生物技术通报 ›› 2024, Vol. 40 ›› Issue (4): 217-227.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0905
收稿日期:
2023-09-19
出版日期:
2024-04-26
发布日期:
2024-04-30
通讯作者:
伍国强,博士,教授,博士生导师,研究方向:植物逆境生理与基因工程;E-mail: gqwu@lut.edu.cn作者简介:
高志伟,硕士研究生,研究方向:植物与微生物互作;E-mail: 1218684014@qq.com
基金资助:
GAO Zhi-wei(), WEI Ming, YU Zu-long, WU Guo-qiang(), WEI Jun-long
Received:
2023-09-19
Published:
2024-04-26
Online:
2024-04-30
摘要:
【目的】为获得耐盐植物促生菌,从甘肃景泰一处盐碱地中的植物根系中分离出多株耐盐菌,其中部分耐盐菌具有明显的植物促生特性。【方法】在前期研究基础上,选取1株耐盐菌W-1和盐敏感植物红豆草(Onobrychis viciaefolia)为试验材料,对菌株W-1的物种分类、耐盐、耐酸碱能力和植物促生特性进行检测,并探究其对不同浓度NaCl处理下红豆草生长和生理特性的影响。【结果】耐盐菌W-1为革兰氏阳性菌、产芽孢、无荚膜、有鞭毛,16S rDNA测序及比对结果显示,菌株W-1为暹罗芽孢杆菌(Bacillus siamensis)。菌株W-1对NaCl最高耐受度为13%,pH耐受范围为4.5-8.5。菌株W-1具有溶磷、解钾、固氮、产铁载体、产吲哚-3-乙酸(indole-3-acetic acid, IAA)和1-氨基环丙烷-1-羧酸(1-aminocyclopropane-1-carboxylic acid, ACC)脱氨酶活性等多种植物促生功能。接种菌株W-1可显著提高红豆草的干重、鲜重,促进其根系生长。在100和150 mmol/L NaCl胁迫下,接种W-1可显著增加红豆草可溶性糖、可溶性蛋白、脯氨酸和叶绿素含量以及过氧化氢酶活力,降低过氧化氢含量以及叶片黄化率和死亡率,减缓盐胁迫对红豆草生长的不利影响。【结论】W-1是一株具有耐盐、耐酸碱的优良植物促生菌,可增强豆科牧草的耐 盐性。
高志伟, 魏明, 于祖隆, 伍国强, 魏俊龙. 耐盐植物促生菌W-1鉴定及其对红豆草耐盐性的影响[J]. 生物技术通报, 2024, 40(4): 217-227.
GAO Zhi-wei, WEI Ming, YU Zu-long, WU Guo-qiang, WEI Jun-long. Identification of Salt-tolerant Plant Growth-promoting Bacterium W-1 and Its Effect on the Salt-tolerance of Sainfoin(Onobrychis viciaefolia)[J]. Biotechnology Bulletin, 2024, 40(4): 217-227.
图2 菌株W-1染色 A:革兰氏染色;B:芽孢染色(绿色小点为芽孢);C:荚膜染色;D:鞭毛染色(红色箭头所指浅色细丝为鞭毛)(100×)
Fig. 2 Strain W-1 staining A: Gram staining. B: Endospore staining(The green dots are endospores). C: Capsule staining. D: Flagellum staining(The red arrow points to light filaments as flagella)(100×)
图3 NaCl(A)和pH(B)对菌株W-1生长的影响 A、B图例中的数字分别代表培养基中NaCl浓度和pH。误差线表示标准偏差(n=3)
Fig. 3 Effects of NaCl(A)and pH(B)on the growth of strain W-1 The numbers in the legend in Fig. A and B represent NaCl concentration and pH in the medium, respectively. The error line refers to the standard deviation(n=3)
图4 菌株W-1植物促生特性检测 A:IAA显色反应; B:溶磷显色反应; C:溶磷、解钾、固氮、铁载体。A、B中的数字分别代表IAA和P浓度(mg/L);“- W-1”代表不接种菌株W-1;“+ W-1”代表接种菌株W-1, 下同
Fig. 4 Detection of plant growth-promoting characteristics of strain W-1 A: IAA color development reaction; B: phosphate solubilization color development reaction; C: phosphate solubilization, potassium solubilization, nitrogen fixation, siderophore. The numbers in Fig. A and B indicate IAA and P concentrations(mg/L); “-W-1” indicates the unvaccinated strain W-1, and “+ W-1” indicates the vaccinated strain W-1, the same below
图5 接菌W-1对不同程度NaCl胁迫下4 d龄(A),12 d龄(B)和14 d龄(C)红豆草幼苗发育的影响
Fig. 5 Effects of inoculation on the seedling development of 4 d-old(A), 12 d-old(B)and 14 d-old(C)sainfoin under different degrees of NaCl stress
图6 接菌W-1对不同浓度NaCl处理下14 d龄红豆草幼苗鲜重、干重和含水量的影响 误差线表示标准偏差(n=3)。小写字母表示不同处理间差异达到(P<0.05)显著水平。下同
Fig. 6 Effects of inoculation with W-1 on the fresh weight, dry weight and water content of 14-day-old sainfoin seedlings treated with different concentrations of NaCl The error line refers to the standard deviation(n=3). The lowercase letters indicate that the difference among different treatment at significant level(P< 0.05). The same below
图8 接菌W-1对不同浓度NaCl处理下红豆草单株叶片数、叶片枯黄率和鲜重的影响
Fig. 8 Effects of inoculation with W-1 on the leaf number, leaf withering rate and fresh weights of sainfoin under different concentrations of NaCl
图9 接菌W-1对不同浓度NaCl处理下红豆草幼苗可溶性蛋白、可溶性糖、脯氨酸、总叶绿素、CAT和过氧化氢含量的影响
Fig. 9 Effects of inoculation with W-1 on the contents of soluble protein, soluble sugar, proline, total chlorophyll, CAT and H2O2 in sainfoin seedlings under different concentrations of NaCl
[1] | Kumar V, Raghuvanshi N, Pandey AK, et al. Role of halotolerant plant growth-promoting rhizobacteria in mitigating salinity stress: recent advances and possibilities[J]. Agriculture, 2023, 13(1): 168. |
[2] |
Kumawat KC, Sharma B, Nagpal S, et al. Plant growth-promoting rhizobacteria: salt stress alleviators to improve crop productivity for sustainable agriculture development[J]. Front Plant Sci, 2023, 13: 1101862.
doi: 10.3389/fpls.2022.1101862 URL |
[3] | 杨真, 王宝山. 中国盐渍土资源现状及改良利用对策[J]. 山东农业科学, 2015, 47(4): 125-130. |
Yang Z, Wang BS. Present status of saline soil resources and countermeasures for improvement and utilization in China[J]. Shandong Agric Sci, 2015, 47(4): 125-130. | |
[4] | 刘丽娟, 李小玉. 干旱区土壤盐分积累过程研究进展[J]. 生态学杂志, 2019, 38(3): 891-898. |
Liu LJ, Li XY. Progress in the study of soil salt accumulation in arid region[J]. Chin J Ecol, 2019, 38(3): 891-898. | |
[5] |
Das PP, Singh KR, Nagpure G, et al. Plant-soil-microbes: a tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices[J]. Environ Res, 2022, 214(Pt 1): 113821.
doi: 10.1016/j.envres.2022.113821 URL |
[6] |
Kumar A, Behera I, Langthasa M, et al. Effect of plant growth-promoting rhizobacteria on alleviating salinity stress in plants: a review[J]. J Plant Nutr, 2023, 46(10): 2525-2550.
doi: 10.1080/01904167.2022.2155548 URL |
[7] |
Liu HW, Brettell LE, Qiu ZG, et al. Microbiome-mediated stress resistance in plants[J]. Trends Plant Sci, 2020, 25(8): 733-743.
doi: S1360-1385(20)30114-X pmid: 32345569 |
[8] | Ha-Tran DM, Nguyen TTM, Hung SH, et al. Roles of plant growth-promoting rhizobacteria(PGPR)in stimulating salinity stress defense in plants: a review[J]. Int J Mol Sci, 2021, 22(6): 3154. |
[9] |
Timofeeva A, Galyamova M, Sedykh S. Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture[J]. Plants, 2022, 11(16): 2119.
doi: 10.3390/plants11162119 URL |
[10] |
Arora M, Saxena P, Abdin MZ, et al. Interaction between Piriformospora indica and Azotobacter chroococcum diminish the effect of salt stress in Artemisia annua L. by enhancing enzymatic and non-enzymatic antioxidants[J]. Symbiosis, 2020, 80(1): 61-73.
doi: 10.1007/s13199-019-00656-w |
[11] |
Ferreira MJ, Silva H, Cunha A. Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: a review[J]. Pedosphere, 2019, 29(4): 409-420.
doi: 10.1016/S1002-0160(19)60810-6 |
[12] |
He AL, Zhao LY, Ren W, et al. A volatile producing Bacillus subtilis strain from the rhizosphere of Haloxylon ammodendron promotes plant root development[J]. Plant Soil, 2023, 486(1): 661-680.
doi: 10.1007/s11104-023-05901-2 |
[13] |
Goswami, Pithwa, Dhandhukia, et al. Delineating Kocuria turfanensis 2M4 as a credible PGPR: a novel IAA-producing bacteria isolated from saline desert[J]. J Plant Interact, 2014, 9(1): 566-576.
doi: 10.1080/17429145.2013.871650 URL |
[14] |
Shahid M, Singh UB, Khan MS, et al. Bacterial ACC deaminase: insights into enzymology, biochemistry, genetics, and potential role in amelioration of environmental stress in crop plants[J]. Front Microbiol, 2023, 14: 1132770.
doi: 10.3389/fmicb.2023.1132770 URL |
[15] |
Sunita K, Mishra I, Mishra J, et al. Secondary metabolites from halotolerant plant growth promoting rhizobacteria for ameliorating salinity stress in plants[J]. Front Microbiol, 2020, 11: 567768.
doi: 10.3389/fmicb.2020.567768 URL |
[16] | Ali B, Wang XK, Saleem MH, et al. PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes[J]. Plants, 2022, 11(3): 345. |
[17] |
Ali B, Hafeez A, Ahmad S, et al. Bacillus thuringiensis PM25 ameliorates oxidative damage of salinity stress in maize via regulating growth, leaf pigments, antioxidant defense system, and stress responsive gene expression[J]. Front Plant Sci, 2022, 13: 921668.
doi: 10.3389/fpls.2022.921668 URL |
[18] |
Kumawat KC, Nagpal S, Sharma P. Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: a review[J]. Pedosphere, 2022, 32(2): 223-245.
doi: 10.1016/S1002-0160(21)60070-X URL |
[19] |
Etesami H, Maheshwari DK. Use of plant growth promoting rhizobacteria(PGPRs)with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects[J]. Ecotoxicol Environ Saf, 2018, 156: 225-246.
doi: 10.1016/j.ecoenv.2018.03.013 URL |
[20] |
Hayot Carbonero C, Carbonero F, Smith LMJ, et al. Phylogenetic characterisation of Onobrychis species with special focus on the forage crop Onobrychis viciifolia Scop[J]. Genet Resour Crop Evol, 2012, 59(8): 1777-1788.
doi: 10.1007/s10722-012-9800-3 URL |
[21] | 陈洁, 温素军, 梁鹏飞, 等. 干旱胁迫对红豆草根系生长及生理特性的影响[J]. 草原与草坪, 2022, 42(6): 101-109. |
Chen J, Wen SJ, Liang PF, et al. Effects of drought stress on root growth and physiological characteristics of sainfoin[J]. Grassland Turf, 2022, 42(6): 101-109. | |
[22] | 刘鑫, 汪堃, 梁鹏飞, 等. 红豆草苗期耐盐种质筛选及综合评价[J]. 西南农业学报, 2022, 35(9): 2171-2179. |
Liu X, Wang K, Liang PF, et al. Screening and comprehensive evaluation of salt tolerant germplasm of sainfoin at seedling stage[J]. Southwest China J Agric Sci, 2022, 35(9): 2171-2179. | |
[23] | 孙玉兰, 李陈建, 李瑞强, 等. 盐与干旱胁迫对10份红豆草种质萌发影响的研究[J]. 种子, 2022, 41(5): 10-16, 22. |
Sun YL, Li CJ, Li RQ, et al. Effects of salt stress and drought stress on seed germination of 10 Onobrychis viciaefolia germplasms[J]. Seed, 2022, 41(5): 10-16, 22. | |
[24] | 伍国强, 贾姝, 刘海龙, 等. 盐胁迫对红豆草幼苗生长和离子积累及分配的影响[J]. 草业科学, 2017, 34(8): 1661-1668. |
Wu GQ, Jia S, Liu HL, et al. Effect of salt stress on growth, ion accumulation, and distribution in sainfoins seedlings[J]. Pratacultural Sci, 2017, 34(8): 1661-1668. | |
[25] |
康红霞, 朱永红, 赵萌, 等. 红豆草组织培养及植株再生体系的优化[J]. 草地学报, 2021, 29(6): 1336-1342.
doi: 10.11733/j.issn.1007-0435.2021.06.025 |
Kang HX, Zhu YH, Zhao M, et al. Optimization of plant regeneration system and A callus induction of forage legume sainfoin(Onobrychis viciifolia scop.)[J]. Acta Agrestia Sin, 2021, 29(6): 1336-1342. | |
[26] | 贾姝. 超表达BvNHX基因提高红豆草耐盐性的研究[D]. 兰州: 兰州理工大学, 2017. |
Jia S. Study on improving salt tolerance of sainfoin by overexpressing BvNHX gene[D]. Lanzhou: Lanzhou University of Technology, 2017. | |
[27] |
伍国强, 李辉, 雷彩荣, 等. 添加KCl对高盐胁迫下红豆草生长及生理特性的影响[J]. 草业学报, 2019, 28(6): 45-55.
doi: 10.11686/cyxb2019015 |
Wu GQ, Li H, Lei CR, et al. Effects of additional KCl on growth and physiological characteristics of sainfoin(Onobrychis viciaefoia)under high salt stress[J]. Acta Prataculturae Sin, 2019, 28(6): 45-55. | |
[28] | 朱雅欣. BvSnRK2.1遗传改良红豆草及甜菜碱对其耐盐性的影响[D]. 兰州: 兰州理工大学, 2023. |
Zhu YX. BvSnRK2.1 Genetic modification of sainfoin(Onobrychis viciifolia Scop.)and the effects of glycine betaine on its salt tolerance[D]. Lanzhou: Lanzhou University of Technology, 2023. | |
[29] |
Mora-Ortiz M, Smith LMJ. Onobrychis viciifolia; a comprehensive literature review of its history, etymology, taxonomy, genetics, agronomy and botany[J]. Plant Genet Resour, 2018, 16(5): 403-418.
doi: 10.1017/S1479262118000230 URL |
[30] |
刘晓婷, 姚拓. 高寒草地耐低温植物根际促生菌的筛选鉴定及特性研究[J]. 草业学报, 2022, 31(8): 178-187.
doi: 10.11686/cyxb2021311 |
Liu XT, Yao T. Screening, identification and characteristics of low-temperature-tolerant plant growth promoting rhizobacteria in alpine meadow[J]. Acta Prataculturae Sin, 2022, 31(8): 178-187. | |
[31] | 林志楷, 林文珍. 暹罗芽孢杆菌研究进展[J]. 亚热带植物科学, 2019, 48(4): 391-396. |
Lin ZK, Lin WZ. Research progress on Bacillus siamensis[J]. Subtrop Plant Sci, 2019, 48(4): 391-396. | |
[32] | 路福平, 李玉. 微生物学实验技术[M]. 2版. 北京: 中国轻工业出版社, 2020. |
Lu FP, Li Y. Experimental techniques of microbiology[M]. 2nd ed. Beijing: China Light Industry Press, 2020. | |
[33] |
漫静, 唐波, 邓波, 等. 羊草根际促生菌的分离筛选及促生作用研究[J]. 草业学报, 2021, 30(1): 59-71.
doi: 10.11686/cyxb2020321 |
Man J, Tang B, Deng B, et al. Isolation, screening and beneficial effects of plant growth-promoting rhizobacteria(PGPR)in the rhizosphere of Leymus chinensis[J]. Acta Prataculturae Sin, 2021, 30(1): 59-71. | |
[34] | 赵小蓉, 林启美, 孙焱鑫, 等. 细菌解磷能力测定方法的研究[J]. 微生物学通报, 2001, 28(1): 1-4. |
Zhao XR, Lin QM, Sun YX, et al. The methods for quantifying capacity of bacteria in dissolving p compounds[J]. Microbiology, 2001, 28(1): 1-4. | |
[35] | 汤鹏, 胡佳频, 易浪波, 等. 钾长石矿区土壤解钾菌的分离与多样性[J]. 中国微生态学杂志, 2015, 27(2): 125-129. |
Tang P, Hu JP, Yi LB, et al. Isolation and phylogenetic analysis of potassium-solubilizing bacteria[J]. Chin J Microecol, 2015, 27(2): 125-129. | |
[36] |
张昊鑫, 王中华, 牛兵, 等. 产IAA兼具溶磷解钾高效促生菌的筛选、鉴定及其广谱性应用[J]. 生物技术通报, 2022, 38(5): 100-111.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1557 |
Zhang HX, Wang ZH, Niu B, et al. Screening, identification and broad-spectrum application of efficient IAA-producing bacteria dissolving phosphorus and potassium[J]. Biotechnol Bull, 2022, 38(5): 100-111. | |
[37] |
Senthilkumar M, Madhaiyan M, Sundaram S, et al. Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice(Oryza sativa L. Cv CO-43)[J]. Microbiol Res, 2009, 164(1): 92-104.
doi: 10.1016/j.micres.2006.10.007 pmid: 17207982 |
[38] |
Penrose DM, Glick BR. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria[J]. Physiol Plant, 2003, 118(1): 10-15.
pmid: 12702008 |
[39] |
Wang YX, McAllister TA, Acharya S. Condensed tannins in sainfoin: composition, concentration, and effects on nutritive and feeding value of sainfoin forage[J]. Crop Sci, 2015, 55(1): 13-22.
doi: 10.2135/cropsci2014.07.0489 URL |
[40] | 付萍, 杨浩, 孟祥君, 等. 红豆草在甘肃省不同生态区的生产性能及品质研究[J]. 中国饲料, 2023(11): 135-139. |
Fu P, Yang H, Meng XJ, et al. Study on production performance and quality of sainfoin in different ecological areas of Gansu Province[J]. China Feed, 2023(11): 135-139. | |
[41] |
Wu GQ, Liu HL, Feng RJ, et al. Silicon ameliorates the adverse effects of salt stress on sainfoin(Onobrychis viciaefolia)seedlings[J]. Plant Soil Environ, 2017, 63(12): 545-551.
doi: 10.17221/665/2017-PSE URL |
[42] |
Upadhyay SK, Rajput VD, Kumari A, et al. Plant growth-promoting rhizobacteria: a potential bio-asset for restoration of degraded soil and crop productivity with sustainable emerging techniques[J]. Environ Geochem Health, 2023, 45(12): 9321-9344.
doi: 10.1007/s10653-022-01433-3 |
[43] |
Jain R, Bhardwaj P, Pandey SS, et al. Arnebia euchroma, a plant species of cold desert in the Himalayas, harbors beneficial cultivable endophytes in roots and leaves[J]. Front Microbiol, 2021, 12: 696667.
doi: 10.3389/fmicb.2021.696667 URL |
[44] |
Dodd IC, Pérez-Alfocea F. Microbial amelioration of crop salinity stress[J]. J Exp Bot, 2012, 63(9): 3415-3428.
doi: 10.1093/jxb/ers033 pmid: 22403432 |
[45] |
Sakamoto T, Morinaka Y, Ohnishi T, et al. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice[J]. Nat Biotechnol, 2006, 24(1): 105-109.
doi: 10.1038/nbt1173 pmid: 16369540 |
[46] |
Vimal SR, Patel VK, Singh JS. Plant growth promoting Curtobacterium albidum strain SRV4: an agriculturally important microbe to alleviate salinity stress in paddy plants[J]. Ecol Indic, 2019, 105: 553-562.
doi: 10.1016/j.ecolind.2018.05.014 URL |
[47] |
Kumar A, Singh S, Gaurav AK, et al. Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants[J]. Front Microbiol, 2020, 11: 1216.
doi: 10.3389/fmicb.2020.01216 pmid: 32733391 |
[48] |
Sarkar A, Ghosh PK, Pramanik K, et al. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress[J]. Res Microbiol, 2018, 169(1): 20-32.
doi: 10.1016/j.resmic.2017.08.005 URL |
[49] |
马小兰, 周华坤, 张正芳, 等. 外源IAA对干旱胁迫下红豆草种子萌发及幼苗生长的影响[J]. 草地学报, 2023, 31(3): 796-803.
doi: 10.11733/j.issn.1007-0435.2023.03.020 |
Ma XL, Zhou HK, Zhang ZF, et al. The effects of exogenous IAA on seed germination and seedling growth of Onobrychis viciifolia scop. under the drought stress[J]. Acta Agrestia Sin, 2023, 31(3): 796-803. | |
[50] |
Taj Z, Challabathula D. Protection of photosynthesis by halotolerant Staphylococcus sciuri ET101 in tomato(Lycoperiscon esculentum)and rice(Oryza sativa)plants during salinity stress: possible interplay between carboxylation and oxygenation in stress mitigation[J]. Front Microbiol, 2021, 11: 547750.
doi: 10.3389/fmicb.2020.547750 URL |
[51] |
El-Sayed M D, EL-Maghraby LMM, Awad AE, et al. Fennel and ammi seed extracts modulate antioxidant defence system and alleviate salinity stress in cowpea(Vigna unguiculata)[J]. Sci Hortic, 2020, 272: 109576.
doi: 10.1016/j.scienta.2020.109576 URL |
[52] |
El-Esawi MA, Al-Ghamdi AA, Ali HM, et al. Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea(Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression[J]. Environ Exp Bot, 2019, 159: 55-65.
doi: 10.1016/j.envexpbot.2018.12.001 |
[53] |
Desoky ES M, Saad AM, El-Saadony MT, et al. Plant growth-promoting rhizobacteria: potential improvement in antioxidant defense system and suppression of oxidative stress for alleviating salinity stress in Triticum aestivum(L.) plants[J]. Biocatal Agric Biotechnol, 2020, 30: 101878.
doi: 10.1016/j.bcab.2020.101878 URL |
[54] |
Akram NA, Shafiq F, Ashraf M. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance[J]. Front Plant Sci, 2017, 8: 613.
doi: 10.3389/fpls.2017.00613 pmid: 28491070 |
[55] |
Islam F, Yasmeen T, Arif MS, et al. Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility[J]. Plant Growth Regul, 2016, 80(1): 23-36.
doi: 10.1007/s10725-015-0142-y URL |
[56] |
El-Esawi MA, Alaraidh IA, Alsahli AA, et al. Bacillus firmus(SW5)augments salt tolerance in soybean(Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression[J]. Plant Physiol Biochem, 2018, 132: 375-384.
doi: 10.1016/j.plaphy.2018.09.026 URL |
[57] |
Li HS, Lei P, Pang X, et al. Enhanced tolerance to salt stress in canola(Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4[J]. Appl Soil Ecol, 2017, 119: 26-34.
doi: 10.1016/j.apsoil.2017.05.033 URL |
[58] |
Rima FS, Biswas S, Sarker PK, et al. Bacteria endemic to saline coastal belt and their ability to mitigate the effects of salt stress on rice growth and yields[J]. Ann Microbiol, 2018, 68(9): 525-535.
doi: 10.1007/s13213-018-1358-7 |
[59] |
Gupta P, Kumar V, Usmani Z, et al. A comparative evaluation towards the potential of Klebsiella sp. and Enterobacter sp. in plant growth promotion, oxidative stress tolerance and chromium uptake in Helianthus annuus(L.)[J]. J Hazard Mater, 2019, 377: 391-398.
doi: 10.1016/j.jhazmat.2019.05.054 URL |
[60] | Morcillo RJL, Manzanera M. The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance[J]. Metabolites, 2021, 11(6): 337. |
[61] | 韩悦欣, 伍国强, 魏明, 等. BADH在植物响应非生物胁迫中的作用[J]. 植物生理学报, 2022, 58(2): 254-264. |
Han YX, Wu GQ, Wei M, et al. The role of BADH in the response to abiotic stress in plants[J]. Plant Physiol J, 2022, 58(2): 254-264. | |
[62] | Zhao X, Tan HJ, Liu YB, et al. Effect of salt stress on growth and osmotic regulation in Thellungiella and Arabidopsis callus[J]. Plant Cell Tissue Organ Cult PCTOC, 2009, 98(1): 97-103. |
[63] |
Chen L, Liu YP, Wu GW, et al. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9[J]. Physiol Plant, 2016, 158(1): 34-44.
doi: 10.1111/ppl.12441 pmid: 26932244 |
[64] |
Upadhyay SK, Singh DP. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment[J]. Plant Biol, 2015, 17(1): 288-293.
doi: 10.1111/plb.2015.17.issue-1 URL |
[65] |
Shukla PS, Agarwal PK, Jha B. Improved salinity tolerance of arachishypogaea(L.)by the interaction of halotolerant plant-growth-promoting rhizobacteria[J]. J Plant Growth Regul, 2012, 31(2): 195-206.
doi: 10.1007/s00344-011-9231-y URL |
[66] |
Jha Y, Subramanian RB, Patel S. Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress[J]. Acta Physiol Plant, 2011, 33(3): 797-802.
doi: 10.1007/s11738-010-0604-9 URL |
[1] | 李慧, 文钰芳, 王悦, 纪超, 石国优, 罗英, 周勇, 李志敏, 吴晓玉, 杨有新, 刘建萍. 盐胁迫下辣椒CaPIF4的表达特性与功能分析[J]. 生物技术通报, 2024, 40(4): 148-158. |
[2] | 高玉坤, 张建东, 杨溥原, 陈东明, 王志博, 田颐瑾, 崔江慧, 常金华. 高粱根际土壤细菌群落对盐胁迫的响应[J]. 生物技术通报, 2024, 40(4): 203-216. |
[3] | 沈天虹, 齐孝博, 赵瑞丰, 马欣荣. 微藻盐胁迫响应分子机制研究进展[J]. 生物技术通报, 2024, 40(3): 89-99. |
[4] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
[5] | 李昊, 伍国强, 魏明, 韩悦欣. 甜菜BvBADH基因家族全基因组鉴定及其高盐胁迫下的表达分析[J]. 生物技术通报, 2024, 40(2): 233-244. |
[6] | 徐扬, 张瑞英, 戴良香, 张冠初, 丁红, 张智猛. 盐胁迫下氮素对花生种子萌发和种子际细菌菌群结构的调控[J]. 生物技术通报, 2024, 40(2): 253-265. |
[7] | 王雨晴, 马子奇, 侯嘉欣, 宗钰琪, 郝晗睿, 刘国元, 魏辉, 连博琳, 陈艳红, 张健. 盐胁迫下植物根系分泌物的成分分析与生态功能研究进展[J]. 生物技术通报, 2024, 40(1): 12-23. |
[8] | 焦进兰, 王文文, 介欣芮, 王华忠, 岳洁瑜. 外源钙缓解小麦幼苗盐胁迫的作用机制[J]. 生物技术通报, 2024, 40(1): 207-221. |
[9] | 常泸尹, 王中华, 李凤敏, 高梓源, 张辉红, 王祎, 李芳, 韩燕来, 姜瑛. 玉米根际多功能促生菌的筛选及其对冬小麦-夏玉米轮作体系产量提升效果[J]. 生物技术通报, 2024, 40(1): 231-242. |
[10] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[11] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[12] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[13] | 徐红云, 吕俊, 于存. 根际溶磷伯克霍尔德菌Paraburkholderia spp.对马尾松苗的促生作用[J]. 生物技术通报, 2023, 39(6): 274-285. |
[14] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[15] | 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||