生物技术通报 ›› 2024, Vol. 40 ›› Issue (1): 12-23.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0516
王雨晴1(), 马子奇1, 侯嘉欣1, 宗钰琪1, 郝晗睿1, 刘国元1,2, 魏辉1,2, 连博琳1,2, 陈艳红1,2, 张健1,2()
收稿日期:
2023-05-30
出版日期:
2024-01-26
发布日期:
2024-02-06
通讯作者:
张健,男,博士,教授,研究方向:植物抗逆机理;E-mail: yjnkyy@ntu.edu.cn作者简介:
王雨晴,女,硕士研究生,研究方向:植物介导地下互作机制;E-mail: wang_yuqing99@163.com
基金资助:
WANG Yu-qing1(), MA Zi-qi1, HOU Jia-xin1, ZONG Yu-qi1, HAO Han-rui1, LIU Guo-yuan1,2, WEI Hui1,2, LIAN Bo-lin1,2, CHEN Yan-hong1,2, ZHANG Jian1,2()
Received:
2023-05-30
Published:
2024-01-26
Online:
2024-02-06
摘要:
盐胁迫是常见的非生物胁迫之一,影响植物的生长发育。根系分泌物是植物与根际环境进行“信息”交换的重要媒介。植物在受到盐胁迫时,根系分泌物的组分和含量会发生改变,对盐胁迫下植物的生长发育产生重要影响。本文综述了根系分泌物的成分、检测方式、作用机制及变化调控。其成分主要包括氨基酸、糖类、有机酸和酚酸等。目前对根系分泌物的鉴定和检测方式主要有高效液相色谱、气相色谱-质谱联用、液相色谱-质谱联用以及核磁共振。结合前人研究总结了氨基酸、糖类、有机酸等分泌物在盐胁迫下组成和含量的变化。然后从根际理化环境、根际微生物等方面总结并提出了根系分泌物在盐胁迫下的作用主要包括:(1)作为信号分子调节植物耐盐能力;(2)维持根细胞内稳态;(3)影响根际环境。总结了氨基酸、糖类根系分泌物在盐胁迫下的变化机理,最后指出目前对根系分泌物成分功能的鉴定以及具体作用机制、通路的研究尚有待深入。本综述旨在分析盐胁迫下植物根系分泌物的生态效应,为今后深入挖掘植物响应盐胁迫机理提供参考依据。
王雨晴, 马子奇, 侯嘉欣, 宗钰琪, 郝晗睿, 刘国元, 魏辉, 连博琳, 陈艳红, 张健. 盐胁迫下植物根系分泌物的成分分析与生态功能研究进展[J]. 生物技术通报, 2024, 40(1): 12-23.
WANG Yu-qing, MA Zi-qi, HOU Jia-xin, ZONG Yu-qi, HAO Han-rui, LIU Guo-yuan, WEI Hui, LIAN Bo-lin, CHEN Yan-hong, ZHANG Jian. Research Progress in the Composition Analysis and Ecological Function of Plant Root Exudates Under Salt Stress[J]. Biotechnology Bulletin, 2024, 40(1): 12-23.
分类方式 Classification method | 种类 Type | 物质类别 Category of substances | 成分 Component | 主要功能 Main function |
---|---|---|---|---|
有机物 Organic matter | 低分子有机物 Low molecular weight organics | 糖类[ Sugars | 果糖、麦芽糖、半乳糖、鼠李糖等 | 提供营养来源 |
有机酸[ Organic acids | 柠檬酸、酒石酸、草酸、丁二酸、苹果酸等 | 提供营养来源;螯合难溶性矿物质;诱导微生物的化学信号 | ||
氨基酸[ Amino acids | 苏氨酸、丙氨酸、亮氨酸、脯氨酸、苯丙氨酸等 | 提供营养来源;螯合难溶性矿物质;诱导微生物的化学信号 | ||
酚酸类[ Phenolic acids | 肉桂酸、阿魏酸、原儿茶酸、水杨酸等 | 化感作用的主要影响因子 | ||
高分子黏胶物 Polymer viscose | 各种酶类[ Various enzymes | 淀粉酶、脂肪酶、酸/碱性磷酸酶等 | 促进有机物转化;促进有机分子释放磷;缓解植物毒害 | |
黏胶物质[ Viscose substances | 多聚半乳糖醛酸、甘草素、木犀草素等 | 提供营养来源;缓解植物毒害 | ||
无机物Inorganic matter | 质子与无机离子[ Protons and inorganic ions | H+、K+、Na+、Mg2+、Ca2+等 | 调节土壤pH及氧化还原电位 |
表1 根系分泌物的分类及组成
Table 1 Classification and composition of root exudates
分类方式 Classification method | 种类 Type | 物质类别 Category of substances | 成分 Component | 主要功能 Main function |
---|---|---|---|---|
有机物 Organic matter | 低分子有机物 Low molecular weight organics | 糖类[ Sugars | 果糖、麦芽糖、半乳糖、鼠李糖等 | 提供营养来源 |
有机酸[ Organic acids | 柠檬酸、酒石酸、草酸、丁二酸、苹果酸等 | 提供营养来源;螯合难溶性矿物质;诱导微生物的化学信号 | ||
氨基酸[ Amino acids | 苏氨酸、丙氨酸、亮氨酸、脯氨酸、苯丙氨酸等 | 提供营养来源;螯合难溶性矿物质;诱导微生物的化学信号 | ||
酚酸类[ Phenolic acids | 肉桂酸、阿魏酸、原儿茶酸、水杨酸等 | 化感作用的主要影响因子 | ||
高分子黏胶物 Polymer viscose | 各种酶类[ Various enzymes | 淀粉酶、脂肪酶、酸/碱性磷酸酶等 | 促进有机物转化;促进有机分子释放磷;缓解植物毒害 | |
黏胶物质[ Viscose substances | 多聚半乳糖醛酸、甘草素、木犀草素等 | 提供营养来源;缓解植物毒害 | ||
无机物Inorganic matter | 质子与无机离子[ Protons and inorganic ions | H+、K+、Na+、Mg2+、Ca2+等 | 调节土壤pH及氧化还原电位 |
技术 Technology | 优点 Advantages | 缺点 Disadvantages | 检测组分 Detected components |
---|---|---|---|
气相色谱-质谱联用(GC-MS)[ | 进样量小、灵敏度高、分辨率高,能检测到样本中相对含量较低的代谢物 | 一些极性代谢物需提前进行衍生化处理,能鉴定到的代谢物比LC-MS要少 | 以热稳定性好的挥发物质和极性小的小分子化合物为主,如烷烃、酯类、有机酸、氨基酸等 |
液相色谱-质谱联用(LC-MS)[ | 高效快速、灵敏度高、样品只需进行简单预处理或衍生化 | 不同设备的数据库无法通用 | 适用于含量少、不易分离获得或在分离过程中易失活的组分分析,极性或热稳定性差、不易挥发的大分子物质,如蛋白质、多肽、多聚物等 |
核磁共振(NMR)[ | 高效快速、未知化合物损失少、样品制备时间短 | 灵敏度比MS要低很多 | 适用于复杂基质样本的检测和化合物结构的分析 |
高效液相色谱(HPLC)[ | 可连续进样、灵敏度高、分离效率高、操作方便 | 分析成本高,分析时间长 | 大多是沸点高、热稳定性差、相对分子质量大于400以上的有机物 |
表2 常用根系分泌物成分的检测技术
Table 2 Common detection methods for root exudate components
技术 Technology | 优点 Advantages | 缺点 Disadvantages | 检测组分 Detected components |
---|---|---|---|
气相色谱-质谱联用(GC-MS)[ | 进样量小、灵敏度高、分辨率高,能检测到样本中相对含量较低的代谢物 | 一些极性代谢物需提前进行衍生化处理,能鉴定到的代谢物比LC-MS要少 | 以热稳定性好的挥发物质和极性小的小分子化合物为主,如烷烃、酯类、有机酸、氨基酸等 |
液相色谱-质谱联用(LC-MS)[ | 高效快速、灵敏度高、样品只需进行简单预处理或衍生化 | 不同设备的数据库无法通用 | 适用于含量少、不易分离获得或在分离过程中易失活的组分分析,极性或热稳定性差、不易挥发的大分子物质,如蛋白质、多肽、多聚物等 |
核磁共振(NMR)[ | 高效快速、未知化合物损失少、样品制备时间短 | 灵敏度比MS要低很多 | 适用于复杂基质样本的检测和化合物结构的分析 |
高效液相色谱(HPLC)[ | 可连续进样、灵敏度高、分离效率高、操作方便 | 分析成本高,分析时间长 | 大多是沸点高、热稳定性差、相对分子质量大于400以上的有机物 |
[1] |
Qadir M, Quillérou E, Nangia V, et al. Economics of salt-induced land degradation and restoration[J]. Nat Resour Forum, 2014, 38(4): 282-295.
doi: 10.1111/narf.2014.38.issue-4 URL |
[2] | Zhao CZ, Zhang H, Song CP, et al. Mechanisms of plant responses and adaptation to soil salinity[J]. Innovation(Camb), 2020, 1(1): 100017. |
[3] |
Wang YN, Li KX, Li X. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana[J]. J Plant Physiol, 2009, 166(15): 1637-1645.
doi: 10.1016/j.jplph.2009.04.009 URL |
[4] |
Yang YQ, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses[J]. New Phytol, 2018, 217(2): 523-539.
doi: 10.1111/nph.14920 pmid: 29205383 |
[5] |
Zhao SS, Zhang QK, Liu MY, et al. Regulation of plant responses to salt stress[J]. Int J Mol Sci, 2021, 22(9): 4609.
doi: 10.3390/ijms22094609 URL |
[6] |
Chai YN, Schachtman DP. Root exudates impact plant performance under abiotic stress[J]. Trends Plant Sci, 2022, 27(1): 80-91.
doi: 10.1016/j.tplants.2021.08.003 URL |
[7] |
Feng HC, Fu RX, Hou XQ, et al. Chemotaxis of beneficial rhizobacteria to root exudates: the first step towards root-microbe rhizosphere interactions[J]. Int J Mol Sci, 2021, 22(13): 6655.
doi: 10.3390/ijms22136655 URL |
[8] | 樊利华, 周星梅, 吴淑兰, 等. 干旱胁迫对植物根际环境影响的研究进展[J]. 应用与环境生物学报, 2019, 25(5): 1244-1251. |
Fan LH, Zhou XM, Wu SL, et al. Research advances on the effects of drought stress in plant rhizosphere environments[J]. Chin J Appl Environ Biol, 2019, 25(5): 1244-1251. | |
[9] | 吴清莹, 林宇龙, 孙一航, 等. 根系分泌物对植物生长和土壤养分吸收的影响研究进展[J]. 中国草地学报, 2021, 43(11): 97-104. |
Wu QY, Lin YL, Sun YH, et al. Research progress on effects of root exudates on plant growth and soil nutrient uptake[J]. Chin J Grassland, 2021, 43(11): 97-104. | |
[10] |
Bolan NS, Naidu R, Mahimairaja S, et al. Influence of low-molecular-weight organic acids on the solubilization of phosphates[J]. Biol Fert Soils, 1994, 18(4): 311-319.
doi: 10.1007/BF00570634 URL |
[11] |
Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health[J]. Trends Plant Sci, 2012, 17(8): 478-486.
doi: 10.1016/j.tplants.2012.04.001 pmid: 22564542 |
[12] |
Yang Z, Li JL, Liu LN, et al. Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum[J]. Front Plant Sci, 2020, 10: 1722.
doi: 10.3389/fpls.2019.01722 URL |
[13] |
Cheng Q, Gan ZR, Wang YP, et al. The soybean gene J contributes to salt stress tolerance by up-regulating salt-responsive genes[J]. Front Plant Sci, 2020, 11: 272.
doi: 10.3389/fpls.2020.00272 pmid: 32256507 |
[14] | Rovira AD, Foster RC, Martin JK. Note on terminology: origin, nature and nomenclature of the organic materials in the rhizosphere[M]// The Soil-Root Interface. Amsterdam: Elsevier, 1979: 1-4. |
[15] | 陈虹, 唐昊冶, 郭家欢, 等. 根系分泌物主要作用及解析技术进展[J]. 土壤, 2023, 55(2): 225-233. |
Chen H, Tang HY, Guo JH, et al. Root exudates'roles and analytical techniques progress[J]. Soils, 2023, 55(2): 225-233. | |
[16] |
Tückmantel T, Leuschner C, Preusser S, et al. Root exudation patterns in a beech forest: dependence on soil depth, root morphology, and environment[J]. Soil Biol Biochem, 2017, 107: 188-197.
doi: 10.1016/j.soilbio.2017.01.006 URL |
[17] |
Lopes LD, Wang P, Futrell SL, et al. Sugars and jasmonic acid concentration in root exudates affect maize rhizosphere bacterial communities[J]. Appl Environ Microbiol, 2022, 88(18): e0097122.
doi: 10.1128/aem.00971-22 URL |
[18] | 卢圣凡, 尹世杰, 王超, 等. 镉胁迫对忍冬根系形态与根系分泌物的影响[J]. 山东农业科学, 2023, 55(8):96-100. |
Lu SF, Yin SJ, Wang C, et al. Effects of cadmium stress on root morphology and root exudates of Lonicera japonica[J]. Shandong Agric Sci, 2023, 55(8):96-100. | |
[19] |
Vives-Peris V, de Ollas C, Gómez-Cadenas A, et al. Root exudates: from plant to rhizosphere and beyond[J]. Plant Cell Rep, 2020, 39(1): 3-17.
doi: 10.1007/s00299-019-02447-5 pmid: 31346716 |
[20] |
Macías FA, Durán AG, Molinillo JMG. Allelopathy: the chemical language of plants[J]. Prog Chem Org Nat Prod, 2020, 112: 1-84.
doi: 10.1007/978-3-030-52966-6_1 pmid: 33306172 |
[21] |
el Zahar Haichar F, Santaella C, Heulin T, et al. Root exudates mediated interactions belowground[J]. Soil Biol Biochem, 2014, 77: 69-80.
doi: 10.1016/j.soilbio.2014.06.017 URL |
[22] | 廖利平, 邓仕坚, 于小军, 等. 不同连栽代数杉木人工林细根生长、分布与营养物质分泌特征[J]. 生态学报, 2001, 21(4): 569-573. |
Liao LP, Deng SJ, Yu XJ, et al. Growth, distribution and exudation of fine roots of Chinese fir trees grown in continuously cropped plantations[J]. Acta Ecol Sin, 2001, 21(4): 569-573. | |
[23] | 吴凤芝, 赵凤艳. 根系分泌物与连作障碍[J]. 东北农业大学学报, 2003, 34(1): 114-118. |
Wu FZ, Zhao FY. Study on root exudates and continues cropping obstacle[J]. J Northeast Agric Univ, 2003, 34(1): 114-118. | |
[24] | 解文科, 王小青, 李斌, 等. 植物根系分泌物研究综述[J]. 山东林业科技, 2005, 35(5): 63-67. |
Xie WK, Wang XQ, Li B, et al. Review on plant root exudates[J]. J Shandong For Sci Technol, 2005, 35(5): 63-67. | |
[25] |
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3): 298-310.
doi: 10.3724/SP.J.1258.2014.00027 |
Wu LK, Lin XM, Lin WX. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chin J Plant Ecol, 2014, 38(3): 298-310.
doi: 10.3724/SP.J.1258.2014.00027 |
|
[26] |
赵书慧, 张振华, 欧张丹, 等. 国内农作物根系分泌物研究热点的初步探析[J]. 浙江农业学报, 2023, 35(3): 534-546.
doi: 10.3969/j.issn.1004-1524.2023.03.06 |
Zhao SH, Zhang ZH, Ou ZD, et al. Preliminary analysis on research hotspot of crop root exudates in China[J]. Acta Agric Zhejiangensis, 2023, 35(3): 534-546.
doi: 10.3969/j.issn.1004-1524.2023.03.06 |
|
[27] |
郭婉玑, 张子良, 刘庆, 等. 根系分泌物收集技术研究进展[J]. 应用生态学报, 2019, 30(11): 3951-3962.
doi: 10.13287/j.1001-9332.201911.040 |
Guo WJ, Zhang ZL, Liu Q, et al. Research progress of root exudates collection technology[J]. Chin J Appl Ecol, 2019, 30(11): 3951-3962. | |
[28] |
Pantigoso HA, He YH, DiLegge MJ, et al. Methods for root exudate collection and analysis[J]. Methods Mol Biol, 2021, 2232: 291-303.
doi: 10.1007/978-1-0716-1040-4_22 pmid: 33161555 |
[29] |
Oburger E, Jones DL. Sampling root exudates - mission impossible?[J]. Rhizosphere, 2018, 6: 116-133.
doi: 10.1016/j.rhisph.2018.06.004 URL |
[30] | 马艳华, 李雪, 李建一, 等. 植物根系分泌物的分离鉴定[C]// 绿色生态可持续发展与植物保护——中国植物保护学会第十二次全国会员代表大会暨学术年会论文集. 北京: 中国农业科学技术出版社, 2017: 345-350. |
Ma YH, Li X, Li JY, et al. Isolation and identification of plant root exudates[C]// Proceedings of the Green Ecological Sustainable Development and Plant Protection-The 12th National Congress and Annual Conference of Chinese Plant Protection Society. Beijing: China Agricultural Science and Technology Press, 2017: 345-350. | |
[31] | 韩笑, 杨慰贤, 覃锋燕, 等. 不同木薯品种主要根系分泌物提取与鉴定[J]. 热带作物学报, 2022, 43(6): 1248-1258. |
Han X, Yang WX, Qin FY, et al. Extraction and characterization of root exudates of different cassava varieties[J]. Chin J Trop Crops, 2022, 43(6): 1248-1258. | |
[32] | 杨娟. 超高效液相色谱-质谱联用技术在独脚金内酯类化合物定向检测和中药代谢组学上的应用研究[D]. 杭州: 浙江农林大学, 2022. |
Yang J. Study on the application of ultra-performance liquid chromatography-mass spectrometry in directional detection of strigolactone compounds and metabonomics of traditional chinese medicin[D]. Hangzhou: Zhejiang A & F University, 2022. | |
[33] |
van Dam NM, Bouwmeester HJ. Metabolomics in the rhizosphere: tapping into belowground chemical communication[J]. Trends Plant Sci, 2016, 21(3): 256-265.
doi: S1360-1385(16)00009-1 pmid: 26832948 |
[34] | 马会会. 高效液相色谱法检测环境中的有机污染物[D]. 长春: 吉林大学, 2013. |
Ma HH. Determination of organic pollutants in environment by high performance liquid chromatography[D]. Changchun: Jilin University, 2013. | |
[35] | 孙萌. 三种植物次生代谢物结构及活性分子抗癌机制研究[D]. 兰州: 兰州大学, 2017. |
Sun M. Studies on the structures and the anticancer mechanism of active natural products from three plants[D]. Lanzhou: Lanzhou University, 2017. | |
[36] | 刘长风, 段士鑫, 张晓宇, 等. 植物根系分泌物在重金属胁迫下的响应研究进展[J]. 福建农业学报, 2021, 36(12): 1506-1514. |
Liu CF, Duan SX, Zhang XY, et al. Research advances on plant root exudates in response to heavy metal stress[J]. Fujian J Agric Sci, 2021, 36(12): 1506-1514. | |
[37] | 于崧, 杨贺麟, 朱雪天, 等. 盐碱胁迫对芸豆根系分泌物组分及含量的影响[J]. 北方园艺, 2021(17): 90-96. |
Yu S, Yang HL, Zhu XT, et al. Effects of saline-alkali stress on components and contents of root exudates of Phaseolus vulgaris L[J]. North Hortic, 2021(17): 90-96. | |
[38] |
Geng G, Lyu CH, Stevanato P, et al. Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet[J]. Int J Mol Sci, 2019, 20(23): 5910.
doi: 10.3390/ijms20235910 URL |
[39] | Velázquez JAM, Puyal PA, Carrasco A, et al. Determination of proline concentration, an abiotic stress marker, in root exudates of excised root cultures of fruit tree rootstocks under salt stress[J]. Rev Reg Arid, 2010. https://api.semanticscholar.org/CorpusID:41819614. |
[40] |
Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM. Citrus plants exude proline and phytohormones under abiotic stress conditions[J]. Plant Cell Rep, 2017, 36(12): 1971-1984.
doi: 10.1007/s00299-017-2214-0 pmid: 29038909 |
[41] |
Ma JF, Ryan PR, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids[J]. Trends Plant Sci, 2001, 6(6): 273-278.
doi: 10.1016/s1360-1385(01)01961-6 pmid: 11378470 |
[42] | 聂颖. 抗盐碱转BADH基因大豆对根系分泌物及土壤细菌群落结构的影响[D]. 哈尔滨: 东北农业大学, 2018. |
Nie Y. Effects of alkali-tolerant BADH-transgenic soybean on root exudates and soil bacterial community structure[D]. Harbin: Northeast Agricultural University, 2018. | |
[43] |
Taheri S, Ronaghi A, Fasaei RG, et al. Co-ordination of root salinity and shoot zinc level with rhizosphere organic acid secretion in maize[J]. Rhizosphere, 2020, 14: 100197.
doi: 10.1016/j.rhisph.2020.100197 URL |
[44] |
吴凤芝, 周新刚, 包静. NaCl胁迫对不同耐盐黄瓜品种根系分泌物主要成分的影响[J]. 中国农业科学, 2012, 45(21): 4415-4427.
doi: 10.3864/j.issn.0578-1752.2012.21.010 |
Wu FZ, Zhou XG, Bao J. Effects of NaCl stress on root exudates of cucumber cultivars[J]. Sci Agric Sin, 2012, 45(21): 4415-4427. | |
[45] |
Li MX, Guo R, Jiao Y, et al. Comparison of salt tolerance in soja based on metabolomics of seedling roots[J]. Front Plant Sci, 2017, 8: 1101.
doi: 10.3389/fpls.2017.01101 URL |
[46] |
Conde A, Regalado A, Rodrigues D, et al. Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine[J]. J Exp Bot, 2015, 66(3): 889-906.
doi: 10.1093/jxb/eru446 pmid: 25433029 |
[47] | Watson RR. Polyphenols in plants:isolation, purification and extract preparation[M]. 2nd ed. London: Academic Press, 2019. |
[48] |
Yu P, He XM, Baer M, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation[J]. Nat Plants, 2021, 7(4): 481-499.
doi: 10.1038/s41477-021-00897-y pmid: 33833418 |
[49] | Latif S, Chiapusio G, Weston LA. Allelopathy and the role of allelochemicals in plant defence[J]. Adv Bot Res, 2017, 82: 19-54. |
[50] | 韩彩霞. 外来入侵植物豚草挥发物化感作用研究[D]. 乌鲁木齐: 新疆大学, 2021. |
Han CX. Study on the allelopathy of volatile components of an exotic invasive plant Ambrosia artemissifolia[D]. Urumqi: Xinjiang University, 2021. | |
[51] | 赵倩名, 钟佳峻, 何培民, 等. 黄酮类物质对铜绿微囊藻的抑制效应研究[J]. 环境科学与技术, 2022, 45(2): 1-7. |
Zhao QM, Zhong JJ, He PM, et al. Study on allelopathic inhibition of flavonoids on Microcystis aeruginosa[J]. Environ Sci Technol, 2022, 45(2): 1-7.
doi: 10.1021/es1039216 URL |
|
[52] | 杨阳, 王华田, 王延平, 等. 外源酚酸对杨树幼苗根系生理和形态发育的影响[J]. 林业科学, 2010, 46(11): 73-80. |
Yang Y, Wang HT, Wang YP, et al. Effects of exogenous phenolic acids on root physiologic characteristics and morphologic development of poplar hydroponic cuttings[J]. Sci Silvae Sin, 2010, 46(11): 73-80. | |
[53] | 梁健. 盐和干旱胁迫对实葶葱化感作用的影响[D]. 乌鲁木齐: 新疆农业大学, 2021. |
Liang J. Effects of salt and drought stress on allelopathy of Allium galanthum[D]. Urumqi: Xinjiang Agricultural University, 2021. | |
[54] | 杨慧. 盐胁迫对菊芋根系及根际土壤主要特征影响的研究[D]. 南京: 南京农业大学, 2016. |
Yang H. Preliminary researches on root distribution and rhizosphere soil properties of Jerusalem artichoke under salt stress[D]. Nanjing: Nanjing Agricultural University, 2016. | |
[55] |
Bartels D, Sunkar R. Drought and salt tolerance in plants[J]. Crit Rev Plant Sci, 2005, 24(1): 23-58.
doi: 10.1080/07352680590910410 URL |
[56] |
Sami F, Siddiqui H, Alam P, et al. Glucose-induced response on photosynthetic efficiency, ROS homeostasis, and antioxidative defense system in maintaining carbohydrate and ion metabolism in Indian mustard(Brassica juncea L.) under salt-mediated oxidative stress[J]. Protoplasma, 2021, 258(3): 601-620.
doi: 10.1007/s00709-020-01600-2 |
[57] |
Contreras-Cornejo HA, Macías-Rodríguez L, Alfaro-Cuevas R, et al. Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates[J]. Mol Plant Microbe Interact, 2014, 27(6): 503-514.
doi: 10.1094/MPMI-09-13-0265-R URL |
[58] |
Guo CY, Wang XZ, Chen L, et al. Physiological and biochemical responses to saline-alkaline stress in two halophytic grass species with different photosynthetic pathways[J]. Photosynthetica, 2015, 53(1): 128-135.
doi: 10.1007/s11099-015-0094-5 URL |
[59] |
Yang CW, Guo WQ, Shi DC. Physiological roles of organic acids in alkali-tolerance of the alkali-tolerant halophyte Chloris virgata[J]. Agron J, 2010, 102(4): 1081-1089.
doi: 10.2134/agronj2009.0471 URL |
[60] |
Per TS, Khan NA, Reddy PS, et al. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics[J]. Plant Physiol Biochem, 2017, 115: 126-140.
doi: 10.1016/j.plaphy.2017.03.018 URL |
[61] |
Surender Reddy P, Jogeswar G, Rasineni GK, et al. Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum[Sorghum bicolor(L.) Moench][J]. Plant Physiol Biochem, 2015, 94: 104-113.
doi: 10.1016/j.plaphy.2015.05.014 URL |
[62] | 柴民伟. 外来种互花米草和黄顶菊对重金属和盐碱胁迫的生态响应[D]. 天津: 南开大学, 2013. |
Chai MW. Ecological responses of exotic species Spartina alterniflora and Flaveria bidentis to heavy metal and saline-alkali stresses[D]. Tianjin: Nankai University, 2013. | |
[63] |
Jones DL. Organic acids in the rhizosphere-a critical review[J]. Plant Soil, 1998, 205: 25-44.
doi: 10.1023/A:1004356007312 URL |
[64] | 赵宽, 周葆华, 马万征, 等. 不同环境胁迫对根系分泌有机酸的影响研究进展[J]. 土壤, 2016, 48(2): 235-240. |
Zhao K, Zhou BH, Ma WZ, et al. The influence of different environmental stresses on root-exuded organic acids: a review[J]. Soils, 2016, 48(2): 235-240. | |
[65] |
郭瑞, 周际, 杨帆, 等. 小麦根系在碱胁迫下的生理代谢反应[J]. 植物生态学报, 2017, 41(6): 683-692.
doi: 10.17521/cjpe.2016.0136 |
Guo R, Zhou J, Yang F, et al. Metabolic responses of wheat roots to alkaline stress[J]. Chin J Plant Ecol, 2017, 41(6): 683-692.
doi: 10.17521/cjpe.2016.0136 |
|
[66] |
Guo LQ, Shi DC, Wang DL. The key physiological response to alkali stress by the alkali-resistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere[J]. J Agron Crop Sci, 2010, 196(2): 123-135.
doi: 10.1111/jac.2010.196.issue-2 URL |
[67] | 张文明, 邱慧珍, 张春红, 等. 连作马铃薯不同生育期根系分泌物的成分检测及其自毒效应[J]. 中国生态农业学报, 2015, 23(2): 215-224. |
Zhang WM, Qiu HZ, Zhang CH, et al. Identification and autotoxicity of root exudates of continuous cropping potato at different growth stages[J]. Chin J Eco Agric, 2015, 23(2): 215-224. | |
[68] | 黄建凤, 吴昊. 植物根系分泌的有机酸及其作用[J]. 现代农业科技, 2008(20): 323-324. |
Huang JF, Wu H. Organic acids secreted by plant roots and their functions[J]. Mod Agric Sci Technol, 2008(20): 323-324. | |
[69] |
Sisó-Terraza P, Luis-Villarroya A, Fourcroy P, et al. Accumulation and secretion of coumarinolignans and other coumarins in Arabidopsis thaliana roots in response to iron deficiency at high pH[J]. Front Plant Sci, 2016, 7: 1711.
pmid: 27933069 |
[70] |
Stevens GG, Pérez-Fernández MA, Morcillo RJL, et al. Roots and nodules response differently to P starvation in the mediterranean-type legume Virgilia divaricata[J]. Front Plant Sci, 2019, 10: 73.
doi: 10.3389/fpls.2019.00073 pmid: 30804964 |
[71] |
Yu JQ, Matsui Y. Phytotoxic substances in root exudates of cucumber(Cucumis sativus L.)[J]. J Chem Ecol, 1994, 20(1): 21-31.
doi: 10.1007/BF02065988 pmid: 24241696 |
[72] |
Henry HAL, Jefferies RL. Plant amino acid uptake, soluble N turnover and microbial N capture in soils of a grazed Arctic salt marsh[J]. J Ecol, 2003, 91(4): 627-636.
doi: 10.1046/j.1365-2745.2003.00791.x URL |
[73] |
Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome?[J]. Trends Plant Sci, 2018, 23(1): 25-41.
doi: S1360-1385(17)30199-1 pmid: 29050989 |
[74] |
Yin HJ, Zhang ZL, Liu Q. Root exudates and their ecological consequences in forest ecosystems: problems and perspective[J]. Chin J Plant Ecol, 2018, 42(11): 1055-1070.
doi: 10.17521/cjpe.2018.0156 URL |
[75] |
Li H, La SK, Zhang X, et al. Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress[J]. ISME J, 2021, 15(10): 2865-2882.
doi: 10.1038/s41396-021-00974-2 pmid: 33875820 |
[76] |
Xiong YW, Li XW, Wang TT, et al. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress[J]. Ecotoxicol Environ Saf, 2020, 194: 110374.
doi: 10.1016/j.ecoenv.2020.110374 URL |
[77] |
Pan YQ, Kang P, Tan M, et al. Root exudates and rhizosphere soil bacterial relationships of Nitraria tangutorum are linked to k-strategists bacterial community under salt stress[J]. Front Plant Sci, 2022, 13: 997292.
doi: 10.3389/fpls.2022.997292 URL |
[78] | 张立芙. 盐胁迫和黄瓜根系分泌物对土壤微生物的影响[D]. 哈尔滨: 东北农业大学, 2009. |
Zhang LF. The impaction of cucumber root exudates on soil microbial under salt stress[D]. Harbin: Northeast Agricultural University, 2009. | |
[79] | 高玉刚. 基于转录组和代谢组联合分析燕麦响应盐碱胁迫的机制研究[D]. 大庆: 黑龙江八一农垦大学, 2022. |
Gao YG. Study on the responses of ota to saline-alkali stress based on transcriptome and metabolome joint analysis[D]. Daqing: Heilongjiang Bayi Agricultural University, 2022. | |
[80] |
Xu ZS, Chen XJ, Lu XP, et al. Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat(Avena sativa L.)[J]. Plant Physiol Biochem, 2021, 160: 315-328.
doi: 10.1016/j.plaphy.2021.01.027 URL |
[81] |
Li JL, Cui J, Cheng DY, et al. iTRAQ protein profile analysis of sugar beet under salt stress: different coping mechanisms in leaves and roots[J]. BMC Plant Biol, 2020, 20(1): 347.
doi: 10.1186/s12870-020-02552-8 pmid: 32698773 |
[1] | 焦进兰, 王文文, 介欣芮, 王华忠, 岳洁瑜. 外源钙缓解小麦幼苗盐胁迫的作用机制[J]. 生物技术通报, 2024, 40(1): 207-221. |
[2] | 娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167. |
[3] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[4] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[5] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[6] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[7] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[8] | 叶红, 王玉昆. 植物PRR免疫受体功能研究进展[J]. 生物技术通报, 2023, 39(12): 1-15. |
[9] | 汪明滔, 刘建伟, 赵春钊. 植物调控盐胁迫下细胞壁完整性的分子机制[J]. 生物技术通报, 2023, 39(11): 18-27. |
[10] | 张玉娟, 黎冬华, 宫慧慧, 崔新晓, 高春华, 张秀荣, 游均, 赵军胜. 芝麻NAC转录因子基因SiNAC77的克隆及耐盐功能分析[J]. 生物技术通报, 2023, 39(11): 308-317. |
[11] | 徐扬, 丁红, 张冠初, 郭庆, 张智猛, 戴良香. 盐胁迫下花生种子萌发期代谢组学分析[J]. 生物技术通报, 2023, 39(1): 199-213. |
[12] | 孙卓, 王妍, 韩忠明, 王云贺, 赵淑杰, 杨利民. 防风根际真菌的分离鉴定及其生防潜力评价[J]. 生物技术通报, 2023, 39(1): 264-273. |
[13] | 陈光, 李佳, 杜瑞英, 王旭. 水稻盐敏感突变体ss2的鉴定与基因功能分析[J]. 生物技术通报, 2022, 38(9): 158-166. |
[14] | 王宁, 李蕙秀, 李季, 丁国春. 堆肥调控作物根际微生物组抑制植物病害的研究进展[J]. 生物技术通报, 2022, 38(5): 4-12. |
[15] | 杨露, 辛建攀, 田如男. 根际微生物对植物重金属胁迫的缓解作用及其机理研究进展[J]. 生物技术通报, 2022, 38(3): 213-225. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||