生物技术通报 ›› 2021, Vol. 37 ›› Issue (12): 198-204.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0317
收稿日期:
2021-03-17
出版日期:
2021-12-26
发布日期:
2022-01-19
作者简介:
李雪,女,硕士,研究方向:医药生物学;E-mail: 基金资助:
LI Xue(), LI Jun-min, ZHANG Lei, LI Shan(
)
Received:
2021-03-17
Published:
2021-12-26
Online:
2022-01-19
摘要:
细胞穿膜肽由于存在靶细胞摄取效率低等问题,使其在药物递送载体领域的应用受到限制。本研究用基因工程手段将穿膜肽M918与靶向HER2的单链抗体偶联,通过大肠杆菌表达系统和镍亲和层析表达并纯化了重组蛋白M918-scFv。利用微量热泳动技术检测重组蛋白M918-scFv与HER2抗原的亲和能力;利用激光共聚焦显微镜和流式细胞仪检测重组蛋白的内吞效率。实验结果表明亲和层析获得的重组蛋白M918-scFv纯度较高,偶联M918,不会改变scFv与抗原的亲和能力。在HER2阳性细胞中,重组蛋白M918-scFv的内吞效率是scFv的1.8倍,说明重组蛋白M918-scFv发挥了穿膜肽M918的穿膜特性,表现出更高的内吞效率。穿膜肽M918偶联scFv既表现出穿膜肽的穿膜特性又兼具了scFv的靶向性,提供了一种新的靶向递送的策略。
李雪, 李俊敏, 张雷, 李杉. 细胞穿膜肽M918偶联抗体的表达纯化及其内吞效率研究[J]. 生物技术通报, 2021, 37(12): 198-204.
LI Xue, LI Jun-min, ZHANG Lei, LI Shan. Expression and Purification of Cell-penetrating Peptide M918 Conjugate Antibody and Study on Its Uptake Efficiency[J]. Biotechnology Bulletin, 2021, 37(12): 198-204.
Primer | Sequence(5'-3') |
---|---|
F1 | TGTCATATGATGGTGACCGTGCTGTTC |
F2 | CGGCGGGGGAGGATCTGAGCTCGCATGCGCTTGTG- GAGGAGGAGGATCTG |
R1 | CTGATCCTCCTCCTCCACAAGCGCATGCGAGCTCA- GATCCTCCCCCGCCG |
R2 | TGCAAGCTTTTTGTAGAGCTCATCCATGCCATG |
表1 扩增M918-scFv基因片段所需引物
Table 1 Primers used to amplify M918-scFv
Primer | Sequence(5'-3') |
---|---|
F1 | TGTCATATGATGGTGACCGTGCTGTTC |
F2 | CGGCGGGGGAGGATCTGAGCTCGCATGCGCTTGTG- GAGGAGGAGGATCTG |
R1 | CTGATCCTCCTCCTCCACAAGCGCATGCGAGCTCA- GATCCTCCCCCGCCG |
R2 | TGCAAGCTTTTTGTAGAGCTCATCCATGCCATG |
图1 重组质粒PET-28b-M918-scFv-EGFP的构建 A:Overlap PCR扩增目的基因片段,1:目的基因M918-scFv-EGFP;M:DNA marker;B:菌落PCR筛选阳性克隆,1-6:转化目的基因的大肠杆菌DH5α菌落;M:DNA marker;C:PET-28b-M918-scFv-EGFP的质粒图谱
Fig.1 Construction of recombinant plasmid PET-28b-M918-scFv-EGFP A:Overlap PCR amplified target gene fragment. 1:Target gene M918-scFv-EGFP. M:DNA marker. B:Screening positive clone via colony PCR. 1-6:E. coli DH5α colonies transformed with target gene. M:DNA marker. C:Plasmid profile of PET-28b-M918-scFv
图2 重组蛋白M918-scFv-EGFP的纯化 A:不同浓度IPTG诱导重组蛋白M918-scFv表达的Western Blot分析,1:未诱导全液;M:蛋白marker;B:SDS-PAGE检测纯化的蛋白,1:纯化前样品;2:穿过液;3:10% Buffer B洗脱;4:20% Buffer B洗脱;5:40% Buffer B洗脱;6:60% Buffer B洗脱;7-8:100% Buffer B洗脱;M:蛋白marker
Fig.2 Purification of recombinant protein M918-scFv A:Western Blot analysis of recombinant protein M918-scFv induced by different IPTG concentrations. 1:Un-induced M918-scFv sample. M:Protein marker. B:Detected and purified protein via SDS-PAGE. 1:Sample before purification. 2:Sample passing through the column. 3:10% Buffer B elution. 4:20% Buffer B elution. 5:40% Buffer B elution. 6:60% Buffer B elution. 7-8:100% Buffer B elution. M:Protein marker
图3 Western Blot鉴定纯化后的重组蛋白M918-scF 1:纯化后的重组蛋白M918-scFv;M:蛋白marker
Fig.3 Identification of the purified recombinant protein M918-scFv by Western Blot 1:Purified recombinant protein M918-scFv. M:Protein marker
图5 流式细胞仪检测scFv、M918-scFv在不同细胞系中的内吞效率 A:scFv、M918-scFv与SK-BR-3细胞结合时的水平;B:scFv、M918-scFv与BT474细胞结合时的水平;C:scFv、M918-scFv与MCF-7细胞结合时的水平,红色:空白对照;橘色:4℃处理时,细胞表面的MFI;蓝色:37℃处理时,细胞表面的MFI;D:定量分析scFv、M918-scFv在SK-BR-3(a)和BT474(b)细胞系中的内吞效率,***P < 0.001,**P < 0.01
Fig.5 Uptake studies of scFv and M918-scFv into different cell lines detected by flow cytometry A:Level of scFv,M918-scFv binding to SK-BR-3. B:Level of scFv,M918-scFv binding to BT474. C:Level of scFv,M918-scFv binding to MCF-7. Red:Control. Orange:MFI at 4℃. Blue:MFI at 37℃. D:Quantification of the uptake ratios of scFv and M918-scFv in SK-BR-3(a)and BT474(b),***P < 0.001,**P < 0.01
图6 激光共聚焦显微镜观察scFv、M918-scFv在SK-BR-3(A)、BT474(B)、MCF-7(C)中的内吞 蓝色:经Hoechst 33342染色的细胞核;绿色:重组蛋白;比例尺:20 µm
Fig.6 Uptake studies of scFv,M918-scFv into SK-BR-3(A),BT474(B) and MCF-7(C)cells observed by confocal laser scanning microscopy Blue:Nucleus stained with Hoechst 33342. Green:Recombinant protein. Scale bars:20 µm
[1] |
Derakhshankhah H, Jafari S. Cell penetrating peptides:a concise review with emphasis on biomedical applications[J]. Biomed Pharmacother, 2018, 108:1090-1096.
doi: S0753-3322(18)34018-6 pmid: 30372809 |
[2] |
Milletti F. Cell-penetrating peptides:classes, origin, and current landscape[J]. Drug Discov Today, 2012, 17(15/16):850-860.
doi: 10.1016/j.drudis.2012.03.002 URL |
[3] |
Lin Y, Chen Z, Hu C, et al. Recent progress in antitumor functions of the intracellular antibodies[J]. Drug Discov Today, 2020, 25(6):1109-1120.
doi: 10.1016/j.drudis.2020.02.009 URL |
[4] | 谢洋洋, 王邵娟, 袁权, 等. 细胞穿膜肽研究应用的新进展[J]. 生物工程学报, 2019, 35(7):1162-1173. |
Xie YY, Wang SJ, Yuan Q, et al. Advances in the research and application of cell penetrating peptides[J]. Chin J Biotechnol, 2019, 35(7):1162-1173. | |
[5] |
Rostami B, Irani S, Bolhassani A, et al. M918:a novel cell penetrating peptide for effective delivery of HIV-1 nef and Hsp20-nef proteins into eukaryotic cell lines[J]. Curr HIV Res, 2018, 16(4):280-287.
doi: 10.2174/1570162X17666181206111859 URL |
[6] |
El-Andaloussi S, Johansson HJ, Holm T, et al. A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids[J]. Mol Ther, 2007, 15(10):1820-1826.
pmid: 17622242 |
[7] |
Nguyen PV, Hervé-Aubert K, David S, et al. Targeted nanomedicine with anti-EGFR scFv for siRNA delivery into triple negative breast cancer cells[J]. Eur J Pharm Biopharm, 2020, 157:74-84.
doi: 10.1016/j.ejpb.2020.10.004 pmid: 33059006 |
[8] |
Niesner U, Halin C, Lozzi L, et al. Quantitation of the tumor-targeting properties of antibody fragments conjugated to cell-permeating HIV-1 TAT peptides[J]. Bioconjug Chem, 2002, 13(4):729-736.
doi: 10.1021/bc025517+ URL |
[9] |
Li ZH, Zhang Q, Wang HB, et al. Preclinical studies of targeted therapies for CD20-positive B lymphoid malignancies by Ofatumumab conjugated with auristatin[J]. Invest New Drugs, 2014, 32(1):75-86.
doi: 10.1007/s10637-013-9995-y URL |
[10] | 唐煜, 王相阳, 马晓慧, 等. 抗体偶联药物内吞作用机制的研究进展[J]. 中国新药杂志, 2017, 26(10):1130-1136. |
Tang Y, Wang XY, Ma XH, et al. Progress on internalization study of antibody-drug conjugates[J]. Chin J New Drugs, 2017, 26(10):1130-1136. | |
[11] | 周华华, 董坚. 细胞穿膜肽的研究进展与前景展望[J]. 西部医学, 2012, 24(7):1410-1411, 1414. |
Zhou HH, Dong J. Research progress and prospect of cell-penetrating peptides[J]. Med J West China, 2012, 24(7):1410-1411, 1414. | |
[12] | 张裕丰, 谢梦佳, 周舒蕾, 等. 细胞穿膜肽在肿瘤靶向治疗及疾病诊断中的应用[J]. 中国生物工程杂志, 2019, 39(6):48-54. |
Zhang YF, Xie MJ, Zhou SL, et al. Application of cell-penetrating peptides in tumor targeted therapy and disease diagnosis[J]. China Biotechnol, 2019, 39(6):48-54. | |
[13] |
Packer D. The history of the antibody as a tool[J]. Acta Histochem, 2021, 123(4):151710.
doi: 10.1016/j.acthis.2021.151710 pmid: 33721607 |
[14] |
Crivianu-Gaita V, Thompson M. Aptamers, antibody scFv, and antibody Fab’ fragments:an overview and comparison of three of the most versatile biosensor biorecognition elements[J]. Biosens Bioelectron, 2016, 85:32-45.
doi: S0956-5663(16)30369-4 pmid: 27155114 |
[15] |
Malpiedi LP, Díaz CA, Nerli BB, et al. Single-chain antibody fragments:Purification methodologies[J]. Process Biochem, 2013, 48(8):1242-1251.
doi: 10.1016/j.procbio.2013.06.008 URL |
[16] | Bolhassani A, Jafarzade BS, Mardani G. In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides[J]. Peptides:N Y, 2017, 87:50-63. |
[1] | 胡祖权, 李和平, 吴平, 廖玉才, 张静柏. 抗镰刀菌单链抗体在大肠杆菌中可溶性表达条件的研究[J]. 生物技术通报, 2015, 31(9): 238-243. |
[2] | 刘秀侠,杨雄,陈红英. 单链抗体2F5和4E10的原核表达、纯化和鉴定[J]. 生物技术通报, 2013, 0(10): 177-183. |
[3] | 代鹏;周广青;马军武;. 单链抗体的表达[J]. , 2011, 0(10): 60-65. |
[4] | 符勇耀;李正国;李泮志;邓伟;杨迎伍;王中康;. 优化重叠PCR法进行单链抗体基因扩增和点突变[J]. , 2009, 0(07): 150-155. |
[5] | 秦春圃;. 赤霉病菌特异抗体-防御素融合蛋白的表达和功能鉴定[J]. , 2008, 0(02): 10-10. |
[6] | 汪开. 利用植物生产可用于检测人血中艾滋病毒的体外诊断试剂[J]. , 2003, 0(05): 26-26. |
[7] | 汪开治. 利用重组共生细菌防治粘膜白念珠菌病[J]. , 2002, 0(01): 51-51. |
[8] | . 文摘[J]. , 2002, 0(01): 55-56. |
[9] | . 动物细胞培养及单克隆抗体[J]. , 1996, 0(04): 54-59. |
[10] | . 动物细胞培养及单克隆抗体[J]. , 1995, 0(01): 65-73. |
[11] | . 动物细胞培养及单克隆抗体[J]. , 1994, 0(03): 61-66. |
[12] | 李思经;. Genex生产重组单链抗体结合蛋白[J]. , 1989, 0(06): 20-21. |
[13] | 马亚敏;. Genex公司宣布一种新的抗体设计[J]. , 1987, 0(06): 6-6. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 212
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 448
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||