生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 145-159.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0151
田姗姗1,2(), 黄诗宇2, 杨天为1,2, 高曼熔1,2, 张尚文2(
), 何龙飞1, 张向军2, 李婷2, 石前2
收稿日期:
2024-02-11
出版日期:
2024-12-26
发布日期:
2025-01-15
通讯作者:
张尚文,男,硕士,副研究员,研究方向:特色药用植物种质资源开发与遗传改良;E-mail: 63838114@qq.com作者简介:
田姗姗,女,硕士研究生,研究方向:作物遗传育种;E-mail: 2637389679@qq.com基金资助:
TIAN Shan-shan1,2(), HUANG Shi-yu2, YANG Tian-wei1,2, GAO Man-rong1,2, ZHANG Shang-wen2(
), HE Long-fei1, ZHANG Xiang-jun2, LI Ting2, SHI Qian2
Received:
2024-02-11
Published:
2024-12-26
Online:
2025-01-15
摘要:
【目的】研究铁皮石斛Dendrobium catenatum MYB(DcMYB)基因转录因子家族成员的结构和功能,鉴定参与高温干旱复合胁迫的主要成员及其表达模式,为今后研究铁皮石斛适应逆境胁迫的生理机制提供参考。【方法】基于铁皮石斛的全基因组与高温干旱复合胁迫处理后的转录组数据,筛选出响应高温干旱复合逆境的关键MYB转录因子,利用生物信息学方法进行分析和鉴定,实时荧光定量PCR分析在不同胁迫处理下的表达模式。【结果】鉴定出38个DcMYBs基因,可分为1R-MYB、R2R3-MYB和3R-MYB三种类型,其中R2R3-MYB占比89%;DcMYBs蛋白长为203-581aa,热稳定性佳,多具亲水性;亚细胞定位预测显示均存在于细胞核中,部分并存于其他细胞器;MEME分析揭示同亚组的MYB基因具有相似的结构特征;DcMYBs进化发育后将其分为19个亚组(D1-D19);顺式作用元件预测结果表明DcMYBs参与生物、非生物胁迫与激素诱导,DcMYB6、DcMYB15、DcMYB16、DcMYB21、DcMYB23、DcMYB35均含有干旱响应元件MBS,DcMYB6、DcMYB35还具有4个ABA响应元件ABRE;在高温干旱复合胁迫下,R2R3-MYB亚家族基因被显著诱导,关键基因的RT-qPCR验证与转录组数据一致,DcMYB6、DcMYB35在胁迫下上调,DcMYB15、DcMYB16、DcMYB21、DcMYB23下调;外源脱落酸和20% PEG6000处理具有干旱响应元件MBS基因结果显示在处理后都呈现先上升后下降的趋势,这6个基因可能参与ABA信号途径与干旱胁迫的响应。【结论】逆境胁迫下从铁皮石斛中鉴定出38个DcMYBs基因,R2R3-MYB为主要类型,编码蛋白均具有良好的热稳定性和亲水性且预测主要定位于细胞核;DcMYBs基因与拟南芥MYB具有较高的同源性;特定基因被干旱和外源脱落酸显著诱导,其可能参与生物、非生物胁迫与激素诱导,在铁皮石斛逆境生长发育中发挥重要作用。
田姗姗, 黄诗宇, 杨天为, 高曼熔, 张尚文, 何龙飞, 张向军, 李婷, 石前. 高温干旱复合胁迫下铁皮石斛MYB基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(12): 145-159.
TIAN Shan-shan, HUANG Shi-yu, YANG Tian-wei, GAO Man-rong, ZHANG Shang-wen, HE Long-fei, ZHANG Xiang-jun, LI Ting, SHI Qian. Identification and Expression Analysis of MYB Gene Family in Dendrobium catenatum Under the Combined Stress of High Temperature and Drought[J]. Biotechnology Bulletin, 2024, 40(12): 145-159.
引物名字Primer name | 引物序列F Primer sequence F(5'-3') | 引物序列R Primer sequence R(5'-3') |
---|---|---|
DcMYB6 | GCTCCTCAACCCAATGCTCT | TGCAGGAGATTTGAGGCGAA |
DcMYB15 | AAGCAGAAGCTAAGGAAAGGCT | TGCTGTGAAAATGTGCCTCT |
DcMYB16 | GCCGAACACAGGCACATCTA | GCACTCGGACTCGAACATGA |
DcMYB23 | ATGGTCTTTGATAGCGGCGA | CTTGTTGCTCGTGGAGTGGA |
DcMYB24 | AGCCATGAGATGTGGGAGGA | TGAAGGTAGGGGAAGAAGGCT |
DcMYB35 | CCGAGCTGGCAAGAAGAAGA | GCCAAACGACTGACTGAGGA |
18S rRNA | CAAGCCCACGCTCTGGATAATTAG | ATGCTTTCGCAGTGGTTCTCTTTC |
表1 引物序列
Table 1 primer sequences
引物名字Primer name | 引物序列F Primer sequence F(5'-3') | 引物序列R Primer sequence R(5'-3') |
---|---|---|
DcMYB6 | GCTCCTCAACCCAATGCTCT | TGCAGGAGATTTGAGGCGAA |
DcMYB15 | AAGCAGAAGCTAAGGAAAGGCT | TGCTGTGAAAATGTGCCTCT |
DcMYB16 | GCCGAACACAGGCACATCTA | GCACTCGGACTCGAACATGA |
DcMYB23 | ATGGTCTTTGATAGCGGCGA | CTTGTTGCTCGTGGAGTGGA |
DcMYB24 | AGCCATGAGATGTGGGAGGA | TGAAGGTAGGGGAAGAAGGCT |
DcMYB35 | CCGAGCTGGCAAGAAGAAGA | GCCAAACGACTGACTGAGGA |
18S rRNA | CAAGCCCACGCTCTGGATAATTAG | ATGCTTTCGCAGTGGTTCTCTTTC |
基因ID Gene ID | 基因名 Gene name | MYB类型 MYB symbol | 氨基酸数 Number of amino acids | 理论分子量Molecular weight/Da | 等电点 Point isoelectric | 不稳定指数Instability index | 脂肪族氨基酸指数Aliphatic index | 亲水度 Average of hydropathicity | 亚细胞定位预测Prediction of subcellularlocalization |
---|---|---|---|---|---|---|---|---|---|
LOC110097606 | DcMYB1 | 3R-MYB | 581 | 64501.81 | 8.88 | 63.81 | 71.86 | -0.605 | nucl: 14 |
LOC110098032 | DcMYB2 | 2R3R-MYB | 203 | 23543.65 | 7.68 | 57.57 | 68.28 | -0.865 | nucl: 14 |
LOC110101288 | DcMYB3 | 2R3R-MYB | 247 | 28192.25 | 4.93 | 56.44 | 60.49 | -0.809 | nucl: 14 |
LOC110114505 | DcMYB4 | 2R3R-MYB | 526 | 57624.91 | 5 | 53.08 | 66.2 | -0.621 | Nucler: 13, pero: 1 |
LOC110115927 | DcMYB5 | 2R3R-MYB | 340 | 38337.7 | 7.64 | 54.12 | 84.62 | -0.481 | nucl: 14 |
LOC110098979 | DcMYB6 | 2R3R-MYB | 336 | 38188.52 | 5.38 | 45.77 | 75.15 | -0.652 | nucl: 14 |
LOC110114551 | DcMYB7 | 2R3R-MYB | 314 | 35140.56 | 6.47 | 53.83 | 70.19 | -0.665 | nucl: 13, pero: 1 |
LOC110103484 | DcMYB8 | 1R-MYB, ZnF | 221 | 24557.44 | 9.94 | 49.5 | 61.76 | -0.714 | nucl: 5, chlo: 4, mito: 3, plas: 1, cysk: 1 |
LOC110105838 | DcMYB9 | 2R3R-MYB | 287 | 32412.67 | 5.99 | 56.18 | 74.84 | -0.589 | nucl: 14 |
LOC110094774 | DcMYB10 | 2R3R-MYB | 275 | 30978.88 | 6.37 | 55.97 | 65.27 | -0.672 | nucl: 14 |
LOC110111576 | DcMYB11 | 2R3R-MYB | 243 | 27921.06 | 8.94 | 58.35 | 56.58 | -0.875 | nucl: 14 |
LOC110112067 | DcMYB12 | 2R3R-MYB | 231 | 26786.37 | 9.67 | 60.98 | 63.77 | -0.805 | nucl: 14 |
LOC110109430 | DcMYB13 | 2R3R-MYB | 238 | 26549.02 | 8.28 | 55.86 | 71.39 | -0.513 | nucl: 13, cyto: 1 |
LOC110111434 | DcMYB14 | 2R3R-MYB | 213 | 24546.74 | 9.86 | 49.62 | 63.19 | -0.8 | nucl: 14 |
LOC110115321 | DcMYB15 | 2R3R-MYB | 409 | 45603.97 | 7.21 | 68.2 | 68.66 | -0.633 | nucl: 14 |
LOC110113344 | DcMYB16 | 2R3R-MYB | 316 | 35293.45 | 5.46 | 45.84 | 67.25 | -0.591 | nucl: 14 |
LOC110104025 | DcMYB17 | 2R3R-MYB | 327 | 37236.83 | 8.92 | 56.94 | 67.13 | -0.654 | nucl: 14 |
LOC110102853 | DcMYB18 | 1R-MYB, ZnF | 316 | 34892.05 | 6.81 | 63 | 63.96 | -0.652 | chlo: 6, mito: 5, nucl: 2, cysk: 1 |
LOC110099916 | DcMYB19 | 2R3R-MYB | 291 | 33548.13 | 9.07 | 62.25 | 75.05 | -0.69 | nucl: 14 |
LOC110108743 | DcMYB20 | 2R3R-MYB | 216 | 24044.51 | 9.29 | 54.61 | 73.7 | -0.667 | nucl: 14 |
LOC110113232 | DcMYB21 | 2R3R-MYB | 409 | 45585.94 | 7.21 | 68.2 | 69.61 | -0.627 | nucl: 14 |
LOC110109300 | DcMYB22 | 2R3R-MYB | 361 | 39400.05 | 6.76 | 62.16 | 63.88 | -0.67 | nucl: 14 |
LOC110112867 | DcMYB23 | 2R3R-MYB | 251 | 28687.7 | 8.68 | 72.15 | 69.96 | -0.795 | nucl: 14 |
LOC110111024 | DcMYB24 | 2R3R-MYB | 326 | 37055.28 | 5.23 | 56.37 | 70.31 | -0.664 | nucl: 14 |
LOC110107869 | DcMYB25 | 2R3R-MYB | 347 | 38031.44 | 6.1 | 54.8 | 62.8 | -0.663 | nucl: 14 |
LOC110115620 | DcMYB26 | 2R3R-MYB | 370 | 40224.06 | 6.34 | 68.96 | 65.19 | -0.525 | nucl: 14 |
LOC110094240 | DcMYB27 | 2R3R-MYB | 292 | 32526.71 | 6.16 | 48.86 | 74.55 | -0.451 | nucl:13,pero: 1 |
LOC110094080 | DcMYB28 | 2R3R-MYB | 312 | 35182.39 | 7.01 | 58.72 | 70.67 | -0.746 | nucl: 14 |
LOC110105411 | DcMYB29 | 2R3R-MYB | 286 | 32205.26 | 5.38 | 57.37 | 79.51 | -0.657 | nucl: 13, cyto: 1 |
LOC110095044 | DcMYB30 | 2R3R-MYB | 242 | 28182.63 | 6.34 | 52.67 | 66.12 | -0.776 | nucl: 14 |
LOC110113544 | DcMYB31 | 2R3R-MYB | 272 | 31107.96 | 6.11 | 59.23 | 72.76 | -0.626 | nucl: 14 |
LOC110113885 | DcMYB32 | 1R-MYB,H15 | 275 | 30415.83 | 9.42 | 51.22 | 69.31 | -0.687 | nucl: 14 |
LOC110112113 | DcMYB33 | 2R3R-MYB | 298 | 33583.52 | 6.61 | 46.48 | 66.44 | -0.737 | nucl: 14 |
LOC110107882 | DcMYB34 | 2R3R-MYB | 348 | 38967.19 | 7.37 | 60.89 | 56.72 | -0.735 | nucl:13.5, cyto_nucl: 7.5 |
LOC110099272 | DcMYB35 | 2R3R-MYB | 280 | 31255.11 | 6.09 | 58.79 | 72.89 | -0.59 | nucl: 13, pero: 1 |
LOC110103760 | DcMYB36 | 2R3R-MYB | 257 | 29168.99 | 6.75 | 52.42 | 83.07 | -0.535 | nucl: 9.5, cyto_nucl: 5.5, mito: 2,plas:1.5, golg_plas: 1.5 |
LOC110107293 | DcMYB37 | 2R3R-MYB | 235 | 27563.73 | 6.38 | 74.32 | 61.4 | -0.989 | nucl: 14 |
LOC110093341 | DcMYB38 | 2R3R-MYB | 373 | 41852.49 | 5.87 | 57.95 | 67.24 | -0.8 | nucl: 14 |
表2 DcMYB转录因子的蛋白理化性质分析及细胞定位预测
Table 2 Analysis of protein physicochemical properties of Dc MYB transcription factors and cellular localization prediction
基因ID Gene ID | 基因名 Gene name | MYB类型 MYB symbol | 氨基酸数 Number of amino acids | 理论分子量Molecular weight/Da | 等电点 Point isoelectric | 不稳定指数Instability index | 脂肪族氨基酸指数Aliphatic index | 亲水度 Average of hydropathicity | 亚细胞定位预测Prediction of subcellularlocalization |
---|---|---|---|---|---|---|---|---|---|
LOC110097606 | DcMYB1 | 3R-MYB | 581 | 64501.81 | 8.88 | 63.81 | 71.86 | -0.605 | nucl: 14 |
LOC110098032 | DcMYB2 | 2R3R-MYB | 203 | 23543.65 | 7.68 | 57.57 | 68.28 | -0.865 | nucl: 14 |
LOC110101288 | DcMYB3 | 2R3R-MYB | 247 | 28192.25 | 4.93 | 56.44 | 60.49 | -0.809 | nucl: 14 |
LOC110114505 | DcMYB4 | 2R3R-MYB | 526 | 57624.91 | 5 | 53.08 | 66.2 | -0.621 | Nucler: 13, pero: 1 |
LOC110115927 | DcMYB5 | 2R3R-MYB | 340 | 38337.7 | 7.64 | 54.12 | 84.62 | -0.481 | nucl: 14 |
LOC110098979 | DcMYB6 | 2R3R-MYB | 336 | 38188.52 | 5.38 | 45.77 | 75.15 | -0.652 | nucl: 14 |
LOC110114551 | DcMYB7 | 2R3R-MYB | 314 | 35140.56 | 6.47 | 53.83 | 70.19 | -0.665 | nucl: 13, pero: 1 |
LOC110103484 | DcMYB8 | 1R-MYB, ZnF | 221 | 24557.44 | 9.94 | 49.5 | 61.76 | -0.714 | nucl: 5, chlo: 4, mito: 3, plas: 1, cysk: 1 |
LOC110105838 | DcMYB9 | 2R3R-MYB | 287 | 32412.67 | 5.99 | 56.18 | 74.84 | -0.589 | nucl: 14 |
LOC110094774 | DcMYB10 | 2R3R-MYB | 275 | 30978.88 | 6.37 | 55.97 | 65.27 | -0.672 | nucl: 14 |
LOC110111576 | DcMYB11 | 2R3R-MYB | 243 | 27921.06 | 8.94 | 58.35 | 56.58 | -0.875 | nucl: 14 |
LOC110112067 | DcMYB12 | 2R3R-MYB | 231 | 26786.37 | 9.67 | 60.98 | 63.77 | -0.805 | nucl: 14 |
LOC110109430 | DcMYB13 | 2R3R-MYB | 238 | 26549.02 | 8.28 | 55.86 | 71.39 | -0.513 | nucl: 13, cyto: 1 |
LOC110111434 | DcMYB14 | 2R3R-MYB | 213 | 24546.74 | 9.86 | 49.62 | 63.19 | -0.8 | nucl: 14 |
LOC110115321 | DcMYB15 | 2R3R-MYB | 409 | 45603.97 | 7.21 | 68.2 | 68.66 | -0.633 | nucl: 14 |
LOC110113344 | DcMYB16 | 2R3R-MYB | 316 | 35293.45 | 5.46 | 45.84 | 67.25 | -0.591 | nucl: 14 |
LOC110104025 | DcMYB17 | 2R3R-MYB | 327 | 37236.83 | 8.92 | 56.94 | 67.13 | -0.654 | nucl: 14 |
LOC110102853 | DcMYB18 | 1R-MYB, ZnF | 316 | 34892.05 | 6.81 | 63 | 63.96 | -0.652 | chlo: 6, mito: 5, nucl: 2, cysk: 1 |
LOC110099916 | DcMYB19 | 2R3R-MYB | 291 | 33548.13 | 9.07 | 62.25 | 75.05 | -0.69 | nucl: 14 |
LOC110108743 | DcMYB20 | 2R3R-MYB | 216 | 24044.51 | 9.29 | 54.61 | 73.7 | -0.667 | nucl: 14 |
LOC110113232 | DcMYB21 | 2R3R-MYB | 409 | 45585.94 | 7.21 | 68.2 | 69.61 | -0.627 | nucl: 14 |
LOC110109300 | DcMYB22 | 2R3R-MYB | 361 | 39400.05 | 6.76 | 62.16 | 63.88 | -0.67 | nucl: 14 |
LOC110112867 | DcMYB23 | 2R3R-MYB | 251 | 28687.7 | 8.68 | 72.15 | 69.96 | -0.795 | nucl: 14 |
LOC110111024 | DcMYB24 | 2R3R-MYB | 326 | 37055.28 | 5.23 | 56.37 | 70.31 | -0.664 | nucl: 14 |
LOC110107869 | DcMYB25 | 2R3R-MYB | 347 | 38031.44 | 6.1 | 54.8 | 62.8 | -0.663 | nucl: 14 |
LOC110115620 | DcMYB26 | 2R3R-MYB | 370 | 40224.06 | 6.34 | 68.96 | 65.19 | -0.525 | nucl: 14 |
LOC110094240 | DcMYB27 | 2R3R-MYB | 292 | 32526.71 | 6.16 | 48.86 | 74.55 | -0.451 | nucl:13,pero: 1 |
LOC110094080 | DcMYB28 | 2R3R-MYB | 312 | 35182.39 | 7.01 | 58.72 | 70.67 | -0.746 | nucl: 14 |
LOC110105411 | DcMYB29 | 2R3R-MYB | 286 | 32205.26 | 5.38 | 57.37 | 79.51 | -0.657 | nucl: 13, cyto: 1 |
LOC110095044 | DcMYB30 | 2R3R-MYB | 242 | 28182.63 | 6.34 | 52.67 | 66.12 | -0.776 | nucl: 14 |
LOC110113544 | DcMYB31 | 2R3R-MYB | 272 | 31107.96 | 6.11 | 59.23 | 72.76 | -0.626 | nucl: 14 |
LOC110113885 | DcMYB32 | 1R-MYB,H15 | 275 | 30415.83 | 9.42 | 51.22 | 69.31 | -0.687 | nucl: 14 |
LOC110112113 | DcMYB33 | 2R3R-MYB | 298 | 33583.52 | 6.61 | 46.48 | 66.44 | -0.737 | nucl: 14 |
LOC110107882 | DcMYB34 | 2R3R-MYB | 348 | 38967.19 | 7.37 | 60.89 | 56.72 | -0.735 | nucl:13.5, cyto_nucl: 7.5 |
LOC110099272 | DcMYB35 | 2R3R-MYB | 280 | 31255.11 | 6.09 | 58.79 | 72.89 | -0.59 | nucl: 13, pero: 1 |
LOC110103760 | DcMYB36 | 2R3R-MYB | 257 | 29168.99 | 6.75 | 52.42 | 83.07 | -0.535 | nucl: 9.5, cyto_nucl: 5.5, mito: 2,plas:1.5, golg_plas: 1.5 |
LOC110107293 | DcMYB37 | 2R3R-MYB | 235 | 27563.73 | 6.38 | 74.32 | 61.4 | -0.989 | nucl: 14 |
LOC110093341 | DcMYB38 | 2R3R-MYB | 373 | 41852.49 | 5.87 | 57.95 | 67.24 | -0.8 | nucl: 14 |
图6 铁皮石斛在高温干旱复合胁迫下0、12 d DcMYBs基因的热图分析
Fig. 6 Heatmap analysis of 0 and 12 d DcMYBs genes in D. catenatum under the combined stress of high temperature and drought
[1] | He CM, Teixeira da Silva JA, Wang HB, et al. Mining MYB transcription factors from the genomes of orchids(Phalaenopsis and Dendrobium)and characterization of an orchid R2R3-MYB gene involved in water-soluble polysaccharide biosynthesis[J]. Sci Rep, 2019, 9(1): 13818. |
[2] | 刘羽佳, 陈堰珊, 理雅, 等. 铁皮石斛种质资源与遗传改良研究进展[J]. 韶关学院学报, 2022, 43(12): 1-6. |
Liu YJ, Chen YS, Li Y, et al. Advances in germplasm resources and genetic improvement of Dendrobium officinale[J]. J Shaoguan Univ, 2022, 43(12): 1-6. | |
[3] | 陈立钻, 孙继军. 珍稀濒危物种铁皮石斛的保育与开发利用[J]. 中国林业. 2003, 22: 35. |
Chen LZ, Sun JJ. Conservation and exploitation of Dendrobium officinale, a rare and endangered species[J]. Forestry of China. 2003, 22: 35. | |
[4] | 周静, 曾玫艳, 安新民. 杨树WRKY基因家族鉴定及其干旱胁迫响应模式分析[J]. 中国细胞生物学学报, 2019, 41(11): 2160-2173. |
Zhou J, Zeng MY, An XM. Identification of Populus trichocarpa WRKY gene family and its'response to drought stress[J]. Chin J Cell Biol, 2019, 41(11): 2160-2173. | |
[5] |
Katiyar A, Smita S, Lenka SK, et al. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis[J]. BMC Genomics, 2012, 13: 544.
doi: 10.1186/1471-2164-13-544 pmid: 23050870 |
[6] | Feller A, Machemer K, Braun EL, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. Plant J, 2011, 66(1): 94-116. |
[7] | 吕波, 张文政, 李春雨, 等. MYB家族转录因子OsMYB84通过ABA信号通路参与盐胁迫响应[J]. 复旦学报: 自然科学版, 2015, 54(5): 591-600. |
Lü B, Zhang WZ, Li CY, et al. The MYB family transcription factor OsMYB84 confers salt stress response through the ABA pathway[J]. J Fudan Univ Nat Sci, 2015, 54(5): 591-600. | |
[8] | Zhang LS, Sun XM, Wilson IW, et al. Identification of the genes involved in anthocyanin biosynthesis and accumulation in Taxus chinensis[J]. Genes, 2019, 10(12): 982. |
[9] | 钮洁, 李萌. 珙桐种子发育相关的MYB基因家族成员的鉴定及表达分析[J]. 分子植物育种. 2022: 1-14. |
Niu J, Li M. Identification and expression analysis of MYB gene family members associated with Davidia involucrata Baill. seed Developmen[J]. Molecular Plant Breeding 2022: 1-14. | |
[10] | 谭雪艳. 高温胁迫对金钗石斛生理和次生代谢的影响及外源钙缓解效应[D]. 雅安: 四川农业大学, 2022. |
Tan XY. Effects of high temperature stress on physiology and secondary metabolism of Dendrobium nobile and alleviating effect of exogenous calcium[D]. Ya'an: Sichuan Agricultural University, 2022. | |
[11] | 吕朝燕, 高智席, 刘文蝶, 等. 两种石斛对干旱胁迫及复水的生理响应[J]. 中药材, 2023, 46(5): 1075-1082. |
Lyu CY, Gao ZX, Liu WD, et al. Physiological responses of two Dendrobium species to drought stress and rehydration[J]. J Chin Med Mater, 2023, 46(5): 1075-1082. | |
[12] | 孙乐, 陈晓梅, 吴崇明, 等. 铁皮石斛多糖药理活性研究进展[J]. 药学学报, 2020, 55(10): 2322-2329. |
Sun L, Chen XM, Wu CM, et al. Advances and prospects of pharmacological activities of Dendrobium officinale Kimura et Migo polysaccharides[J]. Acta Pharm Sin, 2020, 55(10): 2322-2329. | |
[13] | 邹晖, 林江波, 戴艺民, 等. 干旱胁迫下内生真菌对铁皮石斛抗旱性的影响[J]. 北方园艺, 2020(6): 119-125. |
Zou H, Lin JB, Dai YM, et al. Effects of endophyte on the drought resistance of Dendrobium officinale under drought stress[J]. North Hortic, 2020(6): 119-125. | |
[14] | Yamori W, Hikosaka K, Way DA. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation[J]. Photosynth Res, 2014, 119(1-2): 101-117. |
[15] | 吴昊姝, 徐建华, 陈立钻, 等. 铁皮石斛降血糖作用及其机制的研究[J]. 中国中药杂志, 2004, 29(2): 160-163. |
Wu HS, Xu JH, Chen LZ, et al. Studies on anti-hyperglycemic effect and its mechanism of Dendrobium candidum[J]. China J Chin Mater Med, 2004, 29(2): 160-163. | |
[16] |
贺威智, 雷伟奇, 郭祥鑫, 等. 百子莲MYB家族鉴定及蓝色形成关键基因功能分析[J]. 园艺学报, 2023, 50(6): 1255-1268.
doi: 10.16420/j.issn.0513-353x.2022-0226 |
He WZ, Lei WQ, Guo XX, et al. Identification of the MYB gene family and functional analysis of key genes related to blue flower coloration in Agapanthus praecox[J]. Acta Hortic Sin, 2023, 50(6): 1255-1268. | |
[17] | 张妍彤, 张杰, 赵红霞, 等. 多穗柯MYB转录因子的鉴定及适应光因子调控黄酮类合成成员的筛选[J]. 东北林业大学学报. 2023, 51(7):15-23. |
Zhang YT, Zhang J, Zhao HX, et al. ldentification of MYB transcription factors and sereening for members of flavonoid synthesis regulated by light factors in adaptation to Lithocarpus polystachyus[J]. Journal of Northeast Forestry Unieversity. 2023, 51(7):15-23. | |
[18] | 韩玉莹, 陈璐瑶, 陈由强, 等. 球等鞭金藻MYB基因家族成员全基因组鉴定和特性分析[J]. 福建农业科技, 2023, 54(4): 22-35. |
Han YY, Chen LY, Chen YQ, et al. Genome-wide identification and characteristic analysis of MYB gene family members in Isochrysis galbana[J]. Fujian Agric Sci Technol, 2023, 54(4): 22-35. | |
[19] | 李慧, 张雨峰, 李晓刚, 等. 基于转录组信息的杜梨盐胁迫相关MYB转录因子鉴定与分析[J]. 农业生物技术学报, 2024, 32(1): 132-146. |
Li H, Zhang YF, Li XG, et al. Identification and analysis of MYB transcription factors related to salt stress in Pyrus betulaefolia based on transcriptome information[J]. J Agric Biotechnol, 2024, 32(1): 132-146. | |
[20] | 王悦, 刘亚玲, 苑峰, 等. 蒺藜苜蓿MtMYB16基因克隆、表达及转录自激活分析[J/OL]. 中国草地学报, 2024, 46(3):1-10. |
Wang Y, Liu YL, Yuan F, et al. Cloning, expression and transcriptional autoactivation analysis of MtMYB16 gene in Medicago trun-catula[J/OL]. Chinese Journal of Grassland, 2024, 46(3):1-10. | |
[21] | Li YM, Kui LW, Liu Z, et al. Genome-wide analysis and expression profiles of the StR2R3-MYB transcription factor superfamily in potato(Solanum tuberosum L.)[J]. Int J Biol Macromol, 2020, 148: 817-832. |
[22] | 周婵. ‘雪梅’低温响应MYB转录因子的克隆、表达和功能分析[D]. 武汉: 华中农业大学, 2016. |
Zhou C. Cloning, Expression and functional analysis of cold induced MYBs in prunus mume‘Xue Mei’[D]. Wuhan: Huazhong Agricultural University, 2016. | |
[23] |
Chen Y H, Yang XY, He K, et al. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family[J]. Plant Molecular Biology, 2006, 60: 107-124.
doi: 10.1007/s11103-005-2910-y pmid: 16463103 |
[24] |
任明辉, 张雨蓬, 许涛, 等. 紫花苜蓿R2R3-MYB亚家族鉴定与干旱胁迫下的表达分析[J]. 草地学报, 2023, 31(4): 972-983.
doi: 10.11733/j.issn.1007-0435.2023.04.005 |
Ren MH, Zhang YP, Xu T, et al. Identification and expression analyses of R2R3-MYB subfamily in alfalfa under drought stress[J]. Acta Agrestia Sin, 2023, 31(4): 972-983. | |
[25] | 张涛, 黄华梅, 徐玲, 等. 基于转录组的番木瓜MYB基因家族的生物信息学分析[J]. 分子植物育种, 2020, 18(15): 4908-4917. |
Zhang T, Huang HM, Xu L, et al. Bioinformatics analysis of MYB transcription factor family genes based on the transcriptome of Papaya(Carica papaya L.)[J]. Mol Plant Breed, 2020, 18(15): 4908-4917. | |
[26] | Nakabayashi R, Yonekura-Sakakibara K, Urano K, et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids[J]. Plant J, 2014, 77(3): 367-379. |
[27] |
Lotkowska ME, Tohge T, Fernie AR, et al. The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress[J]. Plant Physiol, 2015, 169(3): 1862-1880.
doi: 10.1104/pp.15.00605 pmid: 26378103 |
[28] | Hussain SS, Kayani MA, Amjad M. Transcription factors as tools to engineer enhanced drought stress tolerance in plants[J]. Biotechnol Prog, 2011, 27(2): 297-306. |
[29] | Liang YK, Dubos C, Dodd IC, et al. AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana[J]. Curr Biol, 2005, 15(13): 1201-1206. |
[30] |
Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis[J]. Trends Plant Sci, 2010, 15(10): 573-581.
doi: 10.1016/j.tplants.2010.06.005 pmid: 20674465 |
[31] |
Yu L, Shi DC, Li JL, et al. CELLULOSE SYNTHASE-LIKE A2, a glucomannan synthase, is involved in maintaining adherent mucilage structure in Arabidopsis seed[J]. Plant Physiol, 2014, 164(4): 1842-1856.
doi: 10.1104/pp.114.236596 pmid: 24569843 |
[32] | 王爱斌. 蓝莓响应干旱MYB基因筛选及调控机制研究[D]. 北京: 北京林业大学, 2021. |
Wang AB. Screening and regulation mechanism of MYB gene in blueberry in response to drought[D]. Beijing: Beijing Forestry University, 2021. | |
[33] | Lim J, Lim CW, Lee SC. Role of pepper MYB transcription factor CaDIM1 in regulation of the drought response[J]. Front Plant Sci, 2022, 13: 1028392. |
[34] |
Zhang LC, Zhao GY, Jia JZ, et al. Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress[J]. J Exp Bot, 2012, 63(1): 203-214.
doi: 10.1093/jxb/err264 pmid: 21934119 |
[1] | 胡雅丹, 伍国强, 刘晨, 魏明. MYB转录因子在调控植物响应逆境胁迫中的作用[J]. 生物技术通报, 2024, 40(6): 5-22. |
[2] | 江林琪, 赵佳莹, 郑飞雄, 姚馨怡, 李效贤, 俞振明. 铁皮石斛14-3-3基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(3): 229-241. |
[3] | 周会汶, 吴兰花, 韩德鹏, 郑伟, 余跑兰, 吴杨, 肖小军. 甘蓝型油菜种子硫苷含量全基因组关联分析[J]. 生物技术通报, 2024, 40(1): 222-230. |
[4] | 任丽, 乔舒婷, 葛晨辉, 魏梓桐, 徐晨曦. 菠菜PSY基因家族的鉴定与表达分析[J]. 生物技术通报, 2023, 39(12): 169-178. |
[5] | 罗皓天, 王龙, 王禹茜, 王月, 李佳祯, 杨梦珂, 张杰, 邓欣, 王红艳. 青狗尾草RNAi途径相关基因的全基因组鉴定和表达分析[J]. 生物技术通报, 2023, 39(1): 175-186. |
[6] | 王慧, 马艺文, 乔正浩, 常彦彩, 术琨, 丁海萍, 聂永心, 潘光堂. AOX基因家族的结构和功能特征分析[J]. 生物技术通报, 2022, 38(7): 160-170. |
[7] | 谢果珍, 唐圆, 宁晓妹, 邱集慧, 谭周进. 铁皮石斛多糖对高脂饮食小鼠肠黏膜结构及菌群的影响[J]. 生物技术通报, 2022, 38(2): 150-157. |
[8] | 李琦, 王怡超, 刘畅, 谭何新. 黄花蒿R2R3-MYB转录因子全基因组鉴定及生物信息学分析[J]. 生物技术通报, 2021, 37(8): 65-74. |
[9] | 高玲, 王斐, 谢双全, 陈喜凤, 沈海涛, 李鸿彬. 乌拉尔甘草CBL基因家族的鉴定与表达分析[J]. 生物技术通报, 2021, 37(4): 18-27. |
[10] | 孙小倩, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子FtMYBF的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2021, 37(3): 10-17. |
[11] | 乔宇琛, 周思静, 宋梅芳, 王平, 刘桂君. 铁皮石斛分子遗传学和多组学研究进展[J]. 生物技术通报, 2019, 35(3): 151-163. |
[12] | 苗小荣, 牛俊奇, 莫昭展, 王爱勤, 何龙飞. 铁皮石斛转化酶抑制子家族基因的克隆和表达分析[J]. 生物技术通报, 2018, 34(1): 129-136. |
[13] | 欧阳凡,董文宾,付瑜,樊成,李雨虹. 铁皮石斛茎段快繁技术的研究[J]. 生物技术通报, 2016, 32(3): 63-67. |
[14] | 肖冬长;张智俊;管雨;. 铁皮石斛微卫星SSR设计与应用[J]. , 2012, 0(07): 88-92. |
[15] | 李晓薇;苏连泰;赵旭;翟莹;张海军;张庆林;李景文;王庆钰;. 两个大豆MYB转录因子在原核细胞中的高效表达[J]. , 2011, 0(08): 99-102. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 72
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 2110
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||