生物技术通报 ›› 2024, Vol. 40 ›› Issue (8): 288-298.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0108
张志梅1(), 张彦猛1, 谢东明1, 杨秀云2, 王浪3, 左梓涵3, 吴志国3()
收稿日期:
2024-01-31
出版日期:
2024-08-26
发布日期:
2024-06-27
通讯作者:
吴志国,男,博士,副教授,研究方向:环境污染的生物修复及环境微生物;E-mail: wzhg@tust.edu.cn作者简介:
张志梅,女,工程师,研究方向:环境安全;E-mail: zmzhang@lgcbem.com
基金资助:
ZHANG Zhi-mei1(), ZHANG Yan-meng1, XIE Dong-ming1, YANG Xiu-yun2, WANG Lang3, ZUO Zi-han3, WU Zhi-guo3()
Received:
2024-01-31
Published:
2024-08-26
Online:
2024-06-27
摘要:
【目的】1,2-二氯乙烷(1,2-DCA)的污染会危害到人体的生命健康和环境生态安全。为获得高效的1,2-DCA生物降解种质资源,研究菌群特征并探索从中分离筛选高效1,2-DCA降解菌株的规律和方法。【方法】从受1,2-DCA污染的土壤中富集培养能以1,2-DCA为唯一碳源和能源的降解菌群,通过气相色谱、紫外分光光度仪考察了不同批次菌群的生长和对1,2-DCA的降解情况,利用高通量测序分析不同批次富集液的物种多样性和相对丰度。通过16S rDNA基因序列分析鉴定菌株,利用气相色谱-质谱联用测定降解产物,分析菌株的降解途径。【结果】得到了降解菌群BG1,且实验结果显示第6-11批和15批富集菌群在24 h内对12.5 mg/L 1,2-DCA的降解率呈先增加后降低趋势,菌群生物量(OD600)可从0.03增长至0.095,但菌群中Ancylobacter sp.的相对丰度随着持续富集而降低。从第9批富集液中筛选出一株菌命名为BL0,鉴定为Ancylobacter sp.,能在6 h内降解120 mg/L 1,2-DCA,推测BL0降解1,2-DCA的途径为1,2-DCA水解为2-氯乙醇,2-氯乙醇再被氧化为氯乙酸,然后被彻底降解利用。【结论】本研究得到了高效降解1,2-DCA的菌群BG1和菌株Ancylobacter sp. BL0,同时发现1,2-DCA降解菌株的筛选分离需要的样品富集过程周期较长且微生物生长量较低,不适于过度富集。菌株Ancylobacter sp. BL0与富集菌群中的其他菌株之间以竞争关系为主。
张志梅, 张彦猛, 谢东明, 杨秀云, 王浪, 左梓涵, 吴志国. 1,2-二氯乙烷降解菌群的富集及关键降解菌Ancylobacter sp. BL0的分离鉴定[J]. 生物技术通报, 2024, 40(8): 288-298.
ZHANG Zhi-mei, ZHANG Yan-meng, XIE Dong-ming, YANG Xiu-yun, WANG Lang, ZUO Zi-han, WU Zhi-guo. Enrichment of 1, 2-dichloroethane Degrading Bacterial Consortium, and Isolation and Identification of Ancylobacter sp. BL0 of a Key Degrading Bacterial Strain[J]. Biotechnology Bulletin, 2024, 40(8): 288-298.
图2 BG1的生长及对1,2-DCA的降解 A:BG1的生长;B:BG1对1,2-DCA的降解
Fig. 2 Growth of BG1 and degradation of 1,2-DCA by it A: Growth of BG1. B: Degradation of 1,2-DCA by BG1
样本Sample | Ace | Chao1 | Shannon | Simpson | Goods_coverage |
---|---|---|---|---|---|
第6批 Batch 6 | 83.415 | 76 | 2.066 | 0.656 | 1 |
第15批Batch 15 | 103.572 | 100.750 | 3.021 | 0.766 | 1 |
表1 第6批和第15批BG1的α多样性指数统计
Table 1 α diversity index statistics of batch 6 and 15 of BG1
样本Sample | Ace | Chao1 | Shannon | Simpson | Goods_coverage |
---|---|---|---|---|---|
第6批 Batch 6 | 83.415 | 76 | 2.066 | 0.656 | 1 |
第15批Batch 15 | 103.572 | 100.750 | 3.021 | 0.766 | 1 |
项目 Item | 结果 Result | 项目 Item | 结果 Result | |
---|---|---|---|---|
革兰氏染色 Gram stain | - | 接触酶试验 Catalase test | + | |
淀粉水解 Starch hydrolysis | - | 氧化酶试验 Oxidase test | - | |
明胶液化 Gelatin hydrolysis | + | V-P试验 V-P test | - | |
甲基红试验 Methyl red test | - | 柠檬酸盐试验 Citrate test | - |
表2 菌株BL0生理生化实验结果
Table 2 Physiological and biochemical experiment results of strain BL0
项目 Item | 结果 Result | 项目 Item | 结果 Result | |
---|---|---|---|---|
革兰氏染色 Gram stain | - | 接触酶试验 Catalase test | + | |
淀粉水解 Starch hydrolysis | - | 氧化酶试验 Oxidase test | - | |
明胶液化 Gelatin hydrolysis | + | V-P试验 V-P test | - | |
甲基红试验 Methyl red test | - | 柠檬酸盐试验 Citrate test | - |
图4 BL0扫描电镜照片与菌落形态 A:菌株BL0扫描电镜照片(19 000×);B:菌落形态;
Fig. 4 Scanning electron microscopy and colony morphology of strain BL0 A: Scanning electron microscope photos of strain BL0(19 000×); B: colony morphology
图6 菌株BL0的生长和对1,2-DCA的降解 A:BL0的生长曲线;B:BL0对1,2-DCA的降解和过程中的菌量变化
Fig. 6 Growth of BL0 and degradation of 1,2-DCA by it A: Growth curve of BL0. B: Degradation of 1,2-DCA and growth by BL0
图7 BL0降解1,2-DCA途径分析 A:BL0在氯乙酸为唯一碳源条件下的生长情况;B:BL0降解1,2-DCA的溴百里酚蓝变色实验(a:对照;b:反应10 h;c:反应24 h);C:BL0降解产物气相色谱图;D:BL0降解产物质谱图
Fig. 7 Analysis of 1,2-DCA metabolic pathway by BL0 A: Growth of BL0 utilizing chloroacetic acid as sole carbon source. B: Bromothymol blue discoloration experiment in degrading 1,2-DCA by BL0(a: Contrast. b: Biodegradation for 10 h. c: Biodegradation for total 24 h). C: GC diagram of degrading product by BL0. D: Mass spectrum of degrading product
[1] | 赵兰辉. 化工园区废水中1,2-二氯乙烷去除工艺研究[D]. 上海: 华东理工大学, 2021. |
Zhao LH. Research on the removal process of 1, 2-dichloroethane in wastewater in chemical industry park[D]. Shanghai: East China University of Science and Technology, 2021. | |
[2] | 王小春. 二氯乙烷降解菌的分离鉴定及降解特性研究[D]. 杭州: 浙江工业大学, 2013. |
Wang XC. Isolation, identification and degradation characteristics of dichloroethane degrading bacteria[D]. Hangzhou: Zhejiang University of Technology, 2013. | |
[3] | 周佳伟, 施维林, 许伟, 等. 污泥生物炭硼掺杂改性及其对水中1, 2-二氯乙烷吸附行为和机制[J]. 环境科学, 2023, 44(5): 2671-2680. |
Zhou JW, Shi WL, Xu W, et al. Sludge biochar modified by B-doped and its adsorption behavior and mechanism of 1, 2-DCA in water[J]. Environ Sci, 2023, 44(5): 2671-2680. | |
[4] | 张祎曼. 碳基表面衍生化材料的制备及其对1, 2-二氯乙烷的电催化脱氯研究[D]. 大连: 大连理工大学, 2022. |
Zhang YM. Preparation of carbon-based surface derived materials and its electrocatalytic dechlorination of 1, 2-dichloroethane[D]. Dalian: Dalian University of Technology, 2022. | |
[5] | 黄煜韬, 孟宪荣, 许伟, 等. EDTA强化nZVI/PS降解地下水中1, 2-二氯乙烷的作用机制及影响因素[J]. 环境工程学报, 2022, 16(3): 885-893. |
Huang YT, Meng XR, Xu W, et al. Mechanism and influencing factors of 1, 2-dichloroethane degradation in groundwater by EDTA-enhanced nZVI/PS[J]. Chin J Environ Eng, 2022, 16(3): 885-893. | |
[6] | Janssen DB, Scheper A, Dijkhuizen L, et al. Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10[J]. Appl Environ Microbiol, 1985, 49(3): 673-677. |
[7] | Olaniran AO, Pillay D, Pillay B. Aerobic dechlorination of cis- and trans-dichloroethenes by some indigenous bacteria isolated from contaminated sites in Africa[J]. J Environ Sci(China), 2004, 16(6): 968-972. |
[8] | Mileva A, Sapundzhiev T, Beschkov V. Modeling 1, 2-dichloroethane biodegradation by Klebsiella oxytoca va 8391 immobilized on granulated activated carbon[J]. Bioprocess Biosyst Eng, 2008, 31(2): 75-85. |
[9] | Maymó-Gatell X, Anguish T, Zinder SH. Reductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by “Dehalococcoides ethenogenes” 195[J]. Appl Environ Microbiol, 1999, 65(7): 3108-3113. |
[10] | Xing ZL, Su X, Zhang XP, et al. Direct aerobic oxidation(DAO)of chlorinated aliphatic hydrocarbons: a review of key DAO bacteria, biometabolic pathways and in situ bioremediation potential[J]. Environ Int, 2022, 162: 107165. |
[11] | Munro JE, Liew EF, Coleman NV. Adaptation of a membrane bioreactor to 1, 2-dichloroethane revealed by 16S rDNA pyrosequencing and dhlA qPCR[J]. Environ Sci Technol, 2013, 47(23): 13668-13676. |
[12] | Davis GB, Patterson BM, Johnston CD. Aerobic bioremediation of 1, 2 dichloroethane and vinyl chloride at field scale[J]. J Contam Hydrol, 2009, 107(1/2): 91-100. |
[13] | Hage JC, Hartmans S. Monooxygenase-mediated 1, 2-dichloroethane degradation by Pseudomonas sp. strain DCA1[J]. Appl Environ Microbiol, 1999, 65(6): 2466-2470. |
[14] | Tardif G, Greer CW, Labbé D, et al. Involvement of a large plasmid in the degradation of 1, 2-dichloroethane by Xanthobacter autotrophicus[J]. Appl Environ Microbiol, 1991, 57(6): 1853-1857. |
[15] | 许文帅. 固定化Rhodococcus sp. W7处理焦化废水的研究及应用[D]. 天津: 天津科技大学, 2021. |
Xu WS. Study and application of coking wastewater treatment by immobilized Rhodococcus sp. W7[D]. Tianjin: Tianjin University of Science & Technology, 2021. | |
[16] | Strotmann U, Röschenthaler R. A method for screening bacteria: Aerobically degrading chlorinated short-chain hydrocarbons[J]. Curr Microbiol, 1987, 15(3): 159-163. |
[17] |
Lee SD, Kim ES, Hah YC. Phylogenetic analysis of the genera Pseudonocardia and Actinobispora based on 16S ribosomal DNA sequences[J]. FEMS Microbiol Lett, 2000, 182(1): 125-129.
pmid: 10612743 |
[18] | 张涛, 张锦, 史艳可, 等. 产酸克雷伯氏菌胞内粗酶液降解泰乐菌素[J]. 生物学杂志, 2022, 39(5): 65-71, 76. |
Zhang T, Zhang J, Shi YK, et al. Biodegradation of tylosin by intracellular crude enzyme solution of Klebsiella oxytoca[J]. J Biol, 2022, 39(5): 65-71, 76. | |
[19] | 曹卫承. 三氯乙烯高效降解菌的筛选鉴定及降解特性研究[J]. 科技创新与应用, 2023, 13(36): 59-64. |
Cao WC. Screening, identification and degradation characteristics of trichloroethylene efficient degrading bacteria[J]. Technol Innov Appl, 2023, 13(36): 59-64. | |
[20] | De Marines F, Cruciata I, Di Bella G, et al. Degradation of 1, 2-dichloroethane in real polluted groundwater by using enriched bacterial consortia in aerobic and anaerobic laboratory-scale conditions[J]. Int Biodeterior Biodegrad, 2023, 183: 105644. |
[21] | van den Wijngaard AJ, Wind RD, Janssen DB. Kinetics of bacterial growth on chlorinated aliphatic compounds[J]. Appl Environ Microbiol, 1993, 59(7): 2041-2048. |
[22] | Torz M, Wietzes P, Beschkov V, et al. Metabolism of mono- and dihalogenated C1 and C2 compounds by Xanthobacter autotrophicus growing on 1, 2-dichloroethane[J]. Biodegradation, 2007, 18(2): 145-157. |
[23] | Taylor DG, Bouwer EJ. Effect of CO2 on oxidation of 1, 2-dichloroethane by Xanthobacter autotrophicus GJ10[J]. Environ Eng Sci, 2009, 26(11): 1577-1583. |
[24] | Baptista IIR, Peeva LG, Zhou NY, et al. Stability and performance of Xanthobacter autotrophicus GJ10 during 1, 2-dichloroethane biodegradation[J]. Appl Environ Microbiol, 2006, 72(6): 4411-4418. |
[25] | Hunkeler D, Aravena R. Evidence of substantial carbon isotope fractionation among substrate, inorganic carbon, and biomass during aerobic mineralization of 1, 2-dichloroethane by Xanthobacter autotrophicus[J]. Appl Environ Microbiol, 2000, 66(11): 4870-4876. |
[26] |
vander Ploeg J, van Hall G, Janssen DB. Characterization of the haloacid dehalogenase from Xanthobacter autotrophicus GJ10 and sequencing of the dhlB gene[J]. J Bacteriol, 1991, 173(24): 7925-7933.
pmid: 1744048 |
[27] |
Hage JC, Van Houten RT, Tramper J, et al. Membrane-aerated biofilm reactor for the removal of 1, 2-dichloroethane by Pseudomonas sp. strain DCA1[J]. Appl Microbiol Biotechnol, 2004, 64(5): 718-725.
pmid: 15034684 |
[28] |
Hage JC, Kiestra FD, Hartmans S. Co-metabolic degradation of chlorinated hydrocarbons by Pseudomonas sp. strain DCA1[J]. Appl Microbiol Biotechnol, 2001, 57(4): 548-554.
pmid: 11762603 |
[29] |
Preussger D, Giri S, Muhsal LK, et al. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation[J]. Curr Biol, 2020, 30(18): 3580-3590.e7.
doi: S0960-9822(20)30986-6 pmid: 32707067 |
[30] |
D’Souza G, Shitut S, Preussger D, et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria[J]. Nat Prod Rep, 2018, 35(5): 455-488.
doi: 10.1039/c8np00009c pmid: 29799048 |
[31] | D'Souza G, Kost C. Experimental evolution of metabolic dependency in bacteria[J]. PLoS Genet, 2016, 12(11): e1006364. |
[32] |
Oliveira NM, Niehus R, Foster KR. Evolutionary limits to cooperation in microbial communities[J]. Proc Natl Acad Sci USA, 2014, 111(50): 17941-17946.
doi: 10.1073/pnas.1412673111 pmid: 25453102 |
[33] |
Foster KR, Bell T. Competition, not cooperation, dominates interactions among culturable microbial species[J]. Curr Biol, 2012, 22(19): 1845-1850.
doi: 10.1016/j.cub.2012.08.005 pmid: 22959348 |
[34] |
Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability[J]. Science, 2015, 350(6261): 663-666.
doi: 10.1126/science.aad2602 pmid: 26542567 |
[1] | 谢倩, 江来, 贺进, 刘玲玲, 丁明月, 陈清西. 不同鲜食品质橄榄果实转录组测序及酚类代谢途径相关调控基因挖掘[J]. 生物技术通报, 2024, 40(3): 215-228. |
[2] | 王璐, 刘梦雨, 张富源, 纪守坤, 王云, 张英杰, 段春辉, 刘月琴, 严慧. 瘤胃源粪臭素降解菌的分离鉴定及其降解特性研究[J]. 生物技术通报, 2024, 40(3): 305-311. |
[3] | 潘虎, 周子琼, 田云. 三株异菌脲高效降解菌株的筛选、鉴定及其降解特性分析[J]. 生物技术通报, 2023, 39(6): 298-307. |
[4] | 古丽加马力·艾萨, 邢军, 李安, 张瑞. 开菲尔粒中微生物对苯并(α)芘的非靶向代谢组学分析[J]. 生物技术通报, 2022, 38(5): 123-135. |
[5] | 付雅丽, 彭万里, 林双君, 邓子新, 梁如冰. 香茅醇假单胞菌SJTE-3的短链脱氢酶SDR-X1的克隆及酶性质测定[J]. 生物技术通报, 2022, 38(3): 121-129. |
[6] | 马青云, 江旭, 李情情, 宋金龙, 周义清, 阮志勇. 烟嘧磺隆降解菌Chryseobacterium sp. LAM-M5的分离、鉴定及其降解机理研究[J]. 生物技术通报, 2022, 38(2): 113-122. |
[7] | 牛鸿宇, 舒倩, 杨海君, 颜智勇, 谭菊. 一株十二烷基硫酸钠高效降解菌的分离鉴定、降解特性及代谢途径研究[J]. 生物技术通报, 2022, 38(12): 287-299. |
[8] | 肖小双, 安雪姣, 叶晗媛, 王林平, 钟斌, 张庆华. 废水中硫氰酸盐的微生物降解研究进展[J]. 生物技术通报, 2021, 37(2): 224-235. |
[9] | 王豪, 唐禄鑫, 马鸿飞, 钱坤, 司静, 崔宝凯. 东方栓孔菌漆酶的固定化及其对不同类型染料的脱色作用[J]. 生物技术通报, 2021, 37(11): 142-157. |
[10] | 吴敏, 唐洁, 胡琼, 雷丹, 张庆. 表面活性剂对琼式不动杆菌LH-1-1降解溴氰菊酯的影响[J]. 生物技术通报, 2021, 37(1): 215-222. |
[11] | 岳丽晓, 李登云, 张晶晶, 仝雷. 一株敌草隆降解菌的分离及其应用潜能探索[J]. 生物技术通报, 2020, 36(6): 110-119. |
[12] | 陈锐, 瞿佳, 孙晓宇, 邓媛, 门欣, 赵玲侠, 沈卫荣. 氯氰菊酯降解菌草酸青霉SSCL-5分离鉴定及降解特性[J]. 生物技术通报, 2020, 36(6): 120-127. |
[13] | 高超, 郝孔利, 赵宇婷, 毛樱翔, 池明眼, 张杰. 一株能够降解聚乙烯的霍氏肠杆菌的鉴定及分析[J]. 生物技术通报, 2020, 36(10): 99-104. |
[14] | 张林义, 宋晨, 徐瑶瑶, 王嘉宁, 王进, 岳正波, 刘晓玲. 一株高效硫氧化菌的筛选及其对S2-离子氧化途径的推测[J]. 生物技术通报, 2020, 36(10): 105-115. |
[15] | 邱石正, 李佳益, 杨景辰, 刘长莉. 低成本合成聚羟基脂肪酸酯(PHAs)的研究进展[J]. 生物技术通报, 2019, 35(9): 45-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||