生物技术通报 ›› 2024, Vol. 40 ›› Issue (10): 160-171.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1227

• 综述与专论 • 上一篇    下一篇

细胞编程技术:助力高效细胞工厂的设计

琚康辉1(), 田晓雅1, 王立2, 陈晶瑜1()   

  1. 1.中国农业大学食品科学与营养工程学院 中国轻工业食品生物工程重点实验室,北京 100083
    2.苏州优信合生技术有限公司,苏州 215000
  • 收稿日期:2024-01-02 出版日期:2024-10-26 发布日期:2024-11-20
  • 通讯作者: 陈晶瑜,女,博士,教授,研究方向:分子生物学及合成生物学;E-mail: chenjy@cau.edu.cn
  • 作者简介:琚康辉,男,硕士研究生,研究方向:分子生物学及合成生物学;E-mail: jkh72552365@163.com
  • 基金资助:
    北京市自然科学基金项目(L202045)

Cell Programming Technology: Paving the Way for Efficient Cell Factories

JU Kang-hui1(), TIAN Xiao-ya1, WANG Li2, CHEN Jing-yu1()   

  1. 1. Key Laboratory of Food Bioengineering(China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083
    2. U-Synbio Technologies Co., Ltd., Suzhou 215000
  • Received:2024-01-02 Published:2024-10-26 Online:2024-11-20

摘要:

合成生物学是近年来蓬勃发展的一门涉及分子生物学、生物工程、微生物学、系统生物学等多个学科新型交叉学科,旨在利用生物学原理和工程方法创造全新的生物学系统和生物产品。合成生物学的发展也受到了高效“细胞工厂”理念的推动,这使得生物工程技术朝着工业化应用的方向迈出了重要一步。然而,受制于生产效率低、遗传不稳定、调控过程难等问题,如何获得转化效率高、鲁棒性强的“细胞工厂”仍然是合成生物学领域面临的重要任务。近年来,细胞工程和基因工程领域发展迅速,新型细胞元件、细胞底盘以及基因回路构造方式等技术逐渐成熟,其通过精确的基因编辑和调控,可实现对细胞的特定功能进行编程,例如增强细胞的代谢能力、改变细胞的分化路径以及设计新的细胞功能模块等,具有广泛的应用前景。本文从新型细胞元件、底盘细胞以及基因回路构造方式等角度,综述了近年来在细胞工程和基因工程领域发展迅速的细胞编程技术,这些技术的进步已经或者将要用于合成生物学的发展中,将会赋予工程菌更加强大的工作能力。

关键词: 合成生物学, 细胞编程, 细胞元件, 底盘细胞

Abstract:

Synthetic biology, an emerging interdisciplinary field, involves molecular biology, bioengineering, microbiology, and system biology, aiming to create entirely new biological systems and products using principles of biology and engineering methods. The conceptualization of the “cell factory” has propelled synthetic biology towards industrial applications, allowing the bioengineering technology having a big step towards industrial application. However, challenges such as low production efficiency, genetic instability, and intricate regulatory processes persist, hindering the creation of highly efficient and robust “cell factories” for transformation. In recent years, the fields of cell engineering and genetic engineering have developed rapidly, with the maturation of technologies such as new cell elements, cell chassis, and gene circuit construction methods. Through precise gene editing and regulation, these technologies can enable the programming of specific functions in cells, such as enhancing cell metabolism, altering cell differentiation pathways, and designing new cell functional modules, with broad application prospects.This review provides a comprehensive overview of rapidly evolving cell programming technologies. These technologies, situated within the realms of cell engineering and genetic engineering, encompass novel cellular components, cellular chassis concepts, and gene circuit construction methods. The strategic integration of these advancements aims to address the existing challenges in synthetic biology. The utilization of these technologies is poised to empower engineered bacteria with enhanced working capacities, thus paving the way for the development of more efficient and resilient “cell factories.”

Key words: synthetic biology, cell programming, cellular components, cell chassis