 1 | 2.530 | 80.26 | <0.000 1 | ** |
B | 1.050 | 1 | 1.050 | 33.32 | <0.000 1 | ** |
C | 19.300 | 1 | 19.30 | 612.40 | <0.000 1 | ** |
D | 0.120 | 1 | 0.120 | 3.81 | 0.071 3 | |
AB | 0.170 | 1 | 0.170 | 5.46 | 0.034 8 | * |
AC | 0.270 | 1 | 0.270 | 8.58 | 0.011 0 | * |
AD | 0.078 | 1 | 0.078 | 2.49 | 0.137 1 | |
BC | 0.580 | 1 | 0.580 | 18.32 | 0.000 8 | ** |
BD | 0.023 | 1 | 0.023 | 0.71 | 0.412 4 | |
CD | 0.530 | 1 | 0.530 | 16.91 | 0.001 1 | ** |
A2 | 1.780 | 1 | 1.780 | 32.73 | <0.000 1 | ** |
B2 | 1.180 | 1 | 1.180 | 31.39 | <0.000 1 | ** |
C2 | 17.290 | 1 | 17.290 | 496.43 | <0.000 1 | ** |
D2 | 3.180 | 1 | 3.180 | 117.00 | <0.000 1 | ** |
残差 Residual error | 0.440 | 14 | 0.032 | |||
失拟项 Lack of error | 0.340 | 10 | 0.034 | 1.41 | 0.395 9 | |
净误差 Pure error | 0.097 | 4 | 0.024 | |||
总误差 Cor total | 43.590 | 28 | ||||
R2=0.989 9 | R2adj=0.979 8 |
图2 各因素交互作用对珊瑚状猴头菇多糖提取率影响的响应面图和等高线图
Fig. 2 Response surface diagram and contour map of the effects of interactions of various factors on the extraction rates of HCP
样品Sample | 总糖Total sugar | 蛋白质Protein | 糖醛酸Uronic acid |
---|---|---|---|
HCP | 65.21±0.90 | 5.28±0.5 | 13.52±1.95 |
表4 HCP的化学成分
Table 4 Chemical composition of HCP
样品Sample | 总糖Total sugar | 蛋白质Protein | 糖醛酸Uronic acid |
---|---|---|---|
HCP | 65.21±0.90 | 5.28±0.5 | 13.52±1.95 |
[1] | 曲娜, 刘迪, 王皓, 等. 长白山野生珊瑚状猴头菌菌丝最佳培养基配方研究[J]. 中国食用菌, 2020, 39(4): 17-19. |
Qu N, Liu D, Wang H, et al. Study on the optimal medium formula of wild coral Hericium coralloides(scop.) pers. in Changbai Mountain[J]. Edible Fungi China, 2020, 39(4): 17-19. | |
[2] | 柳凤玉, 程群柱. 冀北地区珊瑚状猴头菌栽培技术[J]. 现代农业科技, 2020(5): 82. |
Liu FY, Cheng QZ. Cultivation techniques of Hericium corallinum in northern Hebei Province[J]. Mod Agric Sci Technol, 2020(5): 82. | |
[3] | 王雪儒, 刘斌. 猴头菇的生物活性成分及加工研究现状[J]. 现代食品, 2020(4): 21-23. |
Wang XR, Liu B. Research status on bioactive compounds and processing products development of Hericium erinaceus[J]. Mod Food, 2020(4): 21-23. | |
[4] | 张鹏. 珊瑚状猴头菌子实体化学成分及总甾体含量测定的研究[D]. 长春: 吉林农业大学, 2012. |
Zhang P. Study on chemical constituents and determination of total steroids content from basidiocarps of Hericium coralloides[D]. Changchun: Jilin Agricultural University, 2012. | |
[5] | 李春林. 纯化对姬菇多糖抗氧化与抑菌能力的影响[J]. 粮食与油脂, 2022, 35(10): 92-95, 101. |
Li CL. Effect of purification on antioxidation and bacteriostasis of Pleurotus cornucopiae polysaccharide[J]. Cereals Oils, 2022, 35(10): 92-95, 101. | |
[6] | 孟俊龙, 田敏, 冯翠萍, 等. 珊瑚状猴头菌营养成分及其多糖对小鼠免疫功能的影响[J]. 中国食品学报, 2016, 16(2): 50-55. |
Meng JL, Tian M, Feng CP, et al. Components of Hericium coralloids and effects of polysaccharide on immune and antioxidant function in mice[J]. J Chin Inst Food Sci Technol, 2016, 16(2): 50-55. | |
[7] | 程艳芬, 韩爱丽, 云少君, 等. 珊瑚状猴头菌多糖降血胆固醇作用及机制[J]. 营养学报, 2018, 40(2): 172-176. |
Cheng YF, Han AL, Yun SJ, et al. Cholesterol-lowering effect of H. coralloides polysaccharides and its mechanism[J]. Acta Nutr Sin, 2018, 40(2): 172-176. | |
[8] | 唐鹏, 李学英, 王大忠, 等. 珊瑚状猴头菌多糖对大鼠肝抗氧化及代谢调节[J]. 中国食用菌, 2014, 33(3): 48-51. |
Tang P, Li XY, Wang DZ, et al. Effect on antioxidant and regulation of hepatic metabolism in rats of Hericium coralloides polysaccharide[J]. Edible Fungi China, 2014, 33(3): 48-51. | |
[9] |
Liu JH, Li L, Shang XD, et al. Anti-Helicobacter pylori activity of bioactive components isolated from Hericium erinaceus[J]. J Ethnopharmacol, 2016, 183: 54-58.
doi: 10.1016/j.jep.2015.09.004 URL |
[10] | 邵梦茹. 猴头菇多糖对胃肠黏膜保护作用的实验研究[D]. 广州: 广州中医药大学, 2014. |
Shao MR. Protective role of hericiumerinaceus polysaeeharides on gastrointestinal mucosal barrier function[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2014. | |
[11] | 张沙沙, 罗晓莉, 何容, 等. 基于响应面优化的超声波辅助提取香菇多糖工艺研究[J]. 中国食用菌, 2020, 39(3): 29-33. |
Zhang SS, Luo XL, He R, et al. Study on ultrasonic-assisted extraction of lentinan based on response surface optimization[J]. Edible Fungi China, 2020, 39(3): 29-33. | |
[12] | 吴睿婷, 付王威, 万敏, 等. 黑灵芝多糖对糖尿病大鼠血糖血脂调节及肠道菌群的影响[J]. 食品科学, 2022, 43(5): 91-102. |
Wu RT, Fu WW, Wan M, et al. Effect of polysaccharide from Ganoderma atrum on hyperglycemia, blood lipid and gut microbiota of diabetic rats[J]. Food Sci, 2022, 43(5): 91-102. | |
[13] | 刘炳莉, 樊红秀, 邵添, 等. 银耳多糖抑制鲜湿面水分迁移及改善黏连的作用[J]. 食品科学, 2023, 44(2): 79-86. |
Liu BL, Fan HX, Shao T, et al. Tremella fuciformis polysaccharides inhibited water migration and adhesion in fresh wet noodles[J]. Food Sci, 2023, 44(2): 79-86.
doi: 10.1111/jfds.1979.44.issue-1 URL |
|
[14] |
杨嘉丹, 刘婷婷, 张闪闪, 等. 微波辅助提取银耳多糖工艺优化及其流变、凝胶特性[J]. 食品科学, 2019, 40(14): 289-295.
doi: 10.7506/spkx1002-6630-20190104-059 |
Yang JD, Liu TT, Zhang SS, et al. Optimization of microwave-assisted extraction and rheological and gelling properties of polysaccharide from Tremella fuciformis[J]. Food Sci, 2019, 40(14): 289-295. | |
[15] |
杨申明, 范树国, 文美琼, 等. 微波辅助提取澳洲坚果壳多糖的工艺优化及抗氧化性评价[J]. 食品科学, 2016, 37(10): 17-22.
doi: 10.7506/spkx1002-6630-201610004 |
Yang SM, Fan SG, Wen MQ, et al. Optimization of microwave-assisted extraction of polysaccharides from Macadamia integrifolia shell and evaluation of their antioxidant activities[J]. Food Sci, 2016, 37(10): 17-22. | |
[16] | 孙耀. 灰树花多糖的提取、纯化、分离及体内生物利用度的研究[D]. 长春: 吉林大学, 2019. |
Sun Y. The studies on the extraction, purification, separation and bioavailability of Grifola frondosa polysaccharide[D]. Changchun: Jilin University, 2019. | |
[17] |
冯鑫, 夏宇, 陈贵堂, 等. 生姜皮多糖的分离纯化及其结构组成分析[J]. 食品科学, 2017, 38(6): 185-190.
doi: 10.7506/spkx1002-6630-201706029 |
Feng X, Xia Y, Chen GT, et al. Purification and structural analysis of polysaccharides from ginger peels[J]. Food Sci, 2017, 38(6): 185-190.
doi: 10.1111/jfds.1973.38.issue-2 URL |
|
[18] |
Hojjati M, Noshad M, Sorourian R, et al. Effect of gamma irradiation on structure, physicochemical and functional properties of bitter vetch(Vicia ervilia)seeds polysaccharides[J]. Radiat Phys Chem, 2023, 202: 110569.
doi: 10.1016/j.radphyschem.2022.110569 URL |
[19] |
Liu GR, Kamilijiang M, Abuduwaili A, et al. Isolation, structure elucidation, and biological activity of polysaccharides from Saussurea involucrata[J]. Int J Biol Macromol, 2022, 222(Pt A): 154-166.
doi: 10.1016/j.ijbiomac.2022.09.137 URL |
[20] |
Chen JC, Zhang X, Huo D, et al. Preliminary characterization, antioxidant and α-glucosidase inhibitory activities of polysaccharides from Mallotus furetianus[J]. Carbohydr Polym, 2019, 215: 307-315.
doi: 10.1016/j.carbpol.2019.03.099 URL |
[21] |
Wang JJ, Shi S, Li FF, et al. Physicochemical properties and antioxidant activity of polysaccharides obtained from sea cucumber gonads via ultrasound-assisted enzymatic techniques[J]. LWT, 2022, 160: 113307.
doi: 10.1016/j.lwt.2022.113307 URL |
[22] | 魏倩倩, 夏梦瑶, 邓爱华, 等. 正交试验优化桃胶中多糖提取工艺[J]. 农产品加工, 2022(23): 24-26. |
Wei QQ, Xia MY, Deng AH, et al. Orthogonal test optimization of polysaccharide from peach gum[J]. Farm Prod Process, 2022(23): 24-26. | |
[23] |
Ma RJ, Cao TQ, An HX, et al. Extraction, purification, structure, and antioxidant activity of polysaccharide from Rhodiola ro-sea[J]. J Mol Struct, 2023, 1283: 135310.
doi: 10.1016/j.molstruc.2023.135310 URL |
[24] | 隋新, 谢洋, 付东, 等. 真菌多糖提取工艺研究进展[J]. 化学工程师, 2018, 32(5): 66-67. |
Sui X, Xie Y, Fu D, et al. Review on extraction process of Fungus polysaccharides[J]. Chem Eng, 2018, 32(5): 66-67. | |
[25] | 胡丽玲, 刘世柱, 吴志君, 等. 水提法同步提取分离香菇中蛋白质和多糖的工艺研究[J]. 食药用菌, 2019, 27(5): 316-319. |
Hu LL, Liu SZ, Wu ZJ, et al. Study on simultaneous extraction and separation of protein and polysaccharide from Lentinula edodes by water extraction[J]. Edible Med Mushrooms, 2019, 27(5): 316-319. | |
[26] | 胡瑞财, 汪忠华, 胡华斌, 等. 林下栽培灵芝多糖的提取工艺优化[J]. 中国食用菌, 2021, 40(7): 47-51. |
Hu RC, Wang ZH, Hu HB, et al. Optimization of extraction of polysaccharide from Ganoderma lucidum cultivated under forest[J]. Edible Fungi China, 2021, 40(7): 47-51. | |
[27] | 喻治达, 沈丹丹. 海鲜菇多糖提取工艺优化及抗氧化性分析[J]. 中国调味品, 2023, 48(1): 27-30. |
Yu ZD, Shen DD. Extraction process optimization and antioxidant activity analysis of seafood mushroom polysaccharides[J]. China Condiment, 2023, 48(1): 27-30. | |
[28] | 白凤岐, 牟建楼, 陈志周, 等. 水提法提取灵芝多糖及其体外抗氧化研究[J]. 食品工业, 2015, 36(3): 143-146. |
Bai FQ, Mou JL, Chen ZZ, et al. Study on extraction and antioxidant activity of Ganoderma lucidum polysaccharides by water method[J]. Food Ind, 2015, 36(3): 143-146. | |
[29] | 于姮梅, 邓扬, 赵帅, 等. 九香虫多糖提取条件筛选及其对人乳腺癌HCC1937细胞的抑制作用[J]. 昆虫学报, 2023, 66(1): 45-54. |
Yu HM, Deng Y, Zhao S, et al. Extraction conditions of polysaccharides from Aspongopus chinensis(Hemiptera: Dinidoridae)and their inhibitory effects on human breast cancer HCC1937 cells[J]. Acta Entomol Sin, 2023, 66(1): 45-54. | |
[30] | 侯天宇, 乔嘉铭, 王琴琴, 等. 不同栽培模式下铁皮石斛多糖提取及抗氧化活性研究[J]. 中国食品添加剂, 2023, 34(1): 164-171. |
Hou TY, Qiao JM, Wang QQ, et al. Extraction optimization and antioxidant activity of polysaccharides from Dendrobium candidum under different cultivation[J]. China Food Addit, 2023, 34(1): 164-171. | |
[31] |
许海林, 吴小勇, 聂少平, 等. 黑木耳多糖提取工艺优化及其对小鼠巨噬细胞功能的影响[J]. 食品科学, 2016, 37(10): 100-104.
doi: 10.7506/spkx1002-6630-201610017 |
Xu HL, Wu XY, Nie SP, et al. Optimization of extraction conditions of crude polysaccharide from Auricularia auricular and its effects on the functions of mouse peritoneal macrophages[J]. Food Sci, 2016, 37(10): 100-104.
doi: 10.1111/jfds.1972.37.issue-1 URL |
|
[32] | 游贤珍. 滑菇多糖提取工艺优化及其抗氧化活性研究[D]. 福州: 福建农林大学, 2018. |
You XZ. Optimization of polysaccharides extraction from Pholiota nameko and determination its antioxidant activity[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. | |
[33] | 贾丰. 苹果渣固体发酵多糖活性、结构与加工特性研究[D]. 西安: 陕西师范大学, 2017. |
Jia F. Activity, structure and processing characteristics of solid-fermented apple pomace polysaccnarides[D]. Xi'an: Shaanxi Normal University, 2017. | |
[34] | 于闯. 富硒方式对茶多糖的影响研究——硒—多糖结合形态、多糖结构及活性[D]. 上海: 上海师范大学, 2018. |
Yu C. Se-enriched ways for tea polysaccharides[D]. Shanghai: Shanghai Normal University, 2018. | |
[35] |
Peng XW, Liu JJ, Tang N, et al. Sequential extraction, structural characterization, and antioxidant activity of polysaccharides from Dendrocalamus brandisii bamboo shoot shell[J]. Food Chem X, 2023, 17: 100621.
doi: 10.1016/j.fochx.2023.100621 URL |
[36] |
张凤培, 徐慧, 邱绍峰, 等. 鹿茸菇多糖抗氧化保肝研究[J]. 生物技术通报, 2021, 37(11): 92-100.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0891 |
Zhang FP, Xu H, Qiu SF, et al. Study on antioxidant and liver protection of polysaccharide from Lyophyllum decastes[J]. Biotechnol Bull, 2021, 37(11): 92-100. | |
[37] | 黄越, 周春晖, 黄惠华. 不同提取方法猴头菇粗多糖的表征及其抗氧化活性的比较[J]. 食品工业科技, 2017, 38(3): 80-86. |
Huang Y, Zhou CH, Huang HH. Characterization and antioxidant activity analysis on the crude Hericium erinaceus polysaccharides extracted by different methods[J]. Sci Technol Food Ind, 2017, 38(3): 80-86. | |
[38] |
Liu Y, Zhang B, Ibrahim SA, et al. Purification, characterization and antioxidant activity of polysaccharides from Flammulina velutipes residue[J]. Carbohydr Polym, 2016, 145: 71-77.
doi: 10.1016/j.carbpol.2016.03.020 URL |
[39] |
Leng XP, Li JZ, Miao WJ, et al. Comparison of physicochemical characteristics, antioxidant and immunomodulatory activities of polysaccharides from wine grapes[J]. Int J Biol Macromol, 2023, 239: 124164.
doi: 10.1016/j.ijbiomac.2023.124164 URL |
[1] | 康凌云, 韩露露, 韩德平, 陈建胜, 甘瀚凌, 邢凯, 马友记, 崔凯. 褪黑素缓解空肠黏膜上皮细胞氧化损伤的效果研究[J]. 生物技术通报, 2023, 39(9): 291-299. |
[2] | 张岳一, 兰社益, 裴海闰, 封棣. 多菌种联用发酵燕麦麸皮工艺优化及发用功效评价[J]. 生物技术通报, 2023, 39(9): 58-70. |
[3] | 张曼, 张叶卓, 何其邹洪, 鄂一岚, 李晔. 植物细胞壁结构及成像技术研究进展[J]. 生物技术通报, 2023, 39(7): 113-122. |
[4] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[5] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[6] | 崔学强, 黄昌艳, 邓杰玲, 李先民, 李秀玲, 张自斌. 基于SLAF-seq技术的石斛兰SNP标记开发及亲缘关系分析[J]. 生物技术通报, 2023, 39(6): 141-148. |
[7] | 李托, 李陇平, 屈雷. 有尾噬菌体的结构及其受体研究进展[J]. 生物技术通报, 2023, 39(6): 88-101. |
[8] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
[9] | 杨俊钊, 张新蕊, 赵国柱, 郑菲. 新型GH5家族多结构域纤维素酶的结构与功能研究[J]. 生物技术通报, 2023, 39(4): 71-80. |
[10] | 周晞雯, 成柯, 朱鸿亮. 植物体内RNA二级结构探测方法的研究进展[J]. 生物技术通报, 2023, 39(2): 51-62. |
[11] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[12] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[13] | 赵佳, 赵飞燕, 沈馨, 高广琦, 孙志宏. 乳酸菌抗氧化活性及其应用研究进展[J]. 生物技术通报, 2023, 39(11): 182-190. |
[14] | 陈泉冰, 曹伟洁, 李春, 吕波. GH79家族糖苷水解酶分子进化关系和蛋白结构研究[J]. 生物技术通报, 2023, 39(1): 104-114. |
[15] | 罗皓天, 王龙, 王禹茜, 王月, 李佳祯, 杨梦珂, 张杰, 邓欣, 王红艳. 青狗尾草RNAi途径相关基因的全基因组鉴定和表达分析[J]. 生物技术通报, 2023, 39(1): 175-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||