生物技术通报 ›› 2023, Vol. 39 ›› Issue (1): 137-149.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0389
陈晓琳1(), 刘洋儿2, 许文涛2, 郭明璋1(), 刘慧琳1
收稿日期:
2022-04-01
出版日期:
2023-01-26
发布日期:
2023-02-02
作者简介:
陈晓琳,女,硕士研究生,研究方向:食品安全快速检测;E-mail: 基金资助:
CHEN Xiao-lin1(), LIU Yang-er2, XU Wen-tao2, GUO Ming-zhang1(), LIU Hui-lin1
Received:
2022-04-01
Published:
2023-01-26
Online:
2023-02-02
摘要:
合成生物学细胞传感技术为快速、现场检测食品污染物提供了一种新型替代方法。由于细胞内环境相对稳定,合成生物学细胞传感器有较强的抗干扰能力;由于细胞能够通过自我复制而实现增殖,细胞传感器在生产上具有简单、廉价、快速的特点,因此在食品安全快速检测中具有良好的应用前景。本文综述了合成生物学细胞传感器核心元件的组成、构建方法和类型,介绍了多功能细胞传感器的合成生物学基因回路,列举了细胞传感器在食品安全快速检测中的商业化应用前景,并阐述了细胞传感器在食品安全快速检测中的挑战和发展趋势。
陈晓琳, 刘洋儿, 许文涛, 郭明璋, 刘慧琳. 合成生物学细胞传感技术在食品安全快速检测中的应用[J]. 生物技术通报, 2023, 39(1): 137-149.
CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety[J]. Biotechnology Bulletin, 2023, 39(1): 137-149.
类别Type | 靶标Target | 感应元件Sensing element | 参考文献Reference |
---|---|---|---|
重金属 Heavy metals | 汞Hg | MerR | [ |
镉Cd | CadR | [ | |
砷As | ArsR | [ | |
铅Pb | PbrR | [ | |
铜Cu | CueR | [ | |
农药残留 Pesticide residues | 百草枯Paraquat | PqrR, OxyR, SoxR, FphR | [ |
杀螟虫Fenitrothion | DmpR | [ | |
对硫磷、甲基对硫磷Parathion and Methyl parathion | DmpR | [ | |
阿特拉津Atrazine | (GST) | [ | |
兽药残留 Veterinary residues | 强力霉素Doxycycline | TetR | [ |
四环素Tetracycline | TetR, tc-riboswitch | [ | |
红霉素Erythromycin | MphR | [ | |
庆大霉素Gentamicin | IcaR | [ | |
林可霉素Lincomycin | LmrA | [ | |
新霉素Novobiocin | neo-riboswitch | [ | |
土霉素Oxytetracycline | OtrR | [ | |
弗吉尼亚霉素 Virginiamycin | VarR | [ | |
杆菌肽Gramicidin | BcrR | [ | |
食品添加剂 Food additives | 苯甲酸、苯甲酸盐Benzoic acid andBenzoate | BenR | [ |
己二酸Betulonic acid | PcaR | [ | |
生物性污染 Biological pollution | 病原微生物 Pathogenic microorganisms | QscR | [ |
表1 常见靶标物质的细胞传感器感应元件
Table 1 Sensing elements in whole-cell biosensors for common target substances
类别Type | 靶标Target | 感应元件Sensing element | 参考文献Reference |
---|---|---|---|
重金属 Heavy metals | 汞Hg | MerR | [ |
镉Cd | CadR | [ | |
砷As | ArsR | [ | |
铅Pb | PbrR | [ | |
铜Cu | CueR | [ | |
农药残留 Pesticide residues | 百草枯Paraquat | PqrR, OxyR, SoxR, FphR | [ |
杀螟虫Fenitrothion | DmpR | [ | |
对硫磷、甲基对硫磷Parathion and Methyl parathion | DmpR | [ | |
阿特拉津Atrazine | (GST) | [ | |
兽药残留 Veterinary residues | 强力霉素Doxycycline | TetR | [ |
四环素Tetracycline | TetR, tc-riboswitch | [ | |
红霉素Erythromycin | MphR | [ | |
庆大霉素Gentamicin | IcaR | [ | |
林可霉素Lincomycin | LmrA | [ | |
新霉素Novobiocin | neo-riboswitch | [ | |
土霉素Oxytetracycline | OtrR | [ | |
弗吉尼亚霉素 Virginiamycin | VarR | [ | |
杆菌肽Gramicidin | BcrR | [ | |
食品添加剂 Food additives | 苯甲酸、苯甲酸盐Benzoic acid andBenzoate | BenR | [ |
己二酸Betulonic acid | PcaR | [ | |
生物性污染 Biological pollution | 病原微生物 Pathogenic microorganisms | QscR | [ |
[1] | 王硕. 食品安全快速检测技术研究动态[J]. 食品安全质量检测学报, 2014, 5(7): 1911-1912. |
Wang S. Advances in research on the rapid detection of food safety[J]. J Food Saf & Qual, 2014, 5(7): 1911-1912. | |
[2] | 李双, 韩殿鹏, 彭媛, 等. 食品安全快速检测技术研究进展[J]. 食品安全质量检测学报, 2019, 10(17): 5575-5581. |
Li S, Han DP, Peng Y, et al. Research progress of food safety rapid detection technology[J]. J Food Saf & Qual, 2019, 10(17): 5575-5581. | |
[3] | 秦伟彤, 田健, 伍宁丰. 全细胞生物传感器的设计及其在环境监测中的应用[J]. 生物技术进展, 2018, 8(5): 369-375. |
Qin WT, Tian J, Wu NF. Design of the whole-cell biosensor and its application in environmental monitoring[J]. Curr Biotechnol, 2018, 8(5): 369-375. | |
[4] | 赵国屏. 合成生物学: 开启生命科学“会聚”研究新时代[J]. 中国科学院院刊, 2018, 33(11): 1135-1149. |
Zhao GP. Synthetic biology: unsealing the convergence era of life science research[J]. Bull Chin Acad Sci, 2018, 33(11): 1135-1149. | |
[5] |
Shi SB, Choi YW, Zhao HM, et al. Discovery and engineering of a 1-butanol biosensor in Saccharomyces cerevisiae[J]. Bioresour Technol, 2017, 245(Pt B): 1343-1351.
doi: 10.1016/j.biortech.2017.06.114 URL |
[6] |
Tao HC, Peng ZW, Li PS, et al. Optimizing cadmium and mercury specificity of CadR-based E. coli biosensors by redesign of CadR[J]. Biotechnol Lett, 2013, 35(8): 1253-1258.
doi: 10.1007/s10529-013-1216-4 URL |
[7] | Mendoza JI, Soncini FC, Checa SK. Engineering of a Au-sensor to develop a Hg-specific, sensitive and robust whole-cell biosensor for on-site water monitoring[J]. Chem Commun(Camb), 2020, 56(48): 6590-6593. |
[8] |
Kasey CM, Zerrad M, Li YW, et al. Development of transcription factor-based designer macrolide biosensors for metabolic engineering and synthetic biology[J]. ACS Synth Biol, 2018, 7(1): 227-239.
doi: 10.1021/acssynbio.7b00287 pmid: 28950701 |
[9] |
d’Oelsnitz S, Kim W, Burkholder NT, et al. Using fungible biosensors to evolve improved alkaloid biosyntheses[J]. Nat Chem Biol, 2022, 18(9): 981-989.
doi: 10.1038/s41589-022-01072-w pmid: 35799063 |
[10] |
Chong HQ, Ching CB. Development of colorimetric-based whole-cell biosensor for organophosphorus compounds by engineering transcription regulator DmpR[J]. ACS Synth Biol, 2016, 5(11): 1290-1298.
pmid: 27346389 |
[11] |
Chang HJ, Mayonove P, Zavala A, et al. A modular receptor platform to expand the sensing repertoire of bacteria[J]. ACS Synth Biol, 2018, 7(1): 166-175.
doi: 10.1021/acssynbio.7b00266 URL |
[12] |
Žunar B, Mosrin C, Bénédetti H, et al. re-engineering of CUP1 promoter and Cup2/Ace1 transactivator to convert Saccharomyces cerevisiae into a whole-cell eukaryotic biosensor capable of detecting 10 nM of bioavailable copper[J]. Biosens Bioelectron, 2022, 214: 114502.
doi: 10.1016/j.bios.2022.114502 URL |
[13] |
Liu SD, Wu YN, Wang TM, et al. Maltose utilization as a novel selection strategy for continuous evolution of microbes with enhanced metabolite production[J]. ACS Synth Biol, 2017, 6(12): 2326-2338.
doi: 10.1021/acssynbio.7b00247 URL |
[14] |
Jia XQ, Ma YB, Bu RR, et al. Directed evolution of a transcription factor PbrR to improve lead selectivity and reduce zinc interference through dual selection[J]. AMB Express, 2020, 10(1): 67.
doi: 10.1186/s13568-020-01004-8 pmid: 32277291 |
[15] |
Cai S, Shen YF, Zou Y, et al. Engineering highly sensitive whole-cell mercury biosensors based on positive feedback loops from quorum-sensing systems[J]. Analyst, 2018, 143(3): 630-634.
doi: 10.1039/c7an00587c pmid: 29271434 |
[16] |
Bereza-Malcolm L, Aracic S, Kannan RB, et al. Functional characterization of Gram-negative bacteria from different genera as multiplex cadmium biosensors[J]. Biosens Bioelectron, 2017, 94: 380-387.
doi: S0956-5663(17)30180-X pmid: 28319906 |
[17] | Hu Q, Li L, Wang YJ, et al. Construction of WCB-11: a novel phiYFP arsenic-resistant whole-cell biosensor[J]. J Environ Sci(China), 2010, 22(9): 1469-1474. |
[18] | Chakraborty T, Babu G, Alam A, et al. GFP expressing bacterial biosensor to measure lead contamination in aquatic environment[J]. Curr Sci, 2008, 94(6): 800-805. |
[19] |
Chen PH, Lin C, Guo KH, et al. Development of a pigment-based whole-cell biosensor for the analysis of environmental copper[J]. RSC Adv, 2017, 7(47): 29302-29305.
doi: 10.1039/C7RA03778C URL |
[20] |
Rungrassamee W, Ryan KC, Maroney MJ, et al. The PqrR transcriptional repressor of Pseudomonas aeruginosa transduces redox signals via an iron-containing prosthetic group[J]. J Bacteriol, 2009, 191(21): 6709-6721.
doi: 10.1128/JB.00932-09 pmid: 19717597 |
[21] |
Libis V, Delépine B, Faulon JL. Expanding biosensing abilities through computer-aided design of metabolic pathways[J]. ACS Synth Biol, 2016, 5(10): 1076-1085.
pmid: 27028723 |
[22] |
Silverman AD, Akova U, Alam KK, et al. Design and optimization of a cell-free atrazine biosensor[J]. ACS Synth Biol, 2020, 9(3): 671-677.
doi: 10.1021/acssynbio.9b00388 pmid: 32078765 |
[23] |
Fracassi C, Postiglione L, Fiore G, et al. Automatic control of gene expression in mammalian cells[J]. ACS Synth Biol, 2016, 5(4): 296-302.
doi: 10.1021/acssynbio.5b00141 pmid: 26414746 |
[24] |
Krishnanathan K, Anderson SR, Billings SA, et al. A data-driven framework for identifying nonlinear dynamic models of genetic parts[J]. ACS Synth Biol, 2012, 1(8): 375-384.
doi: 10.1021/sb300009t pmid: 23651291 |
[25] |
Miyamoto T, Razavi S, DeRose R, et al. Synthesizing biomolecule-based Boolean logic gates[J]. ACS Synth Biol, 2013, 2(2): 72-82.
pmid: 23526588 |
[26] |
Stanton BC, Siciliano V, Ghodasara A, et al. Systematic transfer of prokaryotic sensors and circuits to mammalian cells[J]. ACS Synth Biol, 2014, 3(12): 880-891.
doi: 10.1021/sb5002856 pmid: 25360681 |
[27] |
Schneider C, Bronstein L, Diemer J, et al. ROC‘n’Ribo: characterizing a riboswitching expression system by modeling single-cell data[J]. ACS Synth Biol, 2017, 6(7): 1211-1224.
doi: 10.1021/acssynbio.6b00322 URL |
[28] |
Wang WS, Yang TJ, Li YH, et al. Development of a synthetic oxytetracycline-inducible expression system for streptomycetes using de novo characterized genetic parts[J]. ACS Synth Biol, 2016, 5(7): 765-773.
doi: 10.1021/acssynbio.6b00087 pmid: 27100123 |
[29] |
Namwat W, Lee CK, Kinoshita H, et al. Identification of the varR gene as a transcriptional regulator of virginiamycin S resistance in Streptomyces virginiae[J]. J Bacteriol, 2001, 183(6): 2025-2031.
pmid: 11222601 |
[30] |
Gauntlett JC, Gebhard S, Keis S, et al. Molecular analysis of BcrR, a membrane-bound bacitracin sensor and DNA-binding protein from Enterococcus faecalis[J]. J Biol Chem, 2008, 283(13): 8591-8600.
doi: 10.1074/jbc.M709503200 pmid: 18227063 |
[31] |
Silva-Rocha R, de Lorenzo V. Engineering multicellular logic in bacteria with metabolic wires[J]. ACS Synth Biol, 2014, 3(4): 204-209.
doi: 10.1021/sb400064y pmid: 23863114 |
[32] |
Dietrich JA, Shis DL, Alikhani A, et al. Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis[J]. ACS Synth Biol, 2013, 2(1): 47-58.
doi: 10.1021/sb300091d pmid: 23656325 |
[33] |
Wu Y, Wang CW, Wang D, et al. A whole-cell biosensor for point-of-care detection of waterborne bacterial pathogens[J]. ACS Synth Biol, 2021, 10(2): 333-344.
doi: 10.1021/acssynbio.0c00491 pmid: 33496568 |
[34] |
Hallberg ZF, Su YC, Kitto RZ, et al. Engineering and in vivo applications of riboswitches[J]. Annu Rev Biochem, 2017, 86: 515-539.
doi: 10.1146/annurev-biochem-060815-014628 pmid: 28375743 |
[35] |
Wang XY, Wei W, Zhao J. Using a riboswitch sensor to detect Co2+/Ni2+ transport in E. coli[J]. Front Chem, 2021, 9: 631909.
doi: 10.3389/fchem.2021.631909 URL |
[36] |
Jang S, Jang S, Im DK, et al. Artificial caprolactam-specific riboswitch as an intracellular metabolite sensor[J]. ACS Synth Biol, 2019, 8(6): 1276-1283.
doi: 10.1021/acssynbio.8b00452 pmid: 31074964 |
[37] |
Jang S, Jang S, Xiu Y, et al. Development of artificial riboswitches for monitoring of naringenin in vivo[J]. ACS Synth Biol, 2017, 6(11): 2077-2085.
doi: 10.1021/acssynbio.7b00128 URL |
[38] |
Xiu Y, Jang S, Jones JA, et al. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures[J]. Biotechnol Bioeng, 2017, 114(10): 2235-2244.
doi: 10.1002/bit.26340 pmid: 28543037 |
[39] | Villa JK, Su YC, Contreras LM, et al. Synthetic biology of small RNAs and riboswitches[J]. Microbiol Spectr, 2018, 6(3): 10.1128/microbiolspec.RWR-10.1128/microbiolspec0007-2017. |
[40] |
Gong S, Wang YL, Wang Z, et al. Computational methods for modeling aptamers and designing riboswitches[J]. Int J Mol Sci, 2017, 18(11): 2442.
doi: 10.3390/ijms18112442 URL |
[41] |
Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins[J]. Nat Methods, 2005, 2(12): 905-909.
doi: 10.1038/nmeth819 pmid: 16299475 |
[42] |
Ilgu M, Ray J, Bendickson L, et al. Light-up and FRET aptamer reporters; evaluating their applications for imaging transcription in eukaryotic cells[J]. Methods, 2016, 98: 26-33.
doi: S1046-2023(15)30178-X pmid: 26707205 |
[43] |
Song W, Strack RL, Svensen N, et al. Plug-and-play fluorophores extend the spectral properties of Spinach[J]. J Am Chem Soc, 2014, 136(4): 1198-1201.
doi: 10.1021/ja410819x pmid: 24393009 |
[44] |
Dolgosheina EV, Jeng SCY, Panchapakesan SSS, et al. RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking[J]. ACS Chem Biol, 2014, 9(10): 2412-2420.
doi: 10.1021/cb500499x pmid: 25101481 |
[45] |
Filonov GS, Moon JD, Svensen N, et al. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution[J]. J Am Chem Soc, 2014, 136(46): 16299-16308.
doi: 10.1021/ja508478x pmid: 25337688 |
[46] |
Yoshida K, Yoshioka D, Inoue K, et al. Evaluation of colors in green mutants isolated from purple bacteria as a host for colorimetric whole-cell biosensors[J]. Appl Microbiol Biotechnol, 2007, 76(5): 1043-1050.
pmid: 17609942 |
[47] |
Lagunas-Muñoz VH, Cabrera-Valladares N, Bolívar F, et al. Optimum melanin production using recombinant Escherichia coli[J]. J Appl Microbiol, 2006, 101(5): 1002-1008.
pmid: 17040223 |
[48] |
Poulter S, Carlton TM, Su XB, et al. Engineering of new prodigiosin-based biosensors of Serratia for facile detection of short-chain N-acyl homoserine lactone quorum-sensing molecules[J]. Environ Microbiol Rep, 2010, 2(2): 322-328.
doi: 10.1111/j.1758-2229.2010.00140.x URL |
[49] |
Watstein DM, Styczynski MP. Development of a pigment-based whole-cell zinc biosensor for human serum[J]. ACS Synth Biol, 2018, 7(1): 267-275.
doi: 10.1021/acssynbio.7b00292 pmid: 29202581 |
[50] |
Hui CY, Guo Y, Gao CX, et al. A tailored indigoidine-based whole-cell biosensor for detecting toxic cadmium in environmental water samples[J]. Environ Technol Innov, 2022, 27: 102511.
doi: 10.1016/j.eti.2022.102511 URL |
[51] |
Schulz S, Dickschat JS. Bacterial volatiles: the smell of small organisms[J]. Nat Prod Rep, 2007, 24(4): 814-842.
doi: 10.1039/b507392h pmid: 17653361 |
[52] |
Liu YE, Guo MZ, Du RX, et al. A gas reporting whole-cell microbial biosensor system for rapid on-site detection of mercury contamination in soils[J]. Biosens Bioelectron, 2020, 170: 112660.
doi: 10.1016/j.bios.2020.112660 URL |
[53] |
Cheng HY, Masiello CA, del Valle I, et al. Ratiometric gas reporting: a nondisruptive approach to monitor gene expression in soils[J]. ACS Synth Biol, 2018, 7(3): 903-911.
doi: 10.1021/acssynbio.7b00405 URL |
[54] |
Kolinko I, Lohße A, Borg S, et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters[J]. Nat Nanotechnol, 2014, 9(3): 193-197.
doi: 10.1038/nnano.2014.13 pmid: 24561353 |
[55] |
DeAngelis KM, Ji PS, Firestone MK, et al. Two novel bacterial biosensors for detection of nitrate availability in the rhizosphere[J]. Appl Environ Microbiol, 2005, 71(12): 8537-8547.
doi: 10.1128/AEM.71.12.8537-8547.2005 URL |
[56] |
DeAngelis KM, Firestone MK, Lindow SE. Sensitive whole-cell biosensor suitable for detecting a variety of N-acyl homoserine lactones in intact rhizosphere microbial communities[J]. Appl Environ Microbiol, 2007, 73(11): 3724-3727.
doi: 10.1128/AEM.02187-06 URL |
[57] |
Tay PKR, Nguyen PQ, Joshi NS. A synthetic circuit for mercury bioremediation using self-assembling functional amyloids[J]. ACS Synth Biol, 2017, 6(10): 1841-1850.
doi: 10.1021/acssynbio.7b00137 pmid: 28737385 |
[58] |
Karig D, Weiss R. Signal-amplifying genetic circuit enables in vivo observation of weak promoter activation in the Rhl quorum sensing system[J]. Biotechnol Bioeng, 2005, 89(6): 709-718.
doi: 10.1002/bit.20371 URL |
[59] |
Sayut DJ, Niu Y, Sun LH. Construction and engineering of positive feedback loops[J]. ACS Chem Biol, 2006, 1(11): 692-696.
pmid: 17184133 |
[60] |
Goodson MS, Bennett AC, Jennewine BR, et al. Amplifying riboswitch signal output using cellular wiring[J]. ACS Synth Biol, 2017, 6(8): 1440-1444.
doi: 10.1021/acssynbio.6b00191 pmid: 28430408 |
[61] |
Dwidar M, Yokobayashi Y. Riboswitch signal amplification by controlling plasmid copy number[J]. ACS Synth Biol, 2019, 8(2): 245-250.
doi: 10.1021/acssynbio.8b00454 pmid: 30682247 |
[62] |
Wan XY, Volpetti F, Petrova E, et al. Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals[J]. Nat Chem Biol, 2019, 15(5): 540-548.
doi: 10.1038/s41589-019-0244-3 pmid: 30911179 |
[63] |
Green AA, Kim J, Ma D, et al. Complex cellular logic computation using ribocomputing devices[J]. Nature, 2017, 548(7665): 117-121.
doi: 10.1038/nature23271 URL |
[64] |
Yang L, Nielsen AAK, Fernandez-Rodriguez J, et al. Permanent genetic memory with >1-byte capacity[J]. Nat Methods, 2014, 11(12): 1261-1266.
doi: 10.1038/nmeth.3147 pmid: 25344638 |
[65] |
Moon TS, Lou CB, Tamsir A, et al. Genetic programs constructed from layered logic gates in single cells[J]. Nature, 2012, 491(7423): 249-253.
doi: 10.1038/nature11516 URL |
[66] |
Alam KK, Tawiah KD, Lichte MF, et al. A fluorescent split aptamer for visualizing RNA-RNA assembly in vivo[J]. ACS Synth Biol, 2017, 6(9): 1710-1721.
doi: 10.1021/acssynbio.7b00059 URL |
[67] |
Kotula JW, Kerns SJ, Shaket LA, et al. Programmable bacteria detect and record an environmental signal in the mammalian gut[J]. PNAS, 2014, 111(13): 4838-4843.
doi: 10.1073/pnas.1321321111 pmid: 24639514 |
[68] |
Vickers CE. The minimal genome comes of age[J]. Nat Biotechnol, 2016, 34(6): 623-624.
doi: 10.1038/nbt.3593 pmid: 27281422 |
[69] |
Liu PL, Huang QY, Chen WL. Construction and application of a zinc-specific biosensor for assessing the immobilization and bioavailability of zinc in different soils[J]. Environ Pollut, 2012, 164: 66-72.
doi: 10.1016/j.envpol.2012.01.023 pmid: 22336732 |
[70] |
Hay AG, Rice JF, Applegate BM, et al. A bioluminescent whole-cell reporter for detection of 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol in soil[J]. Appl Environ Microbiol, 2000, 66(10): 4589-4594.
doi: 10.1128/AEM.66.10.4589-4594.2000 URL |
[71] |
Liu C, Zhang B, Liu YM, et al. New intracellular shikimic acid biosensor for monitoring shikimate synthesis in Corynebacterium glutamicum[J]. ACS Synth Biol, 2018, 7(2): 591-601.
doi: 10.1021/acssynbio.7b00339 URL |
[72] |
Cui SX, Lv XQ, Wu YK, et al. Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis[J]. ACS Synth Biol, 2019, 8(8): 1826-1837.
doi: 10.1021/acssynbio.9b00140 URL |
[73] |
Wang RF, Cress BF, Yang Z, et al. Design and characterization of biosensors for the screening of modular assembled naringenin biosynthetic library in Saccharomyces cerevisiae[J]. ACS Synth Biol, 2019, 8(9): 2121-2130.
doi: 10.1021/acssynbio.9b00212 URL |
[74] | Zhang LY, Guo W, Lu Y. Advances in cell-free biosensors: principle, mechanism, and applications[J]. Biotechnol J, 2020, 15(9): e2000187. |
[75] |
Pardee K, Green AA, Takahashi MK, et al. Rapid, low-cost detection of zika virus using programmable biomolecular components[J]. Cell, 2016, 165(5): 1255-1266.
doi: S0092-8674(16)30505-0 pmid: 27160350 |
[76] |
Polat EO, Cetin MM, Tabak AF, et al. Transducer technologies for biosensors and their wearable applications[J]. Biosensors, 2022, 12(6): 385.
doi: 10.3390/bios12060385 URL |
[77] |
Guo MZ, Wang JL, Du RX, et al. A test strip platform based on a whole-cell microbial biosensor for simultaneous on-site detection of total inorganic mercury pollutants in cosmetics without the need for predigestion[J]. Biosens Bioelectron, 2020, 150: 111899.
doi: 10.1016/j.bios.2019.111899 URL |
[78] |
Nguyen PQ, Soenksen LR, Donghia NM, et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection[J]. Nat Biotechnol, 2021, 39(11): 1366-1374.
doi: 10.1038/s41587-021-00950-3 pmid: 34183860 |
[1] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[2] | 王晓梅, 杨小薇, 李辉尚, 何微, 辛竹琳. 全球合成生物学发展现状及对我国的启示[J]. 生物技术通报, 2023, 39(2): 292-302. |
[3] | 周琳, 梁轩铭, 赵磊. 天然类胡萝卜素的生物合成研究进展[J]. 生物技术通报, 2022, 38(7): 119-127. |
[4] | 郭晓真, 张学福. 植物合成生物学领域发展态势的文献计量分析[J]. 生物技术通报, 2022, 38(2): 289-296. |
[5] | 张雅涵, 朱丽霞, 胡静, 朱亚静, 张雪婧, 曹叶中. 草甘膦在我国生物育种产业化应用中的机遇与挑战[J]. 生物技术通报, 2022, 38(11): 1-9. |
[6] | 赵玉雪, 王芸, 余璐瑶, 刘京晶, 斯金平, 张新凤, 张磊. 植物中C-糖基转移酶的结构与应用[J]. 生物技术通报, 2022, 38(10): 18-28. |
[7] | 叶敏, 高教琪, 周雍进. 非常规酵母细胞工厂合成天然产物[J]. 生物技术通报, 2021, 37(8): 12-24. |
[8] | 付志强, 熊艳. 便携式生物光学传感器的研究进展[J]. 生物技术通报, 2021, 37(3): 219-226. |
[9] | 李信申, 黄小梅, 吴淑秀, 黄瑞荣, 魏林根, 华菊玲. 植物青枯病菌环介导等温扩增快速检测技术研究[J]. 生物技术通报, 2021, 37(1): 272-281. |
[10] | 赵颖, 王楠, 陆安祥, 冯晓元, 郭晓军, 栾云霞. 核酸适配体侧流层析分析技术在真菌毒素检测中的应用[J]. 生物技术通报, 2020, 36(8): 217-227. |
[11] | 叶健文, 陈江楠, 张旭, 吴赴清, 陈国强. 动态调控:一种高效的细胞工厂工程化代谢改造策略[J]. 生物技术通报, 2020, 36(6): 1-12. |
[12] | 常瀚文, 郑鑫铃, 骆健美, 王敏, 申雁冰. 抗逆元件及其在高效微生物细胞工厂构建中的应用进展[J]. 生物技术通报, 2020, 36(6): 13-34. |
[13] | 高威芳, 章礼平, 朱鹏. 等温扩增技术及其结合CRISPR在微生物快速检测中的研究进展[J]. 生物技术通报, 2020, 36(5): 22-31. |
[14] | 张慧, 田方方, 吴毅. 合成型酵母基因组重排技术[J]. 生物技术通报, 2020, 36(4): 13-18. |
[15] | 曹燕亭, 刘延峰, 李江华, 刘龙, 堵国成. 基于细胞亚群调控提升生物合成效率的研究进展[J]. 生物技术通报, 2020, 36(4): 19-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||