生物技术通报 ›› 2023, Vol. 39 ›› Issue (1): 175-186.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0478
罗皓天(), 王龙, 王禹茜, 王月, 李佳祯, 杨梦珂, 张杰, 邓欣, 王红艳()
收稿日期:
2022-04-17
出版日期:
2023-01-26
发布日期:
2023-02-02
作者简介:
罗皓天,男,硕士研究生,研究方向:植物分子生物学;E-mail: 基金资助:
LUO Hao-tian(), WANG Long, WANG Yu-qian, WANG Yue, LI Jia-zhen, YANG Meng-ke, ZHANG Jie, DENG Xin, WANG Hong-yan()
Received:
2022-04-17
Published:
2023-01-26
Online:
2023-02-02
摘要:
RNAi途径是RdDM途径的衍生途径,其中的AGO、DCL和RDR蛋白在植物的生长发育和响应非生物/生物胁迫过程中发挥重要作用。为了研究RNAi途径的3种主要蛋白在青狗尾草中的序列及结构特征,利用比较基因组学方法,在青狗尾草中鉴定到13个AGO基因、7个DCL基因和4个RDR基因,并对其蛋白质亚细胞定位、系统发育关系、保守结构域进行预测。同时,利用转录组数据分析RNAi途径的3类相关基因在青狗尾草的16种不同生长时期、不同生长条件下的表达模式。蛋白质结构域分析发现,SvDCL3b和SvRDR3缺少重要的结构域。转录组分析发现,SvAGO1b、SvDCL1a和SvRDR1在各家族中表达量较高,可能在RNAi途径中发挥主要作用,且大多数青狗尾草和谷子的同源基因间的表达模式基本一致。综上,本研究为理解RNAi途径的3种主要基因在调控青狗尾草的表观遗传修饰中的功能和作用提供初步的理论依据,为青狗尾草和谷子之间驯化的分子机制提供 参考。
罗皓天, 王龙, 王禹茜, 王月, 李佳祯, 杨梦珂, 张杰, 邓欣, 王红艳. 青狗尾草RNAi途径相关基因的全基因组鉴定和表达分析[J]. 生物技术通报, 2023, 39(1): 175-186.
LUO Hao-tian, WANG Long, WANG Yu-qian, WANG Yue, LI Jia-zhen, YANG Meng-ke, ZHANG Jie, DENG Xin, WANG Hong-yan. Genome-wide Identification and Expression Analysis of the RNAi-related Gene Families in Setaria viridis[J]. Biotechnology Bulletin, 2023, 39(1): 175-186.
S. viridis phytozome gene ID | S. viridis gene name | S. viridis phytozome sequence length/aa | S. italica phytozome gene ID(var. Yugu1) | S. italica gene name | S. italica phytozome sequence length/aa | Identity/% |
---|---|---|---|---|---|---|
Sevir.9G565900.2 | SvDCL1a | 1 933 | Seita.9G562200.1 | SiDCL1a | 1 933 | 99 |
Sevir.4G119200.1 | SvDCL1b | 313 | Seita.4G153000.1 | SiDCL1b | 313 | 100 |
Sevir.3G331300.1 | SvDCL1c | 375 | Seita.3G295600.1 | SiDCL1c | 375 | 99 |
Sevir.9G177900.1 | SvDCL2 | 1 562 | Seita.9G179200.1 | SiDCL2 | 1 404 | 99 |
Sevir.5G427800.1 | SvDCL3a | 1 662 | Seita.5G422300.1 | SiDCL3a | 1 662 | 99 |
Sevir.9G214200.2 | SvDCL3b | 1 493 | Seita.9G215300.1 | SiDCL3b | 1 626 | 95 |
Sevir.7G171000.1 | SvSHO1 | 1 632 | Seita.7G162200.1 | SiSHO1 | 1 632 | 99 |
Sevir.7G213000.1 | SvAGO1b | 1 146 | Seita.7G201100.1 | SiAGO1b | 1 104 | 99 |
Sevir.1G385400.1 | SvAGO1c | 1 023 | Seita.1G378700.1 | SiAGO1c | 1 023 | 99 |
Sevir.4G301000.1 | SvAGO1d | 1 050 | Seita.4G288700.1 | SiAGO1d | 1 050 | 99 |
Sevir.7G248200.1 | SvAGO2 | 1 024 | Seita.7G236800.1 | SiAGO2 | 1 024 | 99 |
Sevir.5G040900.1 | SvAGO4a | 902 | Seita.5G043300.1 | SiAGO4a | 902 | 99 |
Sevir.3G120100.1 | SvAGO4b | 910 | Seita.3G117800.1 | SiAGO4b | 910 | 99 |
Sevir.9G051150.1 | SvMEL1 | 1 005 | Seita.9G052000.1 | SiMEL1 | 1 005 | 99 |
Sevir.9G137300.2 | SvAGO12 | 765 | Seita.9G138800.1 | SiAGO12 | 1 088 | 99 |
Sevir.2G069400.2 | SvAGO14 | 764 | Seita.2G066500.1 | SiAGO14 | 1 041 | 100 |
Sevir.2G154500.1 | SvAGO16 | 886 | Seita.2G148000.1 | SiAGO16 | 910 | 100 |
Sevir.2G321900.2 | SvAGO18 | 779 | Seita.2G310800.1 | SiAGO18 | 954 | 99 |
Sevir.9G365300.2 | SvSHL4 | 881 | Seita.9G359200.1 | SiSHL4 | 1 030 | 99 |
Sevir.4G237200.2 | SvPNH1 | 965 | Seita.4G225900.3 | SiPNH1 | 965 | 100 |
Sevir.1G318100.1 | SvRDR1 | 1 120 | Seita.1G312200.1 | SiRDR1 | 1 123 | 99 |
Sevir.7G137100.1 | SvRDR2 | 1 130 | Seita.7G128700.1 | SiRDR2 | 1 130 | 100 |
Sevir.7G003600.2 | SvRDR3 | 616 | Seita.7G020600.1 | SiRDR3 | 1 150 | 99 |
Sevir.5G186200.1 | SvSHL2 | 1 211 | Seita.5G184800.1 | SiSHL2 | 1 211 | 99 |
表1 青狗尾草与谷子的基因序列信息
Table 1 Gene sequence information of S. viridis and S. italica
S. viridis phytozome gene ID | S. viridis gene name | S. viridis phytozome sequence length/aa | S. italica phytozome gene ID(var. Yugu1) | S. italica gene name | S. italica phytozome sequence length/aa | Identity/% |
---|---|---|---|---|---|---|
Sevir.9G565900.2 | SvDCL1a | 1 933 | Seita.9G562200.1 | SiDCL1a | 1 933 | 99 |
Sevir.4G119200.1 | SvDCL1b | 313 | Seita.4G153000.1 | SiDCL1b | 313 | 100 |
Sevir.3G331300.1 | SvDCL1c | 375 | Seita.3G295600.1 | SiDCL1c | 375 | 99 |
Sevir.9G177900.1 | SvDCL2 | 1 562 | Seita.9G179200.1 | SiDCL2 | 1 404 | 99 |
Sevir.5G427800.1 | SvDCL3a | 1 662 | Seita.5G422300.1 | SiDCL3a | 1 662 | 99 |
Sevir.9G214200.2 | SvDCL3b | 1 493 | Seita.9G215300.1 | SiDCL3b | 1 626 | 95 |
Sevir.7G171000.1 | SvSHO1 | 1 632 | Seita.7G162200.1 | SiSHO1 | 1 632 | 99 |
Sevir.7G213000.1 | SvAGO1b | 1 146 | Seita.7G201100.1 | SiAGO1b | 1 104 | 99 |
Sevir.1G385400.1 | SvAGO1c | 1 023 | Seita.1G378700.1 | SiAGO1c | 1 023 | 99 |
Sevir.4G301000.1 | SvAGO1d | 1 050 | Seita.4G288700.1 | SiAGO1d | 1 050 | 99 |
Sevir.7G248200.1 | SvAGO2 | 1 024 | Seita.7G236800.1 | SiAGO2 | 1 024 | 99 |
Sevir.5G040900.1 | SvAGO4a | 902 | Seita.5G043300.1 | SiAGO4a | 902 | 99 |
Sevir.3G120100.1 | SvAGO4b | 910 | Seita.3G117800.1 | SiAGO4b | 910 | 99 |
Sevir.9G051150.1 | SvMEL1 | 1 005 | Seita.9G052000.1 | SiMEL1 | 1 005 | 99 |
Sevir.9G137300.2 | SvAGO12 | 765 | Seita.9G138800.1 | SiAGO12 | 1 088 | 99 |
Sevir.2G069400.2 | SvAGO14 | 764 | Seita.2G066500.1 | SiAGO14 | 1 041 | 100 |
Sevir.2G154500.1 | SvAGO16 | 886 | Seita.2G148000.1 | SiAGO16 | 910 | 100 |
Sevir.2G321900.2 | SvAGO18 | 779 | Seita.2G310800.1 | SiAGO18 | 954 | 99 |
Sevir.9G365300.2 | SvSHL4 | 881 | Seita.9G359200.1 | SiSHL4 | 1 030 | 99 |
Sevir.4G237200.2 | SvPNH1 | 965 | Seita.4G225900.3 | SiPNH1 | 965 | 100 |
Sevir.1G318100.1 | SvRDR1 | 1 120 | Seita.1G312200.1 | SiRDR1 | 1 123 | 99 |
Sevir.7G137100.1 | SvRDR2 | 1 130 | Seita.7G128700.1 | SiRDR2 | 1 130 | 100 |
Sevir.7G003600.2 | SvRDR3 | 616 | Seita.7G020600.1 | SiRDR3 | 1 150 | 99 |
Sevir.5G186200.1 | SvSHL2 | 1 211 | Seita.5G184800.1 | SiSHL2 | 1 211 | 99 |
Name | Number of amino acids | Molecular weig Mw/Da | Theore- tical pI | Number of nega- tive amino acids | Number of posi- tive amino acids | Instability index | Aliphatic index | Grand average of hydropathicity | Subcellular localization |
---|---|---|---|---|---|---|---|---|---|
SvDCL1a | 1 933 | 216 220.21 | 6.38 | 258 | 241 | 44.68 | 82.32 | -0.401 | Nucleus |
SvDCL1b | 313 | 35 044.76 | 5.01 | 52 | 36 | 38.74 | 82.88 | -0.396 | Nucleus |
SvDCL1c | 375 | 41 215.67 | 8.91 | 43 | 49 | 29.3 | 92.85 | -0.186 | Nucleus |
SvDCL2 | 1 562 | 174 660.19 | 8.16 | 171 | 179 | 48.64 | 92.11 | -0.169 | Nucleus |
SvDCL3a | 1 662 | 185 841.70 | 6.01 | 213 | 187 | 44.64 | 91.94 | -0.243 | Nucleus |
SvDCL3b | 1 493 | 168 634.83 | 6 | 183 | 158 | 45.1 | 95.37 | -0.142 | Extracellular space |
SvSHO1 | 1 632 | 184 872.59 | 6.33 | 210 | 194 | 44.42 | 90.29 | -0.229 | Nucleus |
SvAGO1b | 1 146 | 127 072.12 | 9.41 | 102 | 135 | 49.38 | 74.15 | -0.475 | Extracellular space |
SvAGO1c | 1 023 | 113 773.50 | 9.55 | 101 | 136 | 52.31 | 77.34 | -0.5 | Nucleus |
SvAGO1d | 1 050 | 116 775.50 | 9.24 | 105 | 130 | 50.52 | 74.78 | -0.464 | Nucleus |
SvAGO2 | 1 024 | 110 757.88 | 9.31 | 98 | 129 | 38.85 | 75.78 | -0.419 | Nucleus |
SvAGO4a | 902 | 100 987.60 | 9.15 | 99 | 121 | 48.49 | 78.65 | -0.429 | Nucleus |
SvAGO4b | 910 | 101 572.16 | 9.02 | 99 | 117 | 48.16 | 79.03 | -0.398 | Nucleus |
SvMEL1 | 1 005 | 111 633.67 | 9.18 | 104 | 128 | 50.36 | 79.68 | -0.364 | Chloroplast thylakoid lumen |
SvAGO12 | 765 | 85 951.54 | 9.02 | 76 | 95 | 41.32 | 84.09 | -0.336 | Nucleus |
SvAGO14 | 764 | 86 241.92 | 8.9 | 74 | 89 | 49.64 | 81.77 | -0.293 | Nucleus |
SvAGO16 | 886 | 99 036.16 | 9.26 | 92 | 118 | 42.69 | 86.86 | -0.296 | Nucleus |
SvAGO18 | 779 | 87 496.55 | 9.19 | 86 | 109 | 40.43 | 89.33 | -0.338 | Nucleus |
SvSHL4 | 881 | 99 741.90 | 9.24 | 92 | 120 | 40.43 | 83.63 | -0.366 | Nucleus |
SvPNH1 | 965 | 107 674.01 | 9.34 | 94 | 127 | 48.09 | 83.07 | -0.356 | Nucleus |
SvRDR1 | 1 120 | 127 951.65 | 7.72 | 131 | 133 | 39.69 | 86.88 | -0.247 | Nucleus |
SvRDR2 | 1 130 | 126 334.56 | 6.9 | 146 | 143 | 43.53 | 85.42 | -0.223 | Chloroplast thylakoid membrane |
SvRDR3 | 616 | 69 258.84 | 6.54 | 77 | 73 | 52.21 | 77.4 | -0.428 | Nucleus |
SvSHL2 | 1 211 | 136 712.9 | 6.48 | 156 | 149 | 41.81 | 79.41 | -0.334 | Nucleus |
表2 青狗尾草的蛋白质序列信息
Table 2 Protein sequence information of S. viridis
Name | Number of amino acids | Molecular weig Mw/Da | Theore- tical pI | Number of nega- tive amino acids | Number of posi- tive amino acids | Instability index | Aliphatic index | Grand average of hydropathicity | Subcellular localization |
---|---|---|---|---|---|---|---|---|---|
SvDCL1a | 1 933 | 216 220.21 | 6.38 | 258 | 241 | 44.68 | 82.32 | -0.401 | Nucleus |
SvDCL1b | 313 | 35 044.76 | 5.01 | 52 | 36 | 38.74 | 82.88 | -0.396 | Nucleus |
SvDCL1c | 375 | 41 215.67 | 8.91 | 43 | 49 | 29.3 | 92.85 | -0.186 | Nucleus |
SvDCL2 | 1 562 | 174 660.19 | 8.16 | 171 | 179 | 48.64 | 92.11 | -0.169 | Nucleus |
SvDCL3a | 1 662 | 185 841.70 | 6.01 | 213 | 187 | 44.64 | 91.94 | -0.243 | Nucleus |
SvDCL3b | 1 493 | 168 634.83 | 6 | 183 | 158 | 45.1 | 95.37 | -0.142 | Extracellular space |
SvSHO1 | 1 632 | 184 872.59 | 6.33 | 210 | 194 | 44.42 | 90.29 | -0.229 | Nucleus |
SvAGO1b | 1 146 | 127 072.12 | 9.41 | 102 | 135 | 49.38 | 74.15 | -0.475 | Extracellular space |
SvAGO1c | 1 023 | 113 773.50 | 9.55 | 101 | 136 | 52.31 | 77.34 | -0.5 | Nucleus |
SvAGO1d | 1 050 | 116 775.50 | 9.24 | 105 | 130 | 50.52 | 74.78 | -0.464 | Nucleus |
SvAGO2 | 1 024 | 110 757.88 | 9.31 | 98 | 129 | 38.85 | 75.78 | -0.419 | Nucleus |
SvAGO4a | 902 | 100 987.60 | 9.15 | 99 | 121 | 48.49 | 78.65 | -0.429 | Nucleus |
SvAGO4b | 910 | 101 572.16 | 9.02 | 99 | 117 | 48.16 | 79.03 | -0.398 | Nucleus |
SvMEL1 | 1 005 | 111 633.67 | 9.18 | 104 | 128 | 50.36 | 79.68 | -0.364 | Chloroplast thylakoid lumen |
SvAGO12 | 765 | 85 951.54 | 9.02 | 76 | 95 | 41.32 | 84.09 | -0.336 | Nucleus |
SvAGO14 | 764 | 86 241.92 | 8.9 | 74 | 89 | 49.64 | 81.77 | -0.293 | Nucleus |
SvAGO16 | 886 | 99 036.16 | 9.26 | 92 | 118 | 42.69 | 86.86 | -0.296 | Nucleus |
SvAGO18 | 779 | 87 496.55 | 9.19 | 86 | 109 | 40.43 | 89.33 | -0.338 | Nucleus |
SvSHL4 | 881 | 99 741.90 | 9.24 | 92 | 120 | 40.43 | 83.63 | -0.366 | Nucleus |
SvPNH1 | 965 | 107 674.01 | 9.34 | 94 | 127 | 48.09 | 83.07 | -0.356 | Nucleus |
SvRDR1 | 1 120 | 127 951.65 | 7.72 | 131 | 133 | 39.69 | 86.88 | -0.247 | Nucleus |
SvRDR2 | 1 130 | 126 334.56 | 6.9 | 146 | 143 | 43.53 | 85.42 | -0.223 | Chloroplast thylakoid membrane |
SvRDR3 | 616 | 69 258.84 | 6.54 | 77 | 73 | 52.21 | 77.4 | -0.428 | Nucleus |
SvSHL2 | 1 211 | 136 712.9 | 6.48 | 156 | 149 | 41.81 | 79.41 | -0.334 | Nucleus |
S. viridis Seq | S. italica Seq | Ka | Ks | Ka/Ks |
---|---|---|---|---|
SvDCL1a | SiDCL1a | 4.50E-04 | 0.007448 | 0.060448 |
SvDCL2 | SiDCL2 | 0.007684 | 0.016635 | 0.461898 |
SvDCL3a | SiDCL3a | 0.001735 | 0.002233 | 0.776912 |
SvDCL3b | SiDCL3b | 0.003205 | 0.008756 | 0.36609 |
SvSHO1 | SiSHO1 | 0.001317 | 0.003678 | 0.358024 |
SvDCL1c | SiDCL1c | 0.001188 | 0.003628 | 0.327395 |
SvDCL1b | SiDCL1b | 0 | 0 | 1 |
SvAGO1b | SiAGO1b | 0.003265 | 0.002469 | 1.32227 |
SvAGO1c | SiAGO1c | 4.32E-04 | 0.004014 | 0.1077 |
SvAGO1d | SiAGO1d | 0.002126 | 0.009241 | 0.230094 |
SvAGO2 | SiAGO2 | 0.002176 | 0.005251 | 0.414369 |
SvAGO4a | SiAGO4a | 0.001443 | 0.014678 | 0.098316 |
SvAGO4b | SiAGO4b | 0.004078 | 0.008723 | 0.467525 |
SvMEL1 | SiMEL1 | 0.001322 | 0.008187 | 0.161428 |
SvAGO14 | SiAGO14 | 0 | 0.003712 | 0 |
SvAGO16 | SiAGO16 | 0 | 0 | 1 |
SvAGO18 | SiAGO18 | 0.002238 | 0.007426 | 0.301434 |
SvSHL4 | SiSHL4 | 4.25E-04 | 0.004131 | 0.102776 |
SvPNH1 | SiPNH1 | 0 | 0 | 1 |
SvAGO12 | SiAGO12 | 0.001719 | 0.013044 | 0.131752 |
SvSHL2 | SiSHL2 | 3.62E-04 | 0.001162 | 0.311114 |
SvRDR2 | SiRDR2 | 0 | 0.001233 | 0 |
SvRDR1 | SiRDR1 | 0.003106 | 0.005191 | 0.598413 |
SvRDR3 | SiRDR3 | 0.021549 | 0.035874 | 0.600701 |
表3 青狗尾草和谷子的Ka/Ks
Table 3 Ka/Ks of S. viridis and S. italica
S. viridis Seq | S. italica Seq | Ka | Ks | Ka/Ks |
---|---|---|---|---|
SvDCL1a | SiDCL1a | 4.50E-04 | 0.007448 | 0.060448 |
SvDCL2 | SiDCL2 | 0.007684 | 0.016635 | 0.461898 |
SvDCL3a | SiDCL3a | 0.001735 | 0.002233 | 0.776912 |
SvDCL3b | SiDCL3b | 0.003205 | 0.008756 | 0.36609 |
SvSHO1 | SiSHO1 | 0.001317 | 0.003678 | 0.358024 |
SvDCL1c | SiDCL1c | 0.001188 | 0.003628 | 0.327395 |
SvDCL1b | SiDCL1b | 0 | 0 | 1 |
SvAGO1b | SiAGO1b | 0.003265 | 0.002469 | 1.32227 |
SvAGO1c | SiAGO1c | 4.32E-04 | 0.004014 | 0.1077 |
SvAGO1d | SiAGO1d | 0.002126 | 0.009241 | 0.230094 |
SvAGO2 | SiAGO2 | 0.002176 | 0.005251 | 0.414369 |
SvAGO4a | SiAGO4a | 0.001443 | 0.014678 | 0.098316 |
SvAGO4b | SiAGO4b | 0.004078 | 0.008723 | 0.467525 |
SvMEL1 | SiMEL1 | 0.001322 | 0.008187 | 0.161428 |
SvAGO14 | SiAGO14 | 0 | 0.003712 | 0 |
SvAGO16 | SiAGO16 | 0 | 0 | 1 |
SvAGO18 | SiAGO18 | 0.002238 | 0.007426 | 0.301434 |
SvSHL4 | SiSHL4 | 4.25E-04 | 0.004131 | 0.102776 |
SvPNH1 | SiPNH1 | 0 | 0 | 1 |
SvAGO12 | SiAGO12 | 0.001719 | 0.013044 | 0.131752 |
SvSHL2 | SiSHL2 | 3.62E-04 | 0.001162 | 0.311114 |
SvRDR2 | SiRDR2 | 0 | 0.001233 | 0 |
SvRDR1 | SiRDR1 | 0.003106 | 0.005191 | 0.598413 |
SvRDR3 | SiRDR3 | 0.021549 | 0.035874 | 0.600701 |
图5 青狗尾草和谷子RNAi相关基因组织特异性表达分析 Leaf 2-Leaf 6为第2-6片叶
Fig. 5 Tissue-specific expression analysis of RNAi-related genes in S. viridis and S. italica Leaf 2-Leaf 6 indicates to2nd to 6th leaves
[1] |
Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity[J]. Nat Rev Genet, 2014, 15(6): 394-408.
doi: 10.1038/nrg3683 pmid: 24805120 |
[2] |
Cuerda-Gil D, Slotkin RK. Non-canonical RNA-directed DNA methylation[J]. Nat Plants, 2016, 2(11): 16163.
doi: 10.1038/nplants.2016.163 pmid: 27808230 |
[3] |
Fang XF, Qi YJ. RNAi in plants: an argonaute-centered view[J]. Plant Cell, 2016, 28(2): 272-285.
doi: 10.1105/tpc.15.00920 URL |
[4] |
Haag JR, Pikaard CS. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing[J]. Nat Rev Mol Cell Biol, 2011, 12(8): 483-492.
doi: 10.1038/nrm3152 URL |
[5] |
Matzke MA, Kanno T, Matzke AJM. RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants[J]. Annu Rev Plant Biol, 2015, 66: 243-267.
doi: 10.1146/annurev-arplant-043014-114633 pmid: 25494460 |
[6] |
Yang ZR, Huang Y, Yang JL, et al. Jasmonate signaling enhances RNA silencing and antiviral defense in rice[J]. Cell Host Microbe, 2020, 28(1): 89-103.e8.
doi: S1931-3128(20)30252-3 pmid: 32504578 |
[7] |
Bologna NG, Voinnet O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis[J]. Annu Rev Plant Biol, 2014, 65: 473-503.
doi: 10.1146/annurev-arplant-050213-035728 URL |
[8] |
Henderson IR, Zhang XY, Lu C, et al. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning[J]. Nat Genet, 2006, 38(6): 721-725.
doi: 10.1038/ng1804 pmid: 16699516 |
[9] |
Wang JL, Mei J, Ren GD. Plant microRNAs: biogenesis, homeostasis, and degradation[J]. Front Plant Sci, 2019, 10: 360.
doi: 10.3389/fpls.2019.00360 pmid: 30972093 |
[10] |
Wendte JM, Pikaard CS. The RNAs of RNA-directed DNA methylation[J]. Biochim Biophys Acta Gene Regul Mech, 2017, 1860(1): 140-148.
doi: 10.1016/j.bbagrm.2016.08.004 URL |
[11] |
Stroud H, Greenberg MVC, Feng SH, et al. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome[J]. Cell, 2013, 152(1/2): 352-364.
doi: 10.1016/j.cell.2012.10.054 URL |
[12] |
Blevins T, Podicheti R, Mishra V, et al. Identification of pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis[J]. eLife, 2015, 4: e09591.
doi: 10.7554/eLife.09591 URL |
[13] |
Marí-Ordóñez A, Marchais A, Etcheverry M, et al. Reconstructing de novo silencing of an active plant retrotransposon[J]. Nat Genet, 2013, 45(9): 1029-1039.
doi: 10.1038/ng.2703 pmid: 23852169 |
[14] |
Kapoor M, Arora R, Lama T, et al. Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice[J]. BMC Genomics, 2008, 9: 451.
doi: 10.1186/1471-2164-9-451 pmid: 18826656 |
[15] | 张司雯, 邓欣, 王龙, 等. 谷子RNA干扰相关酶类基因家族的鉴定与分析[J]. 草业科学, 2021, 38(7): 1380-1392. |
Zhang SW, Deng X, Wang L, et al. Identification and analysis of RNA interference-related enzyme gene families in Setaria italica[J]. Pratacultural Sci, 2021, 38(7): 1380-1392. | |
[16] |
Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes[J]. Science, 2000, 290(5494): 1151-1155.
doi: 10.1126/science.290.5494.1151 pmid: 11073452 |
[17] | Diao XM, Jia GQ. Origin and domestication of foxtail millet[M]. In:Genetics and Genomics of Setaria. Springer Cham, 2017. |
[18] |
Mamidi S, Healey A, Huang P, et al. A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci[J]. Nat Biotechnol, 2020, 38(10): 1203-1210.
doi: 10.1038/s41587-020-0681-2 pmid: 33020633 |
[19] |
Chen CJ, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8): 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[20] |
Bennetzen JL, Schmutz J, Wang H, et al. Reference genome sequence of the model plant Setaria[J]. Nat Biotechnol, 2012, 30(6): 555-561.
doi: 10.1038/nbt.2196 pmid: 22580951 |
[21] |
Diamond J. Evolution, consequences and future of plant and animal domestication[J]. Nature, 2002, 418(6898): 700-707.
doi: 10.1038/nature01019 URL |
[22] |
Huang XH, Kurata N, Wei XH, et al. A map of rice genome variation reveals the origin of cultivated rice[J]. Nature, 2012, 490(7421): 497-501.
doi: 10.1038/nature11532 URL |
[23] | Wendel JF, Grover CE. Taxonomy and evolution of the cotton genus, gossypium[M], Cotton, 2015: 25-44. |
[24] |
Matsuoka Y, Vigouroux Y, Goodman MM, et al. A single domestication for maize shown by multilocus microsatellite genotyping[J]. Proc Natl Acad Sci USA, 2002, 99(9): 6080-6084.
doi: 10.1073/pnas.052125199 pmid: 11983901 |
[25] |
Kim MY, Van K, Kang YJ, et al. Tracing soybean domestication history: from nucleotide to genome[J]. Breed Sci, 2012, 61(5): 445-452.
doi: 10.1270/jsbbs.61.445 URL |
[26] |
Zhang L, Su WQ, Tao R, et al. RNA sequencing provides insights into the evolution of lettuce and the regulation of flavonoid biosynthesis[J]. Nat Commun, 2017, 8(1): 2264.
doi: 10.1038/s41467-017-02445-9 pmid: 29273740 |
[27] |
Chan SWL, Zilberman D, Xie ZX, et al. RNA silencing genes control de novo DNA methylation[J]. Science, 2004, 303(5662): 1336.
doi: 10.1126/science.1095989 pmid: 14988555 |
[28] |
McCue AD, Panda K, Nuthikattu S, et al. ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation[J]. EMBO J, 2015, 34(1): 20-35.
doi: 10.15252/embj.201489499 pmid: 25388951 |
[29] |
Raja P, Jackel JN, Li SZ, et al. Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against geminiviruses[J]. J Virol, 2014, 88(5): 2611-2622.
doi: 10.1128/JVI.02305-13 URL |
[30] |
Huang J, Yang ML, Zhang XM. The function of small RNAs in plant biotic stress response[J]. J Integr Plant Biol, 2016, 58(4): 312-327.
doi: 10.1111/jipb.12463 |
[31] |
Guo XW, Ma ZY, Zhang ZH, et al. Small RNA-sequencing links physiological changes and RdDM process to vegetative-to-floral transition in apple[J]. Front Plant Sci, 2017, 8: 873.
doi: 10.3389/fpls.2017.00873 pmid: 28611800 |
[32] |
Cheng JF, Niu QF, Zhang B, et al. Downregulation of RdDM during strawberry fruit ripening[J]. Genome Biol, 2018, 19(1): 212.
doi: 10.1186/s13059-018-1587-x pmid: 30514401 |
[33] |
Iwasaki M, Hyvärinen L, Piskurewicz U, et al. Non-canonical RNA-directed DNA methylation participates in maternal and environmental control of seed dormancy[J]. eLife, 2019, 8: e37434.
doi: 10.7554/eLife.37434 URL |
[1] | 林红妍, 郭晓蕊, 刘迪, 李慧, 陆海. 转录组分析转录因子AtbHLH68调控细胞壁发育的分子机制[J]. 生物技术通报, 2023, 39(9): 105-116. |
[2] | 苗永美, 苗翠苹, 于庆才. 枯草芽孢杆菌BBs-27发酵液性质及脂肽对黄色镰刀菌的抑菌作用[J]. 生物技术通报, 2023, 39(9): 255-267. |
[3] | 付钰, 贾瑞瑞, 何荷, 王良桂, 杨秀莲. 两种砧木楸树嫁接苗生长差异及转录组比较分析[J]. 生物技术通报, 2023, 39(8): 251-261. |
[4] | 赵金玲, 安磊, 任晓亮. 单细胞转录组测序技术及其在秀丽隐杆线虫中的应用[J]. 生物技术通报, 2023, 39(6): 158-170. |
[5] | 孔德真, 段震宇, 王刚, 张鑫, 席琳乔. 盐、碱胁迫下高丹草苗期生理特征及转录组学分析[J]. 生物技术通报, 2023, 39(6): 199-207. |
[6] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[7] | 谢洋, 邢雨蒙, 周国彦, 刘美妍, 银珊珊, 闫立英. 黄瓜二倍体及其同源四倍体果实转录组分析[J]. 生物技术通报, 2023, 39(3): 152-162. |
[8] | 扈丽丽, 林柏荣, 王宏洪, 陈建松, 廖金铃, 卓侃. 最短尾短体线虫转录组及潜在效应蛋白分析[J]. 生物技术通报, 2023, 39(3): 254-266. |
[9] | 孙言秋, 谢采芸, 汤岳琴. 耐高温酿酒酵母的构建与高温耐受机制解析[J]. 生物技术通报, 2023, 39(11): 226-237. |
[10] | 徐俊, 叶雨晴, 牛雅静, 黄河, 张蒙蒙. 菊花根状茎发育的转录组分析[J]. 生物技术通报, 2023, 39(10): 231-245. |
[11] | 周家燕, 邹建, 陈卫英, 吴一超, 陈奚潼, 王倩, 曾文静, 胡楠, 杨军. 植物多基因干扰载体体系构建与效用分析[J]. 生物技术通报, 2023, 39(1): 115-126. |
[12] | 王慧, 马艺文, 乔正浩, 常彦彩, 术琨, 丁海萍, 聂永心, 潘光堂. AOX基因家族的结构和功能特征分析[J]. 生物技术通报, 2022, 38(7): 160-170. |
[13] | 辛建攀, 李燕, 赵楚, 田如男. 镉胁迫下梭鱼草叶片转录组测序及苯丙烷代谢途径相关基因挖掘[J]. 生物技术通报, 2022, 38(6): 198-210. |
[14] | 许瑾, 李涛, 李楚琳, 朱顺妮, 王忠铭, 向文洲. 温度对真眼点藻生长、总脂及二十碳五烯酸(EPA)合成的影响[J]. 生物技术通报, 2022, 38(6): 261-271. |
[15] | 熊和丽, 沙茜, 刘韶娜, 相德才, 张斌, 赵智勇. 单细胞转录组测序技术在动物上的应用研究[J]. 生物技术通报, 2022, 38(3): 226-233. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||