生物技术通报 ›› 2024, Vol. 40 ›› Issue (8): 299-308.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0040
张梦菲1(), 余炼1(), 李菲2(), 李喆2, 苏芯莹2, 蓝彩碧2, 朱虎1, 秦莹1
收稿日期:
2024-01-12
出版日期:
2024-08-26
发布日期:
2024-07-31
通讯作者:
余炼,女,博士,讲师,研究方向:微生物资源开发与应用;E-mail: lianyu@gxu.edu.cn;作者简介:
张梦菲,女,硕士研究生,研究方向:微生物活性代谢产物挖掘;E-mail: 1913525246@qq.com
基金资助:
ZHANG Meng-fei1(), YU Lian1(), LI Fei2(), LI Zhe2, SU Xin-ying2, LAN Cai-bi2, ZHU Hu1, QIN Ying1
Received:
2024-01-12
Published:
2024-08-26
Online:
2024-07-31
摘要:
【目的】大环内酯(MLNs)是一类由聚酮链环化而成的新型化合物,具有显著的抗菌、抗病毒和抗肿瘤活性,但因传统发酵的大环内酯产量较低而限制了其广泛应用。旨在提高暹罗芽孢杆菌K53合成MLNs的产量,以期为MLNs的批量生产提供科学依据。【方法】基于前期研究发现,通过单因素试验研究碳源、氮源、氨基酸等营养成分对菌株K53中MLNs发酵产量的影响,确定关键营养因子,运用响应面分析法对关键营养因子进行优化,获得发酵MLNs的最佳工艺参数。【结果】单因素试验中,菌株K53的发酵培养基中葡萄糖为最优碳源,酵母提取物和(NH4)2SO4分别为最优有机氮源和无机氮源,额外添加组氨酸和缬氨酸可提高MLNs的产量。响应面优化中,菌株K53的最佳发酵培养基:22.0 g/L葡萄糖、3.0 g/L(NH4)2SO4、1.0 g/L酵母提取物、6.1 g/L缬氨酸和5.9 g/L组氨酸,其中缬氨酸和组氨酸为合成MLNs的前体物质。在该培养基中MLNs的产量达到5.37×102 μg/mL,与理论预测的最大值(5.46×102 μg/mL)非常接近,与优化前的菌株合成MLNs产量(1.31×102 μg/mL)相比提高4.10倍。【结论】响应面法优化后的发酵培养基有利于提高菌株K53的MLNs产量,为菌株MLNs的后续开发应用提供参考。
张梦菲, 余炼, 李菲, 李喆, 苏芯莹, 蓝彩碧, 朱虎, 秦莹. 响应面法优化暹罗芽孢杆菌产大环内酯的发酵培养条件[J]. 生物技术通报, 2024, 40(8): 299-308.
ZHANG Meng-fei, YU Lian, LI Fei, LI Zhe, SU Xin-ying, LAN Cai-bi, ZHU Hu, QIN Ying. Optimization of Fermentation Culture Conditions for Macrolactins Yield of Bacillus siamensis Using Response Surface Methodology[J]. Biotechnology Bulletin, 2024, 40(8): 299-308.
因素Factor/(g·L-1) | 低水平Low level(-1) | 高水平High level(1) |
---|---|---|
葡萄糖(X1) | 10 | 20 |
酵母提取物(X2) | 0.6 | 1.0 |
(NH4)2SO4(X3) | 1.0 | 3.0 |
缬氨酸(X4) | 2.0 | 6.0 |
组氨酸(X5) | 2.0 | 6.0 |
表1 Plackett-Burman设计试验因素及水平
Table 1 Factors and levels of experiment designed by Plackett-Burman(PBD)
因素Factor/(g·L-1) | 低水平Low level(-1) | 高水平High level(1) |
---|---|---|
葡萄糖(X1) | 10 | 20 |
酵母提取物(X2) | 0.6 | 1.0 |
(NH4)2SO4(X3) | 1.0 | 3.0 |
缬氨酸(X4) | 2.0 | 6.0 |
组氨酸(X5) | 2.0 | 6.0 |
水平 Level | 葡萄糖Glucose X1/(g·L-1) | 酵母提取物Yeast extract X2/(g·L-1) | 缬氨酸Valine X4/(g·L-1) | 组氨酸Histidine X5/(g·L-1) |
---|---|---|---|---|
-1 | 15 | 0.8 | 5.0 | 5.0 |
0 | 20 | 1.0 | 6.0 | 6.0 |
1 | 25 | 1.2 | 7.0 | 7.0 |
表2 响应面试验设计因素及水平
Table 2 Factors and levels of response surface tests design
水平 Level | 葡萄糖Glucose X1/(g·L-1) | 酵母提取物Yeast extract X2/(g·L-1) | 缬氨酸Valine X4/(g·L-1) | 组氨酸Histidine X5/(g·L-1) |
---|---|---|---|---|
-1 | 15 | 0.8 | 5.0 | 5.0 |
0 | 20 | 1.0 | 6.0 | 6.0 |
1 | 25 | 1.2 | 7.0 | 7.0 |
序号Number | 葡萄糖Glucose X1 | 酵母提取物Yeast extract X2 | (NH4)2SO4 X3 | 缬氨酸Valine X4 | 组氨酸Histidine X5 | MLNs产量MLNs yield×102/(μg·mL-1) |
---|---|---|---|---|---|---|
1 | 1 | -1 | 1 | 1 | -1 | 3.475 |
2 | 1 | 1 | -1 | 1 | -1 | 3.292 |
3 | -1 | 1 | 1 | 1 | 1 | 3.196 |
4 | 1 | -1 | -1 | -1 | 1 | 3.508 |
5 | 1 | 1 | -1 | 1 | 1 | 3.213 |
6 | -1 | -1 | -1 | 1 | -1 | 3.454 |
7 | 1 | -1 | 1 | -1 | 1 | 3.588 |
8 | -1 | -1 | 1 | 1 | 1 | 3.279 |
9 | -1 | 1 | 1 | -1 | -1 | 3.400 |
10 | -1 | 1 | -1 | -1 | 1 | 3.254 |
11 | 1 | 1 | 1 | -1 | -1 | 3.413 |
12 | -1 | -1 | -1 | -1 | -1 | 3.500 |
表3 Plackett-Burman试验设计与结果
Table 3 Design and results of PBD
序号Number | 葡萄糖Glucose X1 | 酵母提取物Yeast extract X2 | (NH4)2SO4 X3 | 缬氨酸Valine X4 | 组氨酸Histidine X5 | MLNs产量MLNs yield×102/(μg·mL-1) |
---|---|---|---|---|---|---|
1 | 1 | -1 | 1 | 1 | -1 | 3.475 |
2 | 1 | 1 | -1 | 1 | -1 | 3.292 |
3 | -1 | 1 | 1 | 1 | 1 | 3.196 |
4 | 1 | -1 | -1 | -1 | 1 | 3.508 |
5 | 1 | 1 | -1 | 1 | 1 | 3.213 |
6 | -1 | -1 | -1 | 1 | -1 | 3.454 |
7 | 1 | -1 | 1 | -1 | 1 | 3.588 |
8 | -1 | -1 | 1 | 1 | 1 | 3.279 |
9 | -1 | 1 | 1 | -1 | -1 | 3.400 |
10 | -1 | 1 | -1 | -1 | 1 | 3.254 |
11 | 1 | 1 | 1 | -1 | -1 | 3.413 |
12 | -1 | -1 | -1 | -1 | -1 | 3.500 |
来源Source | 自由度Freedom | 离均差平方和Sum of squares of deviation from mean | 均方差Standard deviation | F值 F value | P值P value |
---|---|---|---|---|---|
模型 | 5 | 0.170 | 0.034 | 15.76 | 0.002 1 |
X1 | 1 | 0.014 | 0.014 | 6.28 | 0.046 2 |
X2 | 1 | 0.089 | 0.089 | 40.88 | 0.000 7 |
X3 | 1 | 0.001 | 0.001 | 0.64 | 0.453 0 |
X4 | 1 | 0.047 | 0.047 | 21.65 | 0.003 5 |
X5 | 1 | 0.021 | 0.021 | 9.37 | 0.022 2 |
残差 | 6 | 0.013 | 0.002 | ||
总离差 | 11 | 0.190 |
表4 Plackett-Burman设计试验结果的方差分析
Table 4 Variance analysis of PBD results
来源Source | 自由度Freedom | 离均差平方和Sum of squares of deviation from mean | 均方差Standard deviation | F值 F value | P值P value |
---|---|---|---|---|---|
模型 | 5 | 0.170 | 0.034 | 15.76 | 0.002 1 |
X1 | 1 | 0.014 | 0.014 | 6.28 | 0.046 2 |
X2 | 1 | 0.089 | 0.089 | 40.88 | 0.000 7 |
X3 | 1 | 0.001 | 0.001 | 0.64 | 0.453 0 |
X4 | 1 | 0.047 | 0.047 | 21.65 | 0.003 5 |
X5 | 1 | 0.021 | 0.021 | 9.37 | 0.022 2 |
残差 | 6 | 0.013 | 0.002 | ||
总离差 | 11 | 0.190 |
试验编号No. | 葡萄糖Glucose X1/(g·L-1) | 酵母提取物Yeast extract X2/(g·L-1) | 缬氨酸Valine X4/(g·L-1) | 组氨酸Histidine X5/(g·L-1) | MLNs产量MLNs yield×102/(μg·mL-1) |
---|---|---|---|---|---|
1 | 25.0 | 1.0 | 5.0 | 6.0 | 3.13 |
2 | 15.0 | 1.0 | 6.0 | 5.0 | 2.85 |
3 | 20.0 | 0.8 | 6.0 | 7.0 | 2.96 |
4 | 25.0 | 0.8 | 6.0 | 6.0 | 4.01 |
5 | 20.0 | 1.0 | 6.0 | 6.0 | 5.01 |
6 | 20.0 | 1.0 | 6.0 | 6.0 | 5.43 |
7 | 20.0 | 1.2 | 6.0 | 5.0 | 3.57 |
8 | 20.0 | 1.2 | 5.0 | 6.0 | 3.08 |
9 | 20.0 | 0.8 | 7.0 | 6.0 | 3.32 |
10 | 20.0 | 1.0 | 7.0 | 5.0 | 4.07 |
11 | 20.0 | 1.0 | 6.0 | 6.0 | 5.37 |
12 | 15.0 | 1.2 | 6.0 | 6.0 | 2.98 |
13 | 20.0 | 0.8 | 5.0 | 6.0 | 2.96 |
14 | 15.0 | 1.0 | 5.0 | 6.0 | 2.90 |
15 | 20.0 | 1.2 | 7.0 | 6.0 | 3.79 |
16 | 15.0 | 0.8 | 6.0 | 6.0 | 3.42 |
17 | 20.0 | 1.0 | 5.0 | 7.0 | 3.41 |
18 | 15.0 | 1.0 | 6.0 | 7.0 | 3.15 |
19 | 20.0 | 0.8 | 6.0 | 5.0 | 3.09 |
20 | 20.0 | 1.0 | 5.0 | 5.0 | 3.39 |
21 | 20.0 | 1.2 | 6.0 | 7.0 | 2.99 |
22 | 20.0 | 1.0 | 7.0 | 7.0 | 3.72 |
23 | 15.0 | 1.0 | 7.0 | 6.0 | 2.58 |
24 | 20.0 | 1.0 | 6.0 | 6.0 | 5.30 |
25 | 25.0 | 1.2 | 6.0 | 6.0 | 4.54 |
26 | 20.0 | 1.0 | 6.0 | 6.0 | 5.41 |
27 | 25.0 | 1.0 | 7.0 | 6.0 | 4.45 |
28 | 25.0 | 1.0 | 6.0 | 7.0 | 4.07 |
29 | 25.0 | 1.0 | 6.0 | 5.0 | 4.28 |
表5 暹罗芽孢杆菌K53产MLNs工艺优化响应面试验
Table 5 Response surface test for optimal yield of MLNs from B. siamensis strain K53
试验编号No. | 葡萄糖Glucose X1/(g·L-1) | 酵母提取物Yeast extract X2/(g·L-1) | 缬氨酸Valine X4/(g·L-1) | 组氨酸Histidine X5/(g·L-1) | MLNs产量MLNs yield×102/(μg·mL-1) |
---|---|---|---|---|---|
1 | 25.0 | 1.0 | 5.0 | 6.0 | 3.13 |
2 | 15.0 | 1.0 | 6.0 | 5.0 | 2.85 |
3 | 20.0 | 0.8 | 6.0 | 7.0 | 2.96 |
4 | 25.0 | 0.8 | 6.0 | 6.0 | 4.01 |
5 | 20.0 | 1.0 | 6.0 | 6.0 | 5.01 |
6 | 20.0 | 1.0 | 6.0 | 6.0 | 5.43 |
7 | 20.0 | 1.2 | 6.0 | 5.0 | 3.57 |
8 | 20.0 | 1.2 | 5.0 | 6.0 | 3.08 |
9 | 20.0 | 0.8 | 7.0 | 6.0 | 3.32 |
10 | 20.0 | 1.0 | 7.0 | 5.0 | 4.07 |
11 | 20.0 | 1.0 | 6.0 | 6.0 | 5.37 |
12 | 15.0 | 1.2 | 6.0 | 6.0 | 2.98 |
13 | 20.0 | 0.8 | 5.0 | 6.0 | 2.96 |
14 | 15.0 | 1.0 | 5.0 | 6.0 | 2.90 |
15 | 20.0 | 1.2 | 7.0 | 6.0 | 3.79 |
16 | 15.0 | 0.8 | 6.0 | 6.0 | 3.42 |
17 | 20.0 | 1.0 | 5.0 | 7.0 | 3.41 |
18 | 15.0 | 1.0 | 6.0 | 7.0 | 3.15 |
19 | 20.0 | 0.8 | 6.0 | 5.0 | 3.09 |
20 | 20.0 | 1.0 | 5.0 | 5.0 | 3.39 |
21 | 20.0 | 1.2 | 6.0 | 7.0 | 2.99 |
22 | 20.0 | 1.0 | 7.0 | 7.0 | 3.72 |
23 | 15.0 | 1.0 | 7.0 | 6.0 | 2.58 |
24 | 20.0 | 1.0 | 6.0 | 6.0 | 5.30 |
25 | 25.0 | 1.2 | 6.0 | 6.0 | 4.54 |
26 | 20.0 | 1.0 | 6.0 | 6.0 | 5.41 |
27 | 25.0 | 1.0 | 7.0 | 6.0 | 4.45 |
28 | 25.0 | 1.0 | 6.0 | 7.0 | 4.07 |
29 | 25.0 | 1.0 | 6.0 | 5.0 | 4.28 |
来源Source | 平方和Sum of squares | 自由度Freedom | 均方Meansquare | F值F value | P值P value |
---|---|---|---|---|---|
模型 | 20.19 | 14 | 1.44 | 17.10 | < 0.000 1 |
A-葡萄糖 | 3.63 | 1 | 3.63 | 43.04 | < 0.000 1 |
B-酵母提取物 | 0.12 | 1 | 0.12 | 1.40 | 0.256 6 |
C-缬氨酸 | 0.78 | 1 | 0.78 | 9.25 | 0.008 8 |
D-组氨酸 | 0.08 | 1 | 0.08 | 0.89 | 0.361 0 |
AB | 0.24 | 1 | 0.24 | 2.79 | 0.117 1 |
AC | 0.67 | 1 | 0.67 | 7.97 | 0.013 5 |
AD | 0.06 | 1 | 0.06 | 0.77 | 0.394 7 |
BC | 0.03 | 1 | 0.03 | 0.36 | 0.556 4 |
BD | 0.05 | 1 | 0.05 | 0.60 | 0.451 4 |
CD | 0.03 | 1 | 0.03 | 0.41 | 0.534 4 |
A2 | 4.19 | 1 | 4.19 | 49.62 | < 0.000 1 |
B2 | 6.61 | 1 | 6.61 | 78.38 | < 0.000 1 |
C2 | 6.46 | 1 | 6.46 | 76.64 | < 0.000 1 |
D2 | 5.31 | 1 | 5.31 | 62.94 | < 0.000 1 |
误差 | 1.18 | 14 | 0.08 | ||
失拟项 | 1.06 | 10 | 0.11 | 3.61 | 0.114 0 |
纯误差 | 0.12 | 4 | 0.0.3 | ||
总和 | 21.37 | 28 |
表6 回归模型方差分析
Table 6 Variance analysis of regression model
来源Source | 平方和Sum of squares | 自由度Freedom | 均方Meansquare | F值F value | P值P value |
---|---|---|---|---|---|
模型 | 20.19 | 14 | 1.44 | 17.10 | < 0.000 1 |
A-葡萄糖 | 3.63 | 1 | 3.63 | 43.04 | < 0.000 1 |
B-酵母提取物 | 0.12 | 1 | 0.12 | 1.40 | 0.256 6 |
C-缬氨酸 | 0.78 | 1 | 0.78 | 9.25 | 0.008 8 |
D-组氨酸 | 0.08 | 1 | 0.08 | 0.89 | 0.361 0 |
AB | 0.24 | 1 | 0.24 | 2.79 | 0.117 1 |
AC | 0.67 | 1 | 0.67 | 7.97 | 0.013 5 |
AD | 0.06 | 1 | 0.06 | 0.77 | 0.394 7 |
BC | 0.03 | 1 | 0.03 | 0.36 | 0.556 4 |
BD | 0.05 | 1 | 0.05 | 0.60 | 0.451 4 |
CD | 0.03 | 1 | 0.03 | 0.41 | 0.534 4 |
A2 | 4.19 | 1 | 4.19 | 49.62 | < 0.000 1 |
B2 | 6.61 | 1 | 6.61 | 78.38 | < 0.000 1 |
C2 | 6.46 | 1 | 6.46 | 76.64 | < 0.000 1 |
D2 | 5.31 | 1 | 5.31 | 62.94 | < 0.000 1 |
误差 | 1.18 | 14 | 0.08 | ||
失拟项 | 1.06 | 10 | 0.11 | 3.61 | 0.114 0 |
纯误差 | 0.12 | 4 | 0.0.3 | ||
总和 | 21.37 | 28 |
[1] | 桑建伟, 杨扬, 陈奕鹏, 等. 内生解淀粉芽孢杆菌BEB17脂肽类和聚酮类化合物的抑菌活性分析[J]. 植物病理学报, 2018, 48(3): 402-412. |
Sang JW, Yang Y, Chen YP, et al. Antibacterial activity analysis of lipopeptide and polyketide compounds produced by endophytic bacteria Bacillus amyloliquefaciens BEB17[J]. Acta Phytopathol Sin, 2018, 48(3): 402-412. | |
[2] | Regmi SC, Park SY, Kim SJ, et al. The anti-tumor activity of succinyl macrolactin A is mediated through the β-catenin destruction complex via the suppression of tankyrase and PI3K/akt[J]. PLoS One, 2015, 10(11): e0141753. |
[3] | Tareq FS, Kim JH, Lee MA, et al. Antimicrobial gageomacrolactins characterized from the fermentation of the marine-derived bacterium Bacillus subtilis under optimum growth conditions[J]. J Agric Food Chem, 2013, 61(14): 3428-3434. |
[4] |
Mojid Mondol MA, Tareq FS, Kim JH, et al. Cyclic ether-containing macrolactins, antimicrobial 24-membered isomeric macrolactones from a marine Bacillus sp[J]. J Nat Prod, 2011, 74(12): 2582-2587.
doi: 10.1021/np200487k pmid: 22133265 |
[5] |
Schneider K, Chen XH, Vater J, et al. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42[J]. J Nat Prod, 2007, 70(9): 1417-1423.
pmid: 17844999 |
[6] | Srihari P, Sayini R. Studies on the total synthesis of antibiotic macrolactin S: a conventional approach for the synthesis of the C1-C9 and C10-C24 fragments[J]. Synthesis, 2018, 50(3): 663-675. |
[7] | Chen H, Wu MB, Chen ZJ, et al. Enhancing production of a 24-membered ring macrolide compound by a marine bacterium using response surface methodology[J]. J Zhejiang Univ Sci B, 2013, 14(4): 346-354. |
[8] | Zhang LY, Jin MS, Shi X, et al. Macrolactin metabolite production by Bacillus sp. ZJ318 isolated from marine sediment[J]. Appl Biochem Biotechnol, 2022, 194(6): 2581-2593. |
[9] | 杜瑜欣, 江蕾, 余炼, 等. 前体调控对Bacillus sp. 108菌株发酵合成抑制甘蔗鞭黑粉菌活性物质产量的影响[J]. 南方农业学报, 2019, 50(4): 755-760. |
Du YX, Jiang L, Yu L, et al. Effects of precursor regulation on inhibition of production of active substances in sugarcane Sporisorium scitamineum by Bacillus sp. 108 fermentation and synthesis[J]. J South Agric, 2019, 50(4): 755-760. | |
[10] | Li BC, Cai DB, Chen SW. Metabolic engineering of central carbon metabolism of Bacillus licheniformis for enhanced production of poly-γ-glutamic acid[J]. Appl Biochem Biotechnol, 2021, 193(11): 3540-3552. |
[11] | Sha YY, Sun T, Qiu YB, et al. Investigation of glutamate dependence mechanism for poly-γ-glutamic acid production in Bacillus subtilis on the basis of transcriptome analysis[J]. J Agric Food Chem, 2019, 67(22): 6263-6274. |
[12] | 杨代凯, 陈守文, 黎煊. 解淀粉芽孢杆菌ZM9液体发酵伊枯草菌素A培养基优化[J]. 应用化工, 2015, 44(3): 428-430. |
Yang DK, Chen SW, Li X. Optimization of culture medium for iturin A submerged fermentation by Bacillus amyloliquefaciens ZM9[J]. Appl Chem Ind, 2015, 44(3): 428-430. | |
[13] | Li CL, Li M, Zhang WG, et al. Accelerating the menaquinone-7 production in Bacillus amyloliquefaciens by optimization of the biosynthetic pathway and medium components[J]. Syst Microbiol Biomanuf, 2023, 3(4): 776-791. |
[14] | 方舟, 孟慧云, 杨渊, 等. 前体物质对Glarea lozoyensis发酵产生纽莫康定B0的影响[J]. 中国抗生素杂志, 2018, 43(4): 437-443. |
Fang Z, Meng HY, Yang Y, et al. Precursors supplement effects on the level of pneumocandin B0 produced by Glarea lozoyensis[J]. Chin J Antibiot, 2018, 43(4): 437-443. | |
[15] | 薛欣怡, 张翼, 廖清楠, 等. 添加前体对2株真菌次级代谢产物及其生物活性的影响[J]. 广西科学, 2022, 29(5): 854-862. |
Xue XY, Zhang Y, Liao QN, et al. Effects of adding precursors on secondary metabolites and their activities of two fungal strains[J]. Guangxi Sci, 2022, 29(5): 854-862. | |
[16] |
Zhang B, Zhang YH, Chen Y, et al. Enhanced AmB production in Streptomyces nodosus by fermentation regulation and rational combined feeding strategy[J]. Front Bioeng Biotechnol, 2020, 8: 597.
doi: 10.3389/fbioe.2020.00597 pmid: 32760700 |
[17] | 张宪花. 螺旋霉素发酵过程转录组分析及发酵优化[D]. 上海: 华东理工大学, 2021. |
Zhang XH. Transcriptomics analysis and optimization of spiramycin fermentation process[D]. Shanghai: East China University of Science and Technology, 2021. | |
[18] | 倪婕. 大环内酯Macrolactin高产菌株的诱变选育及对草莓灰葡萄孢菌的抑制作用[D]. 南宁: 广西大学, 2020. |
Ni J. Breeding high-yield macrolactin strains with mutation and antibacterial activity of macrolactin against Botrytis cinerea[D]. Nanning: Guangxi University, 2020. | |
[19] | Yu L, Li F, Ni J, et al. UV-ARTP compound mutagenesis breeding improves macrolactins production of Bacillus siamensis and reveals metabolism changes by proteomic[J]. J Biotechnol, 2024, 381: 36-48. |
[20] |
Mondol MA, Kim JH, Lee HS, et al. Macrolactin W, a new antibacterial macrolide from a marine Bacillus sp[J]. Bioorg Med Chem Lett, 2011, 21(12): 3832-3835.
doi: 10.1016/j.bmcl.2010.12.050 pmid: 21570834 |
[21] | 李永红, 刘波, 赵宗保, 等. 圆红冬孢酵母菌发酵产油脂培养基及发酵条件的优化研究[J]. 生物工程学报, 2006, 22(4): 650-656. |
Li YH, Liu B, Zhao ZB, et al. Optimized culture medium and fermentation conditions for lipid production by Rhodosporidium toruloides[J]. Chin J Biotechnol, 2006, 22(4): 650-656. | |
[22] | 代志凯, 张翠, 阮征. 试验设计和优化及其在发酵培养基优化中的应用[J]. 微生物学通报, 2010, 37(6): 894-903. |
Dai ZK, Zhang C, Ruan Z. The application of experimental design and optimization techniques in optimization of microbial medium[J]. Microbiol China, 2010, 37(6): 894-903. | |
[23] |
Krivoruchko A, Zhang YM, Siewers V, et al. Microbial acetyl-CoA metabolism and metabolic engineering[J]. Metab Eng, 2015, 28: 28-42.
doi: S1096-7176(14)00147-5 pmid: 25485951 |
[24] | Brobst SW, Townsend CA. The potential role of fatty acid initiation in the biosynthesis of the fungal aromatic polyketide aflatoxin B1[J]. Can J Chem, 1994, 72(1): 200-207. |
[25] | Jiang LF. Optimization of fermentation conditions for pullulan production by Aureobasidium pullulan using response surface methodology[J]. Carbohydr Polym, 2010, 79(2): 414-417. |
[26] | 许正宏, 窦文芳, 王霞, 等. 氮源及其添加模式对钝齿棒杆菌JDN28-75合成L-精氨酸的影响[J]. 应用与环境生物学报, 2006, 12(3): 381-385. |
Xu ZH, Dou WF, Wang X, et al. Effects of nitrogen source and its supply manner on production of L-arginine by Corynebacterium crenatum JDN28-75[J]. Chin J Appl Environ Biol, 2006, 12(3): 381-385. | |
[27] | 李永辉. 芳香族氨基酸生物合成代谢途径调控研究[D]. 北京: 中国人民解放军军事医学科学院, 2003. |
Li YH. Study on the regulation of metabolic pathway in aromatic amino acids biosynthesis[D]. Beijing: Academy of Military Medical Sciences of Chinese People's Liberation Army, 2003. | |
[28] | 朱峰, 乔建军. 聚酮合成酶底物专一性的研究进展[J]. 中国抗生素杂志, 2006, 31(11): 641-645, 664. |
Zhu F, Qiao JJ. Progress in substrate specificity of polyketide synthase[J]. Chin J Antibiot, 2006, 31(11): 641-645, 664. | |
[29] | 夏梦雷. 代谢物轮廓分析提高筑波链霉菌FK506产量[D]. 天津: 天津大学, 2013. |
Xia ML. Enhanced FK506 production in Streptomyces tsukubaensis by comparative metabolic profiling analysis[D]. Tianjin: Tianjin University, 2013. | |
[30] |
Kunioka M. Biodegradable water absorbent synthesized from bacterial poly(amino acid)S[J]. Macromol Biosci, 2004, 4(3): 324-329.
pmid: 15468223 |
[31] | 王明璐. 一种新型大环内酯类抗真菌抗生素的发酵工艺及稳定性研究[D]. 杭州: 浙江大学, 2013. |
Wang ML. Fermentation process and stability research of a novel acrolide antifungal-antibiotic[D]. Hangzhou: Zhejiang University, 2013. | |
[32] | Rahman MS, Ano T, Shoda M. Second stage production of iturin A by induced germination of Bacillus subtilis RB14[J]. J Biotechnol, 2006, 125(4): 513-515. |
[33] | 王永菲, 王成国. 响应面法的理论与应用[J]. 中央民族大学学报: 自然科学版, 2005, 14(3): 236-240. |
Wang YF, Wang CG. The application of response surface methodology[J]. J Cent Univ Natl Nat Sci Ed, 2005, 14(3): 236-240. | |
[34] | 李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8): 41-45. |
Li L, Zhang S, He Q, et al. Application of response surface methodology in experiment design and optimization[J]. Res Explor Lab, 2015, 34(8): 41-45. | |
[35] | 郝学财, 余晓斌, 刘志钰, 等. 响应面方法在优化微生物培养基中的应用[J]. 食品研究与开发, 2006, 27(1): 38-41. |
Hao XC, Yu XB, Liu ZY, et al. The applicationof response surface methodology in optimization of microbial media[J]. Food Res Dev, 2006, 27(1): 38-41. | |
[36] | Gouveia ER, Baptista-Neto A, Badino Jr AC, et al. Optimisation of medium composition for clavulanic acid production by Streptomyces clavuligerus[J]. Biotechnol Lett, 2001, 23(2): 157-161. |
[37] | 汪敦飞, 朱胜男, 肖清铁, 等. 基于响应面法的耐镉假单胞菌TCd-1培养条件优化[J]. 浙江农林大学学报, 2020, 37(5): 914-921. |
Wang DF, Zhu SN, Xiao QT, et al. Optimization of culture conditions of Cd-tolerant strain Pseudomonas TCd-1 based on response surface methodology[J]. J Zhejiang A F Univ, 2020, 37(5): 914-921. |
[1] | 王楠, 廖永琴, 施竹凤, 申云鑫, 杨童雨, 冯路遥, 矣小鹏, 唐加菜, 陈齐斌, 杨佩文. 三株无量山森林土壤芽孢杆菌鉴定及其生物活性挖掘[J]. 生物技术通报, 2024, 40(2): 277-288. |
[2] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[3] | 谢东, 汪流伟, 李宁健, 李泽霖, 徐子航, 张庆华. 一株多功能菌株的发掘、鉴定及解磷条件优化[J]. 生物技术通报, 2023, 39(7): 241-253. |
[4] | 王帅, 吕鸿睿, 张昊, 吴占文, 肖翠红, 孙冬梅. 解磷菌PSB-R全基因组测序鉴定及其解磷特性分析[J]. 生物技术通报, 2023, 39(1): 274-283. |
[5] | 王宇蕴, 赵兵, 马丽婷, 李兰, 邓亚琴, 徐智. 堆肥腐殖化过程及微生物驱动机制[J]. 生物技术通报, 2022, 38(5): 22-28. |
[6] | 麻金金, 葛蓓孛, 施李鸣, 刘炳花, 韦秋合, 张克诚. 玫瑰黄链霉菌NKZ-259发酵培养基的优化[J]. 生物技术通报, 2019, 35(2): 85-92. |
[7] | 郭学武, 张玉, 关翔宇, 倪晓丰, 汪庆, 陈叶福, 肖冬光. 产2,3-丁二醇高木糖耐性肺炎克雷伯氏菌转录组学分析与发酵优化[J]. 生物技术通报, 2018, 34(8): 159-169. |
[8] | 杨静,李庆刚,徐国栋,郑小梅,郑平,牟海津. 产O-乙酰高丝氨酸的大肠杆菌构建与发酵测试[J]. 生物技术通报, 2017, 33(9): 200-209. |
[9] | 万阅,齐计英,曾红,韩阳,韩静. 响应面法优化香菇多糖的超声辅助提取工艺[J]. 生物技术通报, 2015, 31(1): 79-85. |
[10] | 龚国利,王娜,刘丽丽. 响应面法优化纤维堆囊菌SoF5-76 产埃博霉素B发酵培养基[J]. 生物技术通报, 2014, 30(1): 171-176. |
[11] | 王贻莲;赵晓燕;李红梅;魏艳丽;李纪顺;杨合同;. 苏云金芽孢杆菌BtR05菌株发酵培养基的优化[J]. , 2009, 0(S1): 373-375. |
[12] | 李静;朱平;. 利用西瓜汁合成细菌纤维素的研究[J]. , 2008, 0(02): 158-162. |
[13] | 靳亮;王泽立;童应凯;杨永涛;祝静静;孙翠霞;. 响应面法优化卑霉素发酵培养基的研究[J]. , 2007, 0(02): 155-158. |
[14] | . 农业其它[J]. , 1997, 0(05): 59-62. |
[15] | . 抗生素和干扰素[J]. , 1995, 0(01): 73-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||